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Preface for Paperback Edition 

In 1968, Part I of Detection, Estimation, and Modulation Theory [VT681 was pub- 
lished. It turned out to be a reasonably successful book that has been widely used by 
several generations of engineers. There were thirty printings, but the last printing 
was in 1996. Volumes II and III ([VT7 1 a], [VT7 1 b]) were published in 197 1 and fo- 
cused on specific application areas such as analog modulation, Gaussian signals 
and noise, and the radar-sonar problem. Volume II had a short life span due to the 
shift from analog modulation to digital modulation. Volume III is still widely used 
as a reference and as a supplementary text. In a moment of youthful optimism, I in- 
dicated in the the Preface to Volume III and in Chapter III-14 that a short mono- 
graph on optimum array processing would be published in 197 1. The bibliography 
lists it as a reference, Optimum Array Processing, Wiley, 197 1, which has been sub- 
sequently cited by several authors. After a 30-year delay, Optimum Array Process- 
ing, Part IV of Detection, Estimation, and Modulation Theory will be published this 
year. 

A few comments on my career may help explain the long delay. In 1972, MIT 
loaned me to the Defense Communication Agency in Washington, DC. where I 
spent three years as the Chief Scientist and the Associate Director of Technology. At 
the end of the tour, I decided, for personal reasons, to stay in the Washington, D.C. 
area. I spent three years as an Assistant Vice-President at COMSAT where my 
group did the advanced planning for the INTELSAT satellites. In 1978, I became 
the Chief Scientist of the United States Air Force. In 1979, Dr. Gerald Dinneen, the 
former Director of Lincoln Laboratories, was serving as Assistant Secretary of De- 
fense for C31. He asked me to become his Principal Deputy and I spent two years in 
that position. In 198 1, I joined MIA-COM Linkabit. Linkabit is the company that Ir- 
win Jacobs and Andrew Viterbi had started in 1969 and sold to MIA-COM in 1979. 
I started an Eastern operation which grew to about 200 people in three years. After 
Irwin and Andy left M/A-COM and started Qualcomm, I was responsible for the 
government operations in San Diego as well as Washington, D.C. In 1988, M/A- 
COM sold the division. At that point I decided to return to the academic world. 

I joined George Mason University in September of 1988. One of my priorities 
was to finish the book on optimum array processing. However, I found that I needed 
to build up a research center in order to attract young research-oriented faculty and 
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doctoral students. The process took about six years. The Center for Excellence in 
Command, Control, Communications, and Intelligence has been very successful 
and has generated over $300 million in research funding during its existence. Dur- 
ing this growth period, I spent some time on array processing but a concentrated ef- 
fort was not possible. In 1995, I started a serious effort to write the Array Process- 
ing book. 

Throughout the Optimum Arrav Processing text there are references to Parts I 
and III of Detection, Estimation, and Modulation Theory. The referenced material is 
available in several other books, but I am most familiar with my own work. Wiley 
agreed to publish Part I and III in paperback so the material will be readily avail- 
able. In addition to providing background for Part IV, Part I is still useful as a text 
for a graduate course in Detection and Estimation Theory. Part III is suitable for a 
second level graduate course dealing with more specialized topics. 

In the 30-year period, there has been a dramatic change in the signal processing 
area. Advances in computational capability have allowed the implementation of 
complex algorithms that were only of theoretical interest in the past. In many appli- 
cations, algorithms can be implemented that reach the theoretical bounds. 

The advances in computational capability have also changed how the material is 
taught. In Parts I and III, there is an emphasis on compact analytical solutions to 
problems. In Part IV there is a much greater emphasis on efficient iterative solu- 
tions and simulations. All of the material in parts I and III is still relevant. The books 
use continuous time processes but the transition to discrete time processes is 
straightforward. Integrals that were difficult to do analytically can be done easily in 
Matlab? The various detection and estimation algorithms can be simulated and 
their performance compared to the theoretical bounds. We still use most of the prob- 
lems in the text but supplement them with problems that require Matlab@ solutions. 

We hope that a new generation of students and readers find these reprinted edi- 
tions to be useful. 

Fairfax, Virginia 
June 2001 

HARRY L. VAN TREES 



Preface 

In this book 1 continue the study of detection, estimation, and modulation 
theory begun in Part I [I]. I assume that the reader is familiar with the 
background of the overall project that was discussed in the preface of 
Part I. In the preface to Part II [2] I outlined the revised organization of the 
material. As I pointed out there, Part III can be read directly after Part I. 
Thus, some persons will be reading this volume without having seen 
Part II. Many of the comments in the preface to Part II are also appropriate 
here, so I shall repeat the pertinent ones. 

At the time Part I was published, in January 1968, I had completed the 
“final” draft for Part II. During the spring term of 1968, I used this draft 
as a text for an advanced graduate course at M.I.T. and in the summer of 
1968, I started to revise the manuscript to incorporate student comments 
and include some new research results. In September 1968, I became 
involved in a television project in the Center for Advanced Engineering 
Study at MIT. During this project, I made fifty hours of videotaped 
lectures on applied probability and random processes for distribution to 
industry and universities as part of a self-study package. The net result of 
this involvement was that the revision of the manuscript was not resumed 
until April 1969. In the intervening period, my students and I had obtained 
more research results that I felt should be included. As I began the final 
revision, two observations were apparent. The first observation was that 
the manuscript has become so large that it was economically impractical 
to publish it as a single volume. The second observation was that since 
I was treating four major topics in detail, it was unlikely that many 
readers would actually use all of the book. Because several of the topics 
can be studied independently, with only Part I as background, I decided 
to divide the material into three sections: Part II, Part III, and a short 
monograph on Optimum Array Processing [3]. This division involved some 
further editing, but I felt it was warranted in view of increased flexibility 
it gives both readers and instructors. 
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x Preface 

In Part II, I treated nonlinear modulation theory. In this part, I treat 
the random signal problem and radar/sonar. Finally, in the monograph, I 
discuss optimum array processing. The interdependence of the various 
parts is shown graphically in the following table. It can be seen that 
Part II is completely separate from Part III and Optimum Array Processing. 
The first half of Optimum Array Processing can be studied directly after 
Part I, but the second half requires some background from Part III. 
Although the division of the material has several advantages, it has one 
major disadvantage. One of my primary objectives is to present a unified 
treatment that enables the reader to solve problems from widely diverse 
physical situations. Unless the reader sees the widespread applicability of 
the basic ideas he may fail to appreciate their importance. Thus, I strongly 
encourage all serious students to read at least the more basic results in all 
three parts. 

Prerequisites 

Part II 

Part III 
Chaps. III-1 to III-5 
Chaps. III-6 to III-7 
Chaps. III-$-end 

Array Processing 
Chaps. IV-l, IV-2 
Chaps. IV-3-end 

Chaps. I-5, I-6 

Chaps. I-4, I-6 
Chaps. I-4 
Chaps. I-4, I-6, 111-l to III-7 

Chaps. I-4 
Chaps. III-1 to III-S, AP-1 to AP-2 

The character of this book is appreciably different that that of Part I. 
It can perhaps be best described as a mixture of a research monograph 
and a graduate level text. It has the characteristics of a research mono- 
graph in that it studies particular questions in detail and develops a 
number of new research results in the course of this study. In many cases 
it explores topics which are still subjects of active research and is forced 
to leave some questions unanswered. It has the characteristics of a graduate 
level text in that it presents the material in an orderly fashion and develops 
almost all of the necessary results internally. 

The book should appeal to three classes of readers. The first class 
consists of graduate students. The random signal problem, discussed in 
Chapters 2 to 7, is a logical extension of our earlier work with deterministic 
signals and completes the hierarchy of problems we set out to solve. The 
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last half of the book studies the radar/sonar problem and some facets of 
the digital communication problem in detail. It is a thorough study of how 
one applies statistical theory to an important problem area. I feel that it 
provides a useful educational experience, even for students who have no 
ultimate interest in radar, sonar, or communications, because it demon- 
strates system design techniques which will be useful in other fields. 

The second class consists of researchers in this field. Within the areas 
studied, the results are close to the current research frontiers. In many 
places, specific research problems are suggested that are suitable for thesis 
or industrial research. 

The third class consists of practicing engineers. In the course of the 
development, a number of problems of system design and analysis are 
carried out. The techniques used and results obtained are directly applic- 
able to many current problems. The material is in a form that is suitable 
for presentation in a short course or industrial course for practicing 
engineers. I have used preliminary versions in such courses for several 
years. 

The problems deserve some mention. As in Part I, there are a large 
number of problems because I feel that problem solving is an essential 
part of the learning process. The problems cover a wide range of difficulty 
and are designed to both augment and extend the discussion in the text. 
Some of the problems require outside reading, or require the use of 
engineering judgement to make approximations or ask for discussion of 
some issues. These problems are sometimes frustrating to the student but 
I feel that they serve a useful purpose. In a few of the problems I had to 
use numerical calculations to get the answer. I strongly urge instructors to 
work a particular problem before assigning it. Solutions to the problems 
will be available in the near future. 

As in Part I, I have tried to make the notation mnemonic. All of the 
notation is summarized in the glossary at the end of the book. I have 
tried to make my list of references as complete as possible and acknowledge 
any ideas due to other people. 

Several people have contributed to the development of this book. 
Professors Arthur Baggeroer, Estil Hoversten, and Donald Snyder of the 
M.I.T. faculty, and Lewis Collins of Lincoln Laboratory, carefully read 
and criticized the entire book. Their suggestions were invaluable. R. R. 
Kurth read several chapters and offered useful suggestions. A number of 
graduate students offered comments which improved the text. My secre- 
tary, Miss Camille Tortorici, typed the entire manuscript several times. 

My research at M.I.T. was partly supported by the Joint Services and 
by the National Aeronautics and Space Administration under the 
auspices of the Research Laboratory of Electronics. I did the final editing 
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while on Sabbatical Leave at Trinity College, Dublin. Professor Brendan 
Scaife of the Engineering School provided me office facilities during this 
peiiod, and M.I.T. provided financial assistance. I am thankful for all 
of the above support. 

Dublin, Ireland, 
Harry L. Van Trees 
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1 
Ik troduc tion 

This book is the third in a set of four volumes. The purpose of these four 
volumes is to present a unified approach to the solution of detection, 
estimation, and modulation theory problems. In this volume we study 
two major problem areas. The first area is the detection of random signals 
in noise and the estimation of random process parameters. The second 
area is signal processing in radar and sonar systems. As we pointed out 
in the Preface, Part III does not use the material in Part II and can be read 
directlv after Part I. 

In this chapter we discuss three topics briefly. In Section 1.1, we review 
Parts I and II so that we can see where the material in Part III fits into the 
over-all development. In Section 1.2, we introduce the first problem area 
and outline the organization of Chapters 2 through 7. In Section 1.3, 
we introduce the radar-sonar problem and outline the organization of 
Chapters 8 through 14. 

1.1 REVIEW OF PARTS I AND II 

In the introduction to Part I [l], we outlined a hierarchy of problems in 
the areas of detection, estimation, and modulation theory and discussed a 
number of physical situations in which these problems are encountered. 

We began our technical discussion in Part I with a detailed study of 
classical detection and estimation theory. In the classical problem the 
observation space is finite-dimensional, whereas in most problems of 
interest to us the observation is a waveform and must be represented in 
an infinite-dimensional space. All of the basic ideas of detection and 
parameter estimation were developed in the classical context. 

In Chapter I- 3, we discussed the representation of waveforms in terms 
of series expansions. This representation enabled us to bridge the gap 

Detection, Estimation, and Modulation Theory, Part III:
Radar–Sonar Signal Processing and Gaussian Signals in Noise. Harry L. Van Trees

Copyright  2001 John Wiley & Sons, Inc.
ISBNs: 0-471-10793-X (Paperback); 0-471-22109-0 (Electronic)



2 1.1 Review qf Parts I and I/ 

between the classical problem and the waveform problem in a straight- 
forward manner. With these two chapters as background, we began our 
study of the hierarchy of problems that we had outlined in Chapter I-l. 

In the first part of Chapter I-4, we studied the detection of known 
signals in Gaussian noise. A typical problem was the binary detection 
problem in which the received waveforms on the two hypotheses were 

r(t) = %W + mu Ti < t < T,:H,, - - (1) 

r(t) = %W + no>9 Ti < t < Tf: Ho, - - (2) 

where sl(t) and so(t) were known functions. The noise n(t) was a sample 
function of a Gaussian random process. 

We then studied the parameter-estimati On P roble m. Here, the received 
waveform was 

r(t) = s(t, A) + n(t), Ti < t < Tf- _ - (3) 

The signal s(t, A) was a known function oft and A. The parameter A was a 
vector, either random or nonrandom, that we wanted to estimate. 

We referred to all of these problems as known signal-in-noise problems, 
and they were in the first level in the hierarchy of problems that we 
outlined in Cha .pter I- 1. The common characteristic of first-level problems 
is the presence of a deterministic signaZ at the receiver. In the binary 
detection problem, the receiver decides which of the two deterministic 
waveforms is present in the received waveform. In the estima tion proble m, 
the receiver estimates the value of a parameter contai ned in the signal. In 
all cases it is the additive 

We then generalized t 
depend on a finite set of unknown parameters (either random or non- 
random). In this case, the received waveforms in the binarv detection 

noise that limits the performance of the receiver. 
he model by allowi ng the signal component to 

problem were 

40 = sl(t, e) + n(t), Ti < t < Tf:Hl, _ _ 

r(t) = so09 e) + n(t), Ti < t < T,: Ho. - - 

In the estimation problem the received waveform was 

(4) 

r(t) = so9 A, 0) + n(t), Ti < t < Tf. - - (5) 

The vector 8 denoted a set of unknown and unwanted parameters whose 
presence introduced a new uncertainty into the problem. These problems 
were in the second level of the hierarchy. The additional degree of freedom 
in the second-level model allowed us to study several important physical 
channels such as the random-phase channel, the Rayleigh channel, and 
the Rician channel. 
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In Chapter I-5, we 
continuous waveform 
problem, we derived a 
demodulator. 

began our discussion of modulation theory and 
estimation. After formulating a mode 1 for the 
set of integral equ ations that specify the optimum 

In Chapter I-6, we studied the linear estimation problem in detail, Our 
analysis led to an integral equation, 

s 
Tf Wf, 4 = M, 7)K,iT, u) dT, Ti < t, u < T-), (6) Ti 

that specified the optimum receiver. We first studied the case in which the 
observation interval was infinite and the processes were stationary. Here, 
the spectrum-factorization techniques of Wiener enabled us to solve the 
problem completely. For finite observation intervals and nonstationary 
processes, the state-variable formulation of Kalman and Bucy led to a 
complete solution. We shall find that the integral equation (6) arises 
frequently in our development in this book. Thus, many of the results in 
Chapter I-6 will play an important role in our current discussion. 

In Part II, we studied nonlinear modulation theory [2]. Because the 
subject matter in Part II is essentially disjoint from that in Part III, we 
shall not review the contents in detail. The material in Chapters I-4 
through Part II is a detailed study of the first and second levels of our 
hierarchy of detection, estimation, and modulation theory problems. 

There are a large number of physical situations in which the models in 
the first and second level do not adequately describe the problem. In the 
next section we discuss several of these physical situations and indicate a 
more appropriate model. 

1.2 RANDOM SIGNALS IN NOISE 

We begin our discussion by considering several physical situations in 
which our previous models are not adequate. Consider the problem of 
detecting the presence of a submarine using a passive sonar system. The 
engines, propellers, and other elements in the submarine generate acoustic 
signals that travel through the ocean to the hydrophones in the detection 
system. This signal can best be characterized as a sample function from a 
random process. In addition, a hydrophone generates self-noise and 
picks up sea noise. Thus a suitable model for the detection problem might 
be 

r(t) = w, Ti < t < T,:H,,. - B (8) 
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Now s(t> is a sample function from a random process. The new feature in 
this problem is that the mapping from the hypothesis (or source output) 
to the signal s(t) is no longer deterministic. The detection problem is to 
decide whether r(t) is a sample function from a signal plus noise process or 
from the noise process alone. 

A second area in which we decide which of two processes is present is 
the digital communications area. A large number of digital systems operate 
over channels in which randomness is inherent in the transmission char- 
acteristics. For example, tropospheric scatter links, orbiting dipole links, 
chaff systems, atmospheric channels for optical systems, and underwater 
acoustic channels all exhibit random behavior. We discuss channel models 
in detail in Chapters 9-13. We shall find that a typical method of communi- 
cating digital data over channels of this type is to transmit one of two 
signals that are separated in frequency. (We denote these two frequencies 
as ~r)~ and oO). The resulting received signal is 

40 = sdt) + 4th Ti < t < Tr: HI, - - 
r(t) = %W + w9 Ti < t < T,: Ho. - - 0 

Now sl(t) is a sample function from a random process whose spectrum is 
centered at CC)~, and s,(t) is a sample function from a random process whose 
spectrum is centered at uO. We want to build a receiver that will decide 
between HI and Ho. 

Problems in which we want to estimate the parameters of random proces- 
ses are plentiful. Usually when we model a physical phenomenon using a 
stationary random process we assume that the power spectrum is known. 
In practice, we frequently have a sample function available and must 
determine the spectrum by observing it. One procedure is to parameterize 
the spectrum and estimate the parameters. For example, we assume 

and try to estimate A, and A2 by observing a sample function of s(t) 
corrupted by measurement noise. A second procedure is to consider a 
small frequency interval and try to estimate the average height of spectrum 
over that interval. 

A second example of estimation of process parameters arises in such 
diverse areas as radio astronomy, spectroscopy, and passive sonar. The 
source generates a narrow-band random process whose center frequency 
identifies the source. Here we want to estimate the center frequency of the 
spectrum. 

A closely related problem arises in the radio astronomy area. Various 
sources in our galaxy generate a narrow-band process that would be 
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centered at some known frequency if the source were not moving. By 
estimating the center frequency of the received process, the velocity of the 
source can be determined. The received waveform may be written as 

r(t) = s(t, 1’) + n(t), Ti < t < T,, _ - (11) 

where s(t, v) is a sample function of a random process whose statistical 
properties depend on the velocity v. 

These examples of detection and estimation theory problems corre- 
spond to the third level in the hierarchy that we outlined in Chapter I-l. 
They have the common’ characteristic that the information of interest is 
imbedded in a random process. Any detection or estimation procedure 
must be based on how the statistics of r(t) vary as a function of the 
hypothesis or the parameter value. 

In Chapter 2, we formulate a quantitative model of the simple binary 
detection problem in which the received waveform consists of a white 
Gaussian noise process on one hypothesis and the sum of a Gaussian 
signal process and the white Gaussian noise process on the other hy- 
pothesis. In Chapter 3, we study the general problem in which the received 
signal is a sample function from one of two Gaussian random processes. 
In both sections we derive optimum receiver structures and investigate the 
resulting performance. 

In Chapter 4, we study four special categories of detection problems for 
which complete solutions can be obtained. In Chapter 5, we consider the 
Mary problem, the performance of suboptimum receivers for the binary 
problem, and summarize our detection theory results. 

In Chapters 6 and 7, we treat the parameter estimation problem. In 
Chapter 6, we develop the model for the single-parameter estimation 
problem, derive the optimum estimator, and discuss performance analysis 
techniques. In Chapter 7, we study four categories of estimation problems 
in which reasonably complete solutions can be obtained. We also extend 
our results to include multiple-parameter estimation and summarize our 
estimation theory discussion. 

The first half of the book is long, and several of the discussions include a 
fair amount of detail. This detailed discussion is necessary in order to 
develop an ability actually to solve practical problems. Strictly speaking, 
there are no new concepts. We are simply applying decision theory and 
estimation theory to a more general class of problems. It turns out that 
the transition from the concept to actual receiver design requires a signifi- 
cant amount of effort. 

The development in Chapters 2 through 7 completes our study of the 
hierarchy of problems that were outlined in Chapter I-l. The remainder of 
the book applies these ideas to signal processing in radar and sonar systems. 
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1.3 

1.3 Si,onal Processing in Radar-Sonar Systems 

SIGNAL PROCESSING IN RADAR-SONAR SYSTEMS 

In a conventional active radar system we transmit a pulsed sinusoid. 
If a target is present, the signal is reflected. The received waveform consists 
of the reflected signal plus interfering noises. In the simplest case, the only 
source of interference is an additive Gaussian receiver noise. In the more 
general case, there is interference due to external noise sources or reflections 
from other targets. In the detection problem, the receiver processes the 
signal to decide whether or not a target is present at a particular location. 
In the parameter estimation problem, the receiver processes the signal to 
measure some characteristics of the target such as range, velocity, or 
acceleration. We are interested in the signal-processing aspects of this 
problem. 

There are a number of issues that arise in the signal-processing problem. 

1. We must describe the reflective characteristics of the target. In other 
words, if the transmitted signal is s#), what is the reflected signal? 

2. We must describe the effect of the transmission channels on the 
signals. 

3. We must characterize the interference. In addition to the receiver 
n oise, there m aY be other targets, ex 

4. After we de velop a quantitative 
ternal noise generators, or 
model for the environmen 

cl 
t, 

utter. 
we m ust 

design an optimum (or suboptimum) receiver and evaluate its perform- 
ance. 

In the second half of the book we study these issues. In Chapter 8, we 
discuss the radar-sonar problem qualitatively. In Chapter 9, we discuss the 
problem of detecting a slowly fluctuating point target at a particular 
range and velocity. Fi 
white Gau .ssian noise, 

rst 
an .d we develo 

we assume that t he only interferen ce is additive 
p the optimum receiver and evaluate 

its performance. We then consider nonwhite Gau 
optimum receiver and its performance. We use 

ssian noise and 
complex state- 

theorv to obtain 
In Chapter 10, 

complete sol utions for th e nonwhite noise case. 
we consider the problem 0 If estimating the parameters 

find the 
variable 

of 
a slowly fluctuating point target. Initially, we consider the problem of 
estimating the range and velocity of a single target when the interference is 
additive white Gaussian noise. Starting with the likelihood function, we 
develop the structure of the optimum receiver. We then investigate the 
performance of the receiver and see how the signal characteristics affect 
the estimation accuracy. Finally, we consider the problem of detecting a 
target in the presence of other interfering targets. 

The work in Chapters 9 and 10 deals with the simplest type of target and 
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models the received signal as a known signal with unknown random 
parameters. The background for this problem was developed in Section 
I-4.4, and Chapters 9 and 10 can be read directly after Chapter I-4. 

In Chapter 11, we consider a point target that fluctuates during the time 
during which the transmitted pulse is being reflected. Now we must model 
the received signal as a sample function of a random process. 

In Chapter 12, we consider a slowly fluctuating target that is distributed 
in range. Once again we model the received signal as a sample function of 
a random process. In both cases, the necessary background for solving the 
problem has been developed in Chapters III-2 through 111-4. 

In Chapter 13, we consider fluctuating, distributed targets. This model 
is useful in the study of clutter in radar systems and reverberation in 
sonar systems. It is also appropriate in 
communications problems. As in Chapters 

radar astronomy and scatter 
11 and 12, the received signal 

is modeled as a sample function of a random process. In all three of these 
chapters we are able to find the optimum receivers and analyze their 
performance. 

Throughout 
radar problem 

our discussion we emphasize the 
the digital communications 

similarity between the 
problem. Imbedded in 

digital communication over 
be of interest to communica- 

and 
various chapters are detailed discussions of 
fluctuati ng channels. Thus, the material will 
tions engineers as well as radar/sonar signal processors. 

Finally, in Chapter 14, we summarize the major results of the radar- 
sonar discussion and outline the contents of the subsequent book on 
Array Processing [3]. In addition to the body of the text, there is an 
Appendix on the complex representation of signals, systems, and processes. 
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Detection of Gaussian Signals 
in White Gaussian Noise 

In this chapter we consider the problem of detecting a sample function 
from a Gaussian random process in the presence of additive white Gaussian 
noise. This problem is a special case of the general Gaussian problem 
described in Chapter 1. It is characterized by the property that on both 
hypotheses, the received waveform contains an additive noise component 
w(t), which is a sample function from a zero-mean white Gaussian process 
with spectral height N,/2. When HI is true, the received waveform also 
contains a signal s(t), which is a sample function from a Gaussian random 
process whose mean and covariance function are known. Thus, 

and 
W) = 40 + W), T, < t < T,:H, _ __ (1) 

r(t) = w(t), Ti < t < Tf: Ho. - - Go 

The signal process has a mean value function m(t), 

Ebwl = m(t,, Ti < t < T,, - - (3) 

and a covariance function &(t, u), 

E[s(O - m(O>(s(u> - m(u))] A K,(t, u), Ti < t, u < Tf. - _ (4) 

Both m(t) and K,(t, U) are known. We assume that the signal process has a 
finite mean-square value and is statistically independent of the additive 
noise. Thus, the covariance function of r(t) on HI is 

E[(r(t) - m(t))(r(u) - m(u)) 1 H,] a K,(t, 21) = K,(t, u) + : s(t - u), 

Ti 5 t, u 5 Tf. (5) 

8 

Detection, Estimation, and Modulation Theory, Part III:
Radar–Sonar Signal Processing and Gaussian Signals in Noise. Harry L. Van Trees

Copyright  2001 John Wiley & Sons, Inc.
ISBNs: 0-471-10793-X (Paperback); 0-471-22109-0 (Electronic)



Optimum Receiver Derivation 9 

We refer to r(t) as a conditionally Gaussian random process. The term 
“conditionally Gaussian” is used because r(t), given HI is true, and r(t), 
given Ho is tru e, are the two Gaussian proces ses in the model . 

We obse rve that the mean value fu nction can be viewed as a deter- 
ministic component in the input. When we want to emphasize this we 
write 

r(t) = m(t) + NO - m(t)] + w 

= 40 + s&t> + w, Ti < t < T,:H,. _ _ 0 

(The subscript R denotes the random component of the signal process.) 
Now the waveform on HI consists of a known signal corrupted by two 
independent zero-mean Gaussian processes. If K,(t, U) is identically zero, 
the problem degenerates into the known signal in white noise problem of 
Chapter I-4. As we proceed, we shall find that all of the results in Chapter 
I-4 except for the random phase case in Section I-4.4.1 can be viewed as 
special cases of various problems in Chapters 2 and 3. 

In Section 2.1, we derive the optimum receiver and discuss various 
procedures for implementing it. In Section 2.2, we analyze the performance 
of the optimum receiver. Finally, in Section 2.3, we summarize our results. 

Most of the original work on the detection of Gaussian signals is due to 
Price [l]-[4] and Middleton [ 17]-[20]. Other references are cited at various 
points in the Chapter. 

2.1 OPTIMUM RECEIVERS 

Our approach to designing the optimum receiver is analogous to the 
approach in the deterministic signal case (see pages 1-250-I-253). The 
essential steps are the following: 

1. We expand r(t) in a series 
process as coordinate fu nctions. 

using 
!IYhe no 

the eigenfunct ions of the signal 
se term w(t) is white, and so the 

coefficients of the expansion will be conditionally uncorrelated on both 
hypotheses. Because the input r(t) is Gaussian on both hypotheses, the 
coefficients are conditionally statistically independent. 

2. We truncate the expansion at the Kth term and denote the first K 
coefficients by the vector r. The waveform corresponding to the sum of the 
first K terms in the series is r,,-(t). 

3. We then construct the likelihood ratio, 

f&--(t)) = A(R) = PTIHSR 1 HI) 
Pq,,(R / Ho) ’ 

and manipulate it into a form so that we can let K 

(7) 

m. 
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4. We denote the limit of A(+&)) as A@(t)). The test consists of com- 
paring the likelihood ratio with a threshold q, 

As before, the threshold q is determined by the costs and a-priori prob- 
abilities in a Baves test and the desired PF in a Neyman-Pearson test. 

We now carry out these steps in detail and then investigate the properties 
of the resulting tests. 

The orthonormal functions for the series expansion are the eigen- 
functions of the integral equationt 

(9) 

We shall assume that the orthonormal functions form a complete set. 
This will occur naturally if K,(t, U) is positive-definite. If K,(t, U) is 
only non-negative-definite, we augment the set to make it complete. 

The coefficients in the series expansion are 

s 
Tf r* A 2- r(t)4i(t) dt* (10) 

Ti 

The K-term approximation is 

rK(t) = 5 ri+i(t), Ti < t < Tf - _ 
i=l 

and 
r(t) = 1.i.m. rIc(t), Ti < t < T’. - _ (12) 

K-+cD 

The statistical properties of the coefficients on the two hypotheses follow 
easily. 

E[ri ( H,] = E w(t)$i(t) dt 1 = 0. (13) 

[s 0 s Tr 
E[ri 1 HI] = E s(t>+i(t> dt + W(t)#i(t) dt 

Ti Ti 1 
s 
Tf = m(t)$i(t) dt A mi. 

Ti 
(15) 

t Series expansions were developed in detail in Chapter I-3. 
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Notice that (15) implies that the mi are the coefficients of an orthogonal 
expansion of the mean-value function; that is, 

m(t) = 2 m&t), q _< t < Tf. (16) 
i=l 

The covariance between coefficients is 

EK ri - mi)(rj - mj) 1 HI] = (17) 

where 3Lis is the ith eigenvalue of (9). The superscript s emphasizes that it 
is an eigenvalue of the signal process, s(t). 

Under both hypotheses, the coefficients ri are statistically independent 
Gaussian random variables. The probability density of r is just the 
product of the densities of the coefficients. Thus, 

A( 

- - . (18) 

Multiplying out each term in the exponent, canceling common factors, 
taking the logarithm, and rearranging the results, we have 

In A(R) = -!- 
No ig(jill JiN,/2)Ril ‘ig(lt :No/2)m,K, 

1 

Ais + No/2 (19) 

The final step is to obtain closed form expressions for the various terms 
when K - 00. To do this, we need the inverse kernel that was first intro- 
duced in Chapter I-4 [see (I-4.152)]. The covariance function of the entire 
input r(t> on H1 is K,(t, u). The corresponding inverse kernel is defined by 
the relation 

s Tf 
K,(t, tr)Ql(u, x) dtr = s(t - z), 

Ti 
In terms of eigenfunctions and eigenvalues, 
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We also saw in Chapter I-4 (I-4.162) that we could write Q,(t, U) as a sum 
of an impulse component and a well-behaved function, 

Q1(t, u) = + (s(t - u) - w, a, Ti < t, u < T’, (22) 
0 

where the function h,(t, u) satisfies the integral equation 

NO 

2 s 

Tf 

- h,(t, u) + h,(t, W&, 4 dx = K,(t, u), 
Ti 

Ti < t, u < Tf. - - 

The endpoint values of h,(t, u) are defined as a limit of the open-interval 
values because we assume that h,(t, u) is continuous. (Recall the discussion 
on page I-296.) We also recall that we could write the solution to (23) in 
terms of eigenfunctions and eigenvalues. 

h,(t, zr) = 2 
A 

’ 
i=ll; +‘N,,2 

+iCtJ+iCu)9 Ti < t, u < Tf. - - (24) 

We now rewrite the first three terms in (19) by using (10) and (15) to 
obtain 

T’ f 

In A(rK( t)) = j+ o //r(t)[$l( 3Lis :iN,/2) 5Utjdi(u)] r(u) dt du 
Ti 

Ti 

Ti 

lK 
=l ( 

21; -- 
2 i=l n ‘+7 0 1 

(25) 

We now let K -+ a in (25) and use (21) and (24) to evaluate the first three 
terms in (25). The result is 

Tf Tf 

In l&r(t)) = + r(t)h,(t, u)r(u) dt du + m(tjQl(t, U)Y(U) dt du 
0 

Tt Ti Tr 
-8 m(t)Ql(t, u)m(u) dt du - - 

Ti 
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We can further simplify the second and third terms on the right side of (26) 
by recalling the definition of g(u) in (I-4.168), 

Notice that m(t) plays the role of the known signal [which was denoted by 
s(t) in Chapter I-41. We also observe that the third and fourth term are 
not functions of r(t) and may be absorbed in the threshold. Thus, the 
likelihood ratio test (LRT) is, 

Tf 

1 

N, SC 

Tr HI 
r(t)h,(t, up(u) dt dl4 + 

s 
&Mu) du 5 Y*, 

Tci 

T 
i Ho 

where 

s 
Tf y* a In 7 + 4 gl(u)m(u) du + + 2 In 

Ti i=l 

(28) 

(29) 

If we are using a Bayes test, we must evaluate the infinite sum on the right 
side in order to set the threshold. On page 22 we develop a convenient 
closed-form expression for this sum. For the Neyman-Pearson test we 
adjust y* directly to obtain the desired P, so that the exact value of the 
sum is not needed as long as we know the sum converges. The convergence 
follows easily. 

O” 21; 2 Tf 

<Y+=- 
i=l () s N, Ti 

K,(t, t) dt. (30) 

The integral is just the expected value of the energy in the process, which 
was assumed to be finite. 

The first term on the left side of (28) is a quadratic operation on r(t) 
and arises because the signal is random. If K,(t, u) is zero (i.e., the signal 
is deterministic), this term disappears. We denote the first term by iE. 
(The subscript R denotes random.) The second term on the left side is a 
linear operation on r(t) and arises because of the mean value m(t). When- 
ever the signal is a zero-mean process, this term disappears. We denote the 
second term by I Do (The subscript D denotes deterministic.) It is also 
convenient to denote the last two terms on the right side of (29) as 
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(-Zgl) and (-I%]). Th us, we have the definitions 

Tf 

1 u)r(u) dt du, 

Ti 

s 

Tf 
1 L+ g,(u)r(u) du, 

Ti 

1:” * -- - B 

g1 * 
T/ 

- -+ 

s 
g&i)m( u) du. T 

i 

In this notation, the LRT is 

(31) 

(32) 

(33) 

(34) 

The second term on the left side of (35) is generated physically by either 
a cross-correlation or a matched filter operation, as shown in Fig. 2.1. 
The impulse response of the matched filter in Fig. 2.lb is 

elsewhere. 
(36) 

We previously encountered these operations in the colored noise detection 
problem discussed in Section I-4.3. Thus, the only new component in the 
optimum receiver is a device to generate IR. In the next several paragraphs 
we develop a number of methods of generating I,. 

w 

Fig. 2.1 Generation of l’. 
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2.1.1 Canonical Realization No. 1: Estimator-Correlator 

We want to generate In, where 

1 
1 

It = - 
N, 

r(t) h,(t, zr>r(ti) dt dir, (37) 
Ti 

and h,(r, u) satisfies (23). An obvious realization is shown in Fig. 2.2~. 
Notice that h,(t, u) is an unrealizable filter. Therefore, in order actually to 
build it, we would have to allow a delay in the filter in the system in Fig. 
2.2~2. This is done by defining a new filter whose output is a delayed version 
of the output of h,(t, u), 

- T, 4, Ti + T < t < Tf + T, Ti < u < T’, - - - - 

elsewhere, 
(38) 

where 
T Li Tf - Ti (39) 

is the length of the observation interval. Adding a corresponding delay in 
the upper path and the integrator gives the system in Fig. 2.26. 

This realization has an interesting interpretation. We first assume that 
m(t) is zero and then recall that we have previously encountered (23) in the 

L-p-$ 
(a) Unrealizable filter 

40 T-second 
>- delay ’ 

, 

* hi tt, u) 

(b) Realization with delay 

Fig. 2.2 Generation of 1’. 



Optimum Receivers 

lR 

Fig. 2.3 Estimator-correlator (zero-mean case). 

linear filter context. Specifically, if we had available a waveform 

and wanted to estimate s(t) using a minimum mean-square error (MMSE) 
or maximum a-posteriori probability (MAP) criterion, then, from 
(I-6.16), we know that the resulting estimate Z,(t) would be obtained by 

passing r(t) through h,(t, u). 

Vf 

w> = ? h,(t, u)r(uj du, Ti < t < Tl., - 7 
Ti 

(41) 

where h,(t, u) satisfies (23) and the subscript LI emphasizes that the estimate 
is unrealizable. Looking at Fig. 2.3, we see that the receiver is correlating 
r(t) with the MMSE estimate of s(t). For this reason, the realization in 
Fig. 2.3 is frequently referred to as an estimator-correlator receiver. This 
is an intuitively pleasing interpretation. (This result is due to Price [l]-[4].) 

Notice that the interpretation of the left side of (41) as the MMSE 
estimate 
receiver 

is only valid when r(t) is zero-mean. However, the output of the 
in Fig. 2.3 is I, for either the zero-mean or the non-zero-mean 

case. We also obtain an esti mator-correlator interpretation in the non- 
zero-mean case by a straightforward modification of the above discussion 
(see Problem 2.1.1). 

Up to this point all of the filters except the one in Fig. 2.B are un- 
realizable and are obtained by solving (23). The next configuration 
eliminates the unrealizability problem. 

2.1.2 Canonical Realization No. 2: Filter-Correlator Receiver 

The realization follows directly from (37). We see that because of the 
symmetry of the kernel h,(t, u), (37) can be rewritten as 

h,(t, u)r(u) du 1 dt. (42) 
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2 

No 

. 

4 Tf 
dt ’ 

Ti 
, A 

l 

-  h;Ctt 4 r  

*  

Realizable 
filter 

Fig. 2.4 Filter-correlator receiver. 

In this form, the inner integral represents a real&b/e operation. Thus, 
we can build the receiver using a realizable filter, 

hL(t, u) = 
L 

w, 4, t2 u, 
0, t < u, 

(43) 

This realization is shown in Fig. 2.4. Observe that the output of the 
realizable filter hi(t, u) is not the realizable MMSE estimate of s(t). The 
impulse response of the optimum realizable linear filter for estimating s(t) 
is Ii&, u) and its satisfies the equation 

N, h,,(t, 4 + 
2 s ’ h,,( t, x) K&z, 11) dx 

Ti 
= K,(t, u), 5 < 21 < t, (44) 

which is not the same filter specified by (23) plus (43). (This canonical 
realization is also due to Price [l].) The receiver in Fig. 2.4 is referred to 
as a filter-correlator receiver. We have included it for completeness. It is 
used infrequently in practice and we shall not use it in any subsequent 
discussions. 

2.1.3 Canonical Realization No. 3: Filter-Squarer-Integrator (FM) 
Receiver 

A third canonical form can be derived by factoring Iz,(t, u). We define 
hr(z, t) by the relation 

s Tf 
h,(t, u) = h,@, wq% 4 dx, 

Ti 
Ti < t, 21 < Tg - - (45) 

If we do not require that h,(x, t) be realizable, we can find an infinite 
number of solutions to (45). From (24), we recall that 

h(t, u) = 5 hi&(t)&), 
i=l 

Ti < t, u _< Tf, (46) 
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where 

We see that 

is a solution to (45) for any assignment of plus and minus signs in the 
series. 

Using (45) in (37), ZR becomes 

This can be realized by a cascade of an unrealizable filter, a square-law 
device, and an integrator as shown in Fig. 2.5. 

Alternatively, we can require that h,(t, U) be factored using realizable 
filters. In other words, we must find a solution h&, t) to (45) that is zero 
for t > x. Then, 

Tf 2 

I 
1 

R = - 
s [s 

dz 

N, Ti 
z hf&, t)r(O dt 9 

Ti 1 PO) 
and the resulting receiver is shown in Fig. 2.6. If the time interval is finite, 
a realizable solution to (45) is difficult to find for arbitrary signal processes. 
Later we shall encounter several special situations that lead to simple 
solutions. 

The integral equation (45) is a functional relationship somewhat analog- 
ous to the square-root relation. Thus, we refer to h&z, t) as thefunctional 
square root of h,(t, u). We shall only define functional square roots for 
symmetric two-variable functions that can be expanded as in (46) with 
non-negative coefficients. We frequently use the notation 

h;“21(z, t)h1’/21(z, u) dx. 

Any solution to (51) is called a functional square root. Notice that the 
solutions are not necessarily symmetric. 

Fig. 2.5 Filter-squarer receiver (unrealizable). 
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Fig. 2.6 Filter-squarer receiver (realizable). 

The difficulty with all of the configurations that we have derived up to 
this point is that to actually implement them we must solve (23). From 
our experience in Chapter I-4 we know that we can do this for certain 
classes of kernels and certain conditions on T, and Tr. We explore problems 
of this type in Chapter 4. On the other hand, in Section I-6.3 we saw that 
whenever the processes could be generated by exciting a linear finite- 
dimensional dynamic system with white noise, we had an effective 
procedure for solving (44). Fortunately, many of the processes (both 
nonstationary and stationary) that we encounter in practice have a 
finite-dimensional state representation. 

In order to exploit the effective computation procedures that we have 
developed, we now modify our results to obtain an expression for ZR in 
which the optimum realizable linear filter specified by (44) is the only 
filter that we must find. 

2.1.4 Canonical Realization No. 4: Optimum Realizable Filter 
Receiver 

The basic concept involved in this realization is that of generating 
the likelihood ratio in real time as the output of a nonlinear dynamic 
system.? The derivation is of interest because the basic technique is 
applicable to many problems. For notational simplicity, we let 7’i = 0 
and 9” = T in this section. Initially we shall assume that m(t) = 0 and 
consider only IR. 

Clearly, I, is a function of the length of the observation interval T. 
To emphasize this, we can write 

I,(T( r(u), 0 < u 5 T) a ZR(T). (52) 

More generally, we could define a likelihood function for any value of 
time t. 

lR(t 1 w), 0 5 24 5 t) a MO, (53) 

where In(O) = 0. We can write ZR(T) as 

s 
T dlR(t) dt I,(T) = - Ti (t) dt 

0 
dt =oR ’ 

s 

t The original derivation of (66) was done by Schweppe [5]. The technique is a modifica- 
tion of the linear filter derivation in [6]. 
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Now we want to find an easy method for generating in(t). Replacing T by 
t in (31), we have 

MO 
1 BP - 

s s No O 
k r(r) h, h1(7, u : t>r(u), 

0 

where /&(T, u: t) satisfies the integral equation 

NO 
t 

z 
hl(7, l-4 :t) + 

s 
h,(T, 2 : t)K,(x, 21 j dx = KJT, u), 0 2 r, u 5 t. (56) 

0 

[Observe that the solution to (56) depends on t. We emphasize this with 
the notation & 0: t).] Differentiating (55), we obtain 

i 0 R = 

+ 
t 

s 
ahl(;tz’ : tj r(u) du . (57) 

0 

We see that the first two terms in (57) depend on h,(t, u: t). For this case, 
(56) reduces to 

NO - h,(t, u : t) + 
2 s 

thl(t, 2: t)K&, u) dx = K,( t, u), 0 ,< u < t. (58)f- 
0 

We know from our previous work in Chapter I-6 that 

or 
s 

t 

$(t) = h,(t, u : tjr(u) dzr 
0 

s 

t 

$(t) = h&i, t : t)r(u) du. 
0 

(5% 

(60) 

[The subscript r means that the operation in (59) can be implemented 
with a realizable filter.] The result in (60) follows from the symmetry of 
the solution to (56). Using (59) and (60) in (57) gives 

i,(t) = $[2r(t)$(t) +[d$du r(r) ahl(;tu’t) r(u)]. (61) 

In Problem I-4.3.3, we proved that 

i3h1(q u : t) 

at 
= -h&q t: t)h,(t, u: t), 0 < 7, 21 < t. - (62) 

Because the result is the key step, we include the proof (from [7]). 

t Notice that h,(t, u: t) = h,,(t,u) [compare (44) and (58)]. 
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Proof of (62). Differentiating (56) gives 

No ahl(r, u: t) 

r 

t ahl(r, 2: t) 

2 at + - at 
KS@, u) dz + h,(r, t: t)K,(t,u) = 0, 0 5 7, u 5 t. 

*O 
(63) 

NOW replace K,(t, u) with the left side of (58) and rearrange terms. This gives 

No ahl(r, u: t) 
-- - - 

2 at 
+ h,(r, t:t&(t, u:t) + h,(7, t : t)h,(t, x: t) 

x KS@, 4 dz, 0 rs 7, u 5 t. (64) 

We see that the terms in braces play the role of an eigenfunction with an eigenvalue of 
(-No/2). However, KS@, u) is non-negative definite, and so it cannot have a negative 
eigenvalue. Thus, the term in braces must be identically zero in order for (64) to hold. 
This is the desired result. 

Substituting (62) into (61) and using (59, we obtain the desired result, 

Then 

i 0 R [2r(t)$(t) - q(t)]. (65) 

- ir2(t)] dt. wM= 

Before looking at the optimum receiver configuration and some 
examples, it is appropriate to digress briefly and demonstrate an algorithm 
for computing the infinite sum z:, In (1 + 2;ii”lN,) that is needed to 
evaluate the bias in the Bayes test. We do this now because the derivation 
is analogous to the one we just completed. Two notational comments are 
necessary : 

1. The eigenvalues in the sum depend on the length of the interval. 
We emphasize this with the notation AiS( 

2. The eigenfunctions also depend on the length of the interval, and 
so we use the notation +&: T). 

This notation was used previously in Chapter I-3 (page I-204). 

t A result equivalent to that in (66) was derived independently by Stratonovich and 
Sosulin [21]-[24]. The integral in (66) is a stochastic integral, and some care must be used 
when one is dealing with arbitrary (not necessarily Gaussian) random processes. For 
Gaussian processes it can be interpreted as a Stratonovich integral and used rigorously 
[25]. For arbitrary processes an Ito integral formulation is preferable [26]-[28]. Interested 
readers should consult these references or [29]-[30]. For our purposes, it is adequate to 
treat (66) as an ordinary integral and manipulate it using the normal rules of calculus 
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We write 
aI 

lx’ ( i=l 
n 1 + ki.:(T)) =~“&[~ zln (1 + $1:(t))]. (67) 

Performing the indicated differentiation, we have 

d 2 O” 
= - 2 

[dAi”(t)]/dt 

dt N, i=l 1 + (2/N,)ii;( t) l 

In Chapter I-3 (page I-3.163), we proved that 

(68) 

dili”( t) 
- - n,“(t)g(t: t), - 

dt 

and we showed that (I-3.154), 

h1(t, t: t) = 2 Ai”( t) 
id i:(t) + NJ2 

$i”(f : 0, (70) 

where h,(t, t : t) is the optimum MMSE realizable linear filter specified by 
(58). From (I-3.155), (44), and (58), the minimum mean-square realizable 
estimation error &&) is 

Thus 

&3,(t) = T h,(t, t: t) a : h,,(t, t)* (71) 

From (33), 

Tho,(t, t) dt = -?- 
s N, O 

“&+(t) dt. (72) 

p = -4 
IS ZIn (1 +z) = -$r[lJs(t)dt. / (73) 

i=l 

We see that whenever we use Canonical Realization No. 4, we obtain the 
first bias term needed for the Bayes test as a by-product. The second bias 
term [see (34)] is due to the mean, and its computation will be discussed 
shortly. A block diagram of Realization No. 4 for generating ZR and Z&+J 
is shown in Fig. 2.7. 

Before leaving our discussion of the bias term, some additional comments 
are in order. The infinite sum of the left side of (72) will appear in several 
different contexts, so that an efficient procedure for evaluating it is 
important. It can also be written as the logarithm of the Fredholm 
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4 

, 1 
1 

1 

No 
dt - I, + I;’ 

0 
c 

Optimum 
1 

+- realizable - = z Squarer v 
zp, w 

filter w . 

Fig. 2.7 Optimum realizable filter realization (Canonical Realization No. 4). 

determinant [8], 

Now, unless we can find &(2/N,) effectively, we have not made any 
progress. One procedure is to evaluate Ep,(t) and use the integral expres- 
sion on the right side of (73). A second procedure for evaluating &(*) 
is a by-product of our solution procedure for Fredholm equations for 
certain signal processes (see the Appendix in Part II). A third procedure 
is to use the relation 

(7% 

where h,(t, t 1 x) is the solution to (23) when i&/2 equals x. Notice that this 
is the optimum unrealizable filter. This result is derived in Problem 2.1.2. 
The choice of which procedure to use depends on the specific problem. 

Up to this point in our discussion we have not made any detailed 
assumptions about the signal process. We now look at Realization No. 4 
for signal processes that can be generated by exciting a finite-dimensional 
linear system with white noise. We refer to the corresponding receiver 
as Realization No. 4s (“S” denotes “state”). 

2.1.5 Canonical Realization No. 4s: State-variable Realization 

The class of signal processes of interest was described in detail in 
Section I-6.3 (see pages 1-516-I-538). The process is described by a state 
equation, 

jr(t) = F(t)x(t) + G(t)u(t), W) 
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where F(t) and 
tion equation, 

G(t) are possibly time-varying matrices, and by an observa- 

s(t) = w)x(o 9 (77) 

where C(t) is the modulation matrix. The input, u(t), is a sample function 
from a zero-mean vector white noise process, 

E[u(t)u*(T)] = Q d(t - T), (78) 
and the initial conditions are 

E [x(0)xT(O)] Li 

From Section I-6.3.2 we know that the 
s(t) is given by the equations 

(79) 

PO- (80) 

MMSE realizable estimate of 

s”,(t) = ww 9 VW 

i(t) = F(t)S(t) + &(t)CT(t) + [r(t) - C(t)s(t)]. 
0 

(82) 

The matrix g&t) is the error covariance matrix of x(t) - S(t). 

&J(t) 5 E[(x(t) - 3(t))(xT( t) - izT(t))]. 

It satisfies the nonlinear matrix differential equations, 

(83) 

ht> = F(t)b(f) + b@)FT(t) - &#C*(t) jf C(t)&@) + G(t)QGT( t)- 
0 

The mean-square error in estimating s(t) is 
(84) 

h&) = w%wT(t). (85) 
Notice that g&t) is the error covariance matrix for the state vector and 
&+(t) is the scalar mean-square error in estimating s(t). Both (84) and (85) 
can be computed either before r(t) is received or simultaneously with the 
computation of Sk(t). 

The system needed to generate lR and &I follows easily and is shown in 
Fig. 2.8. The state equation describing lR is obtained from (63, 

where L$(t) is defined by (81)-(84) and 

lB ii I,(T). (87) 
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The important feature of this realization is that there are 1-20 integral 
equations to solve. The likelihood ratio is generated as the output of a 
dynamic system. We now consider a simple example to illustrate the 
application of these ideas. 

Example. In Fig. 2.9 we show a hypothetical communica tion system that illustrates many 
of the important features encountered in actual systems operating over fading channels. 
In Chapter 10, we shall develop models for fading channels and find that the models are 
generalizations of the system in this example. When H, is true, we transmit a deter- 
ministic signal f(t). When Ho is true, we transmit nothing. The channel affects the 
received signal in two ways. The transmitted signal is multiplied by a sample function 
of a Gaussian random process b(t). In many cases, this channel process will be stationary 
over the time intervals of interest. The output of the multiplicative part of the channel is 
corrupted by additive white Gaussian noise w(t), which is statistically independent 
b(t). Thus the received waveforms on the two hypotheses are 

of 

We assume that the channel process has a state representation 

40 = f (MO + w(t), 0 < t < T:H,, 

r(t) = w(t), O<t<T:H,. (88) 

W) = F(t)x(t) + G(t)u(t), (89) 
where u(t) satisfies (78) and 

b(t) = c,ww. (90) 

The signal process on H, is s(t), where 

Notice that, unless f (t) is constant over the interval [0, T], the process, s(t), will be 
nonstationary even though b(t) is stationary. Clearly, s(t) has the same state equation as 
b(t), (89). Combining (90) and (91) gives the observation equation, 

s(t) = f (W&)x(t) D W)xW. (92) 
We see that the transmitted signal f (t) appears only in the modulation matrix, C(t). 

It is instructive to draw the receiver for the simple case in which b(t) has a one- 
dimensional state equation with constant coefficients. We let 

F(t) = -kkb, (93) 
G(t) = 1, 

Q = 2kbob2, 

C,(t) = 1, 

(94) 

(95) 

(96) 

b 0) 

Input 

Fig. 2.9 A simple multiplicative channel. 
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and 

Then (82) and (84) reduce to 

d(t) = -k,W) + N p 2 E KJf(t)[r(t) - jV)Wl, 
0 

(98) 

ip(t > = -2&&(t) - ; f 2(t&2(t> + 2k,ab2, (99) 
0 

The resulting receiver structure is shown in Fig. 2.10. 

We shall encounter other examples of Canonical Realization No. 4S 
as we proceed. Before leaving this realization, it is worthwhile commenting 
on the generation of ZD, the component in the likelihood ratio that arises 
because of the mean value in the signal process. If the process has a finite 
state representation, it is usually easier to generate lD using the optimum 
realizable filter. The derivation is identical with that in (54)-(M). From 
(22) and (26)-(28) we have 

As before, 

s T db(O dt l,(T) = - 
dt 

9 
0 

and 

+ hl(~, t : t)h,(t, u : t)m(tr)r(T) dr du 1 . 

0 

(103) 

The resulting block diagram is shown in Fig. 2.11. The output of the bottom 
path is just a deterministic function, which we denote by K(t), 

s t K(t) * m(t) - - h,(t, u : t)m(tr) du, O<t<T. - (104) 
0 

Because K(t) does not depend on r(t), we can generate it before any data 
are received. This suggests the tw 0 equivalent realizations in Fig. 2.12. 

Notice that (101) (and therefore Figs. 2.11 and 2.12) does not require 
that the processes be state-representable. If the processes have a finite 
state, the optimum realizable linear filter can be derived easily using 
state-variable techniques. Using the state representation in (76)-(80) gives 



hl(t, u: t) 

Optimum 
realizable - 

filter 

hl(t, u:t) 

Fig. 2.11 Generation of I, using optimum realizable filters. 

2 - 
’ s 

T 10 

No 0 
dt 4 

z hl(t, u:t) 1 
. I 

>LK(T-~) 1 
No 

Matched filter 

Sample at 
= 

c tD 

+ hl(t, u:t) 1 

Fig. 2.12 Generation of l’. 
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the realization in Fig. 2.13a.t Notice that the state vector in Fig. 2.13a is 
not ji(t), because r(t) has a nonzero mean. We denote it by k(t). 

The block diagram in Fig. 2.13a can be simplified as shown in Fig. 
2.13b. We can also write ZD(t) in a canonical state-variable form: 

where K(t) is defined in Fig. 2.11 and gp(t) satisfies (84). 

L 

Fig. 2.13 State-variable realizations to generate ID. 

t As we would expect, the system in Fig. 3.12 is identical with that obtained using a 
whitening approach (e.g., Collins [9] or Problem 2.1.3). 
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Looking at (32) and (34), we see that their structure is identical. Thus, 
we can generate Zgl by driving the dynamic system in (105) with (-m(t)/2) 
instead of r(t). 

It is important to emphasize that the presence of m(t) does not affect the 
generation of Z,(t) in (86). The only difference is that 5,(t) and g(t) are no 
longer MMSE estimates, and so we denote them by &(t) and G(t), re- 
spectively. The complete set of equations for the non-zero-mean case may 
be summarized as follows: 

. 
1 (0 R = -!- E-q(t) + 2r(t)$(t)], 

No 

. 
1 (9 D =- 

( 
2 K(t)C(t) 
N, 

l,(t) + + K(t)r(t), 
0 

with initial conditions 

and 
G(O) = 0 (110) 

ID (0) = 0. uw 

The matrix g&t) is specified by (84). The biases are described in (73) and a 
modified version of (105). 

This completes our discussion of state-variable realizations of the 
optimum receiver for the Gaussian signal problem. We have emphasized 
structures based on realizable estimators. An alternative approach based 
on unrealizable estimator structures can also be developed (see Problem 
I-6.6.4 and Problem 2.1.4). Before discussing the performance of the 
optimum receiver, we briefly summarize our results concerning receiver 
structures. 

2.1.6 Summary : Receiver Structures 

In this section we derived the likelihood ratio test for the simple binary 
detection problem in which the received waveforms on the two hypotheses 
were 

r(t) = 40, Ti < t < T,:H,, - w 

40 = s(t) + w(t), Ti 5 t < T,:H,. - (112) 
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The result was the test 

1, + 1, 5 in q - ZgJ - lj$, 
Ho 

where the various terms were defined by (31)-(34). 

(113) 

We then looked at four receivers that could be used to implement the 
likelihood ratio test. The first three configurations were based on the 
optimum unrealizable filter and required the solution of a Fredholm 
integral equation (23). In Chapter 4 we shall consider problems where this 
equation can be easily solved. The fourth configuration was based on an 
optimum realizable filter. For this realization we had to solve (44). For a 
large class of processes, specifically those with a finite state representation, 
we have already developed an efficient technique for solving this problem 
(the Kalman-Bucy technique). It is important to re-emphasize that all of 
the receivers implement the likelihood ratio test and therefore must have 
identical error probabilities. By having alternative configurations available, 
we may choose the one easiest to imp1ement.T In the next section we 
investigate the performance of the likelihood ratio test. 

2.2 PERFORMANCE 

In this section we analyze the performance of the optimum receivers 
that we developed in Section 2.1. All of these receivers perform the test 
indicated in (35) as 

m 

where 

and 

Tr 

1 
1 

n=- 
No 

r(t)h#, u)r(tl) dt du, 

Ti 

(115) 

(116) . 

t The reader may view the availability of alternative configurations as a mixed blessing, 
because it requires some mental bookkeeping to maintain the divisions between realiz- 
able and unrealizable filters, the zero-mean and non-zero-mean cases, and similar 
separations. The problems at the end of Chapter 4 will help in remembering the various 
divisions. 
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From (33) and (34), we recall that 

lb1 A 1 .Tf 
I,’ - - YJ- 

s 
gl(u>m(u) dll. 

Ti 
WV 

To compute P, and PF, we must find the probability that I will exceed 
y on J& and H,, respectively. These probabilities are 

and 

(121) 

The ZD component is a linear function of a Gaussian process, so that it is a 
Gaussian random variable whose mean and variance can be computed 
easily. However, I, is obtained by a nonlinear operation on r(t), and so 
its probability density is difficult to obtain. To illustrate the difficulty, we 
look at the first term in (25). Because this term corresponds to I, before 
we let K --+ co, we denote it by IRK, 

I< 
1 1 I- A - 

2 
a* S 

IC - 
Noi=1 1; +'N,/2 

Ri2* (122) 

We see that IIF is a weighted sum of squared Gaussian random variables. 
The expression in (122) is familiar from our work on the general Gaussian 
problem, Section I-2.6. In fact, if the Ri were zero-mean, (122) would be 
identical with (I-2.420). At that point we observed that if the RiS were all 
equal, I,]< had a chi-square density with K degrees of freedom (e.g., 
I-2.406). On the other hand, for unequal 1is, we could write an expression 
for the probability density but it was intractable for large K. Because of 
the independence of the Ri, the characteristic function and moment- 
generating function of I& K followed easily (e.g., Problem I-4.4.2). Given 
the characteristic function, we could, in principle at least, find the prob- 
ability density by computing the Fourier transform numerically. In 
practice, we are usually interested in small error probabilities, and so we 
must know the tails of J+,&, 1 &) accurately. This requirement causes 
the amount of computation required for accurate numerical inversion to 
be prohibitive. This motivated our discussion of performance bounds 
and approximations in Section I-2.7. In this section we carry out an 
analogous discussion for the case in which K --+ GO. 
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We recall7 that the function (u&) played the central role in our dis- 
cussion. From (I-2.444), 

i%(s) ff. lrl W~(R)JR&)19 (123) 

[The subscript K is added to emphasize that we are dealing with K-term 
approximation to r(t).] Where Z(R) is the logarithm of the likelihood ratio 

w = In A(R) = In 
( 
J%IffliR I w 

Prlrr,(R ( Ho) 1 ’ 
(124) 

and ~1(RWO (s) is its moment-generating function, 

4 I(R)Jl&~ = w9”‘R’ 1 KJ9 
for real s. Using the definition of Z(R) in (124), 

(129 

00 
j&s) = In s s l l . O” b,IH1(H 1 wTP,IH&R 1 4ns dR* (126) -m -00 

We then developed upper bounds on pE‘ and P,,.$ 

PF I exp CP&> - q&&)1, 
pJt 5 exp [/+(s) + (1 - s)&&)], 

O<s<l, 
- - (127) 

where ,&is) = yI;:, the threshold in the LRT. By varying the parameter s, 
we could study threshold settings anywhere between E[Z I H1] and E[Z I Ho]. 
The definition of Z(R) in (124) guaranteed that am existed for 0 < s < 1. - - 

We now define a function ,u(s), 

If we can demonstrate that the limit exists, our bounds in (127) will still 
be valid. However, in order to be useful, the expression for ,u(s) must be 
in a form that is practical to evaluate. Thus, our first goal in this section 
is to find a convenient closed-form expression for (u(s). 

The second useful set of results in Section I-2.7 was the approximate 
error expressions in (I-2.480) and (I-2.483), 

1 ep(s)-sp(s) 

pF-Jggij ’ 
s > 0, - 

and 

P E 
1 

“1 J27r(l - s)zji(s) 
e/ds)+(l-s)po 9 s < 1. - 

iw 

(130) 

t Our discussion assumes a thorough understanding of Section I-2.7, so that a review 
of that section may be appropriate at this point. 
$ Pr (E) bounds were also developed. Because they are more appropriate to the general 
binary problem in the next section, we shall review them then. 
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As we pointed out on page I-124, the exponents in these expressions were 
identical with the Chernoff bounds in (127), but the multiplicative factor 
was significant in many applications of interest to us. In order to derive 
(129) and (130), we used a central limit theorem argument. For the 
problems considered in Section I-2.7 (e.g., Examples 2, 3, and 3A on 
pages I-l 27-I-l 32)) it was easy to verify that the central limit theorem is 
applicable. However, for the case of interest in most of this chapter, the 
sum defining I, in (122) violates a necessary condition for the validity of 
the central limit theorem. Thus, we must use a new approach in order to 
find an approximate error expression. This is the second goal of this 
section. 

In addition to these two topics, we develop an alternative expression 
for computing ,u(s) and analyze a typical example in detail. Thus, there 
are four subsections : 

2.2.1. Closed-form expressions for p(s). 
2.2.2. Approximate error expressions. 
2.2.3. An alternative expression for p(s). 
2.2.4. Performance for a typical example. 

2.2.1 Closed-form Expression for p(s) 

We first evaluate ,u&) for finite K. Substituting (18) into (126) gives 

m 
s ([ 

I< 
rr --cn i=l 

1 

d27+@ + 1:) i 

1 K 

exp - - 2 
2 i=l 

(R mJ2 
(&lv,,2) 1 

K 1 ,I ( 
1 k’ Ri2 l-s 

X i=l $x(N,/2) exp - ; iz No/2 r I  

dR1 l ’ l dRK= (13’) 

Performing the integration, we have 

K 
pI&) = 8 ,[(l--s)ln(l+~)-ln(1+2(1-$‘b’)] 

i=l 

mi2 

N,/2(1 - s) + ;I$ ) ’ 
0 _< s < 1. (132) 

From our discussion on page 13, we know the first sum on the right side 
of (132) is well behaved as K -+ 00. The convergence of the second sum 
follows easily. 

IC IHi I< Tf 
2 

i=l (N,/2( 1 - s) + ii”) 
<c 

mi2 
< 

2(1 - s) 

-i=lN,/Z(I. - S) - No s 
m2(t) dt. (133) 

Ti 
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We now take the limit of (132) as K -+ GO. The first sum is due to the 
randomness in s(t), and so we denote it by ,u&). The second sum is due 
to the deterministic component in r(t), and so we denote it by p&). 

We now find a closed-form expression for the sums in (134) and We now find a closed-form expression for the sums in (134) and 
First we consider ,L+(s). Both of the sums in (134) are related to rea First we consider ,L+(s). Both of the sums in (134) are related to rea 
linear filtering errors. To illustrate this, we consider the linear fi linear filtering errors. To illustrate this, we consider the linear fi 
problem in which problem in which 

r(u) = s(u) + ~~~(U>, Ti < u < t, - _ 

l 
.l 

(135). 
izable 
tering 

(136) 
where s(u) is a zero-mean message process with covariance function 
K,(t, u) and the white noise has spectral height N,/2. Using our results in 
Chapter I-6, we can find the linear filter whose output is the MMSE 
point estimate of s(e) and evaluate the resulting mean-square error. We 
denote this error as fp(t 1 s(e), N,/2). (The reason for the seemingly 
awkward notation will be apparent in a moment.) Using (72), we can write 
the mean-square error in terms of a sum of eigenvalues. 

:ln (1 +z) =k/TT+I~(),$J dt. 
i=l 

Comparing (134) and (137) leads to the desired result. 

(137) 

Ii l (138) 
I 

Thus, to find pR(s), we must find the mean-square error for two realizable 
linear filtering problems. In the first, the signal is s(e) and the noise is 
white with spectral height N,/2. In the second, the signal is s(m) and the 
noise is white with spectral height N,/2(1 - s). An alternative expression 
for p&s) also follows easily. 
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Here the noise level is the same in both calculations, but the amplitude of 
the signal process is changed. These equations are the first key results in 
our performance analysis. Whenever we have a signal process such that we 
can calculate the realizable mean-square filtering error for the problem of 
estimating s(t) in the presence of white noise, then we can find p,(s). 

The next step is to find a convenient expression for ,u&). To evaluate 
the sum in (135), we recall the problem of detecting a known signal in 
colored noise, which we discussed in detail in Section I-4.3. The received 
waveforms on the two hypotheses are 

r(t) = 40 + nc(t> + 40, Ti < t < T,:H,, _ _ 
r(t) = n,(t) + w(t), Ti < t < Tf:HO. - B ( 140) 

By choosing the covariance function of n,(t) and 
can obtain the desired interpretation. Specifically, 

w(t) appropriately, we 
we let 

No E[w(t)w(li)] = - W 
- 2(1 - s) 

4, r: < t, 11 < Tf* - - (1~~) 

Then, from Chapter I-4 (page I-296) 
correlates r(t) with a function g( 
equationt 

m(t) = K,(t, 11) + 
No -6 

2U - 9 

we know that the optimum receiver 
1 ww - s)), which satisfies the 

(143) 

We also recall that we can write g(t 1 l ) explicitly in terms of the eigen- 
functions and eigenvalues of K,(t, u). Writing 

g l/1 ( 
substituting into ( 

where 

Ti < 21 5 Tf, 

143), and solving for the gi gives 

mi 
gi = 

A; + N,/2(1 - s) ’ 

s 

Tf 
mi A m(t) +iw 6-k 

Ti 

(144) 

(145) 

(146) 

t This notation is used to 
to K,(t, u). 

emphasize that g(t 1 0) depends on both NO and s, in addition 
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Substituting (145) and (146) into (135) and using Parseval’s theorem, 
we have 

(147) 

We observe that the integral in (147) is just d2 for the known signal in 
colored noise problem described in (140) [see (I-4.198)]. We shall en- 
counter several equivalent expressions for ~~(3) later. 

We denote the limit of the right side of (132) as K - co as p(s). Thus, 

p(s) = IURW + l%(s)* (148) 
Using (138) and (147) in (148) gives a closed-form expression for p(s). 
This enables us to evaluate the Chernoff bounds in (127) when K - 00. 
In the next section we develop approximate error expressions similar to 
those in (129) and (130). 

2.2.2 Approximate Error Expressions 

In order to derive an approximate error expression, we return to our 
derivation in Section I-2.7 (page I-123). After tilting the density and 
standardizing the tilted variable, we have the expression for pF given in 
(I-2.477). The result is 

pF = ePo-sib) 
s 

me-Sdii(a)~p 
!I 

(y) dy 9 
0 

(149) 

where Y is a zero-mean, unit-variance, random variable and we assume 
that p(s) equals JL Recall that 

xs - P(s) y- - , 
J 0 

(150) 
p s 

where 

P,,W = e ss-p(s)pl, H&X 1 Ho), (151) 

and / is the log likelihood ratio which can be written as 

I = 1, + I, + lg’ + w (152) 
[Notice that the threshold is y as defined in (&).] The quantity I is also 
the limit of the sum in (19) as K --+ co. If the weighted variables in the 
first sum in (19) were identically distributed, then, as K - 00, p,( Y) 
would approach a Gaussian density. An example of a case of this type 
was given in Example 2 on page I-127. In that problem, 

lis=os2, i- 1,2 ,..., AJ, (153) 

so that the weighting in the first term of (19) was uniform and the variables 
were identically distributed. In the model of this chapter, we assume that 
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s(t) has finite average power [see the sentence below (4)]. Thus 2: 1 AiS 
is finite. Whenever the sum of the variances of the component random 
variables is finite, the central limit theorem cannot hold (see [lo]). This 
means that we must use some other argument to get an approximate 
expression for P, and Pnl. 

A logical approach is to expand py( Y) in an Edgeworth series. The 
first term in the expansion is a Gaussian density. The remaining terms 
take into account the non-Gaussian nature of the density. On the next 
few pages we carry out the details of the analysis. The major results are 
approximations to PF and PM, 

and 

O<s<l - - 

P yv 
1 

A92 J27l(l - s)2ji(s) 
epw+u-s)pw 9 O<S<l. - - 

We see that (154) and (155) are identical with (129) and (130). Thus, our 
derivation leads us to the same result as before. The important difference 
is that we get to (154) and (155) without using the central limit theorem. 

Derivation of Error Approximationsf The first term in the Edgeworth series is the 
Gaussian density, 

+(Y) A L- e-Y2/2. 
42 7r 

(156) 

The construction of the remaining terms in the series and the ordering of terms are 
discussed in detail on pages 221-231 of Cramk [ 121). The basic functions are 

We write 

+ 
[ 
5 q4y Y) + F p)(Y) 

. . 1 

7 This derivation was done originally in [l 11. 
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where 

(15% 

We see that all of the coefficients can be expressed in terms of ,u(s) and its derivatives. 
We now substitute (158) into the integral in (149). The result is a sum of integrals of the 
form 

where 

&(a) = 
s 

ow +fk)( Y)e-y d Y, (160) 

a A s(ji(s))*K (161) 

Repeated integration by parts gives an expression for I,(a) in terms of erfc*(a). 
The integrals are 

I,(a) = erfc, (a) ea2i2 (162) 
and 

r,(a) = aI&a) - +(k-lvo), k > 1. - (163) 

If we use just the first term in the series, 

p(s) - S&S) + 7) erfc, (&a) / (164) 

For large s(@(s)*A(> 2), we may use the approximation to erfc, (X) given in Fig. 2.10 
of Part I. 

1 
erfc, (X) rv - e 

1/%X 

--.m2, x2 2. (165) 

Then (164) reduces to 

PF 
-pg’, A ’ 

- 2/Gqi) 
eP(s)-sfi(s). (166) 

This, of course, is the same answer we obtained when the central limit theorem 
was valid. The second term in the approximation is obtained by using I3(a) from (163). 

1 
<s~@>31,(s~ p(s)) + 1/2y (1 w s2jqs>> 

. (167) 

T 1 
Now, 

r&qT), = 
In Problem I-2.2.15 on page I-137, we showed that 

(168) 

e--X2j2 < erfc, (X) < --&(I - -f-+ + $)ewX2i2. (169) 
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We can now place an upper bound on the magnitude of Pg’. 

y3 l 

= -7 l&q&) 

&w -/.a) 

73 l = -- I I Cl1 

2 sl/lu(s) 
p,*- 

Using (159), 
jJ3) (4 I@1 2 - I I P$l 

2s[jk(s)]2 *’ 

(170) 

(171) 

Thus, for any particular /Q), we can calculate a bound on the size of the second term 
in relation to a bound on the first term. By using more terms in the series in (169), we 
can obtain bounds on the other terms in (158). Notice that this is not a bound on the 
percentage error in PF, l it is just a bound on the magnitude of the successive terms. In 
most of our calculations we shall use just the first-order term Pk! We calculated P$l 
for a number of examples, and it was usually small compared to Pg! The 
bound on Ppl is computed for several typical systems in the problems. 

To derive an approximate expression for PM, we go through a similar argument. 
The starting point is (172), which is obtained from (I-2.465) by a change of variables. 

Pfif = e pw+w-s)p(s) 

s 

0 
e(l-s’z/Z~Yp,(~) dY. 

-al 
The first-term approximation is 

(172) 

PM ?p~l= 
[ [ 

(1 d2 . . 
exp P(S) + (1 - 4/i(s) + -+ P( ) s 11 erfc, [(1 - swjw, 

O<s<l. 

(173) 
Using the approximation in (165) gives 

N pylj A 
1 

PM *- 
d27r(l 

,Pw+a-s)fiw 9 O<s,<l. (174) 
- s)2;li(s) 

The higher-order terms are derived exactly as in the PF case. 

The results in (164), (166), (173), and (174), coupled with the closed- 
form expression for ,u(s) in (138) and (147), give us the ability to calculate 
the approximate performance of the optimum test in an efficient manner. 
A disadvantage of our approach is that for the general case we cannot 
bound the error in our approximation. Later, we shall obtain bounds for 
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some special cases and shall see that our first-order approximation is 
accurate in those cases. 

We now return to the problem of calculating ,u(s) and develop an 
alternative procedure. 

2.2.3 An Alternative Expression for p&)7 

The expressions in (138) and (139) depend on the realizable mean-square 
estimation error. If we are going to build the optimum receiver using a 
state-variabie realization, we will have l&t ) s(e), N,/2) available. On the 
other hand, there are many cases in which we want to compute the per- 
formance for a number of systems in order to select one to build. In this 
case we want an expression for ,u&) that requires the least amount of 
computation. Specifically, we would like to find an expression for ,u(s) 
that does not require the computation of Ep(t ( s(s), N,/2) at each point 
in [Ti, TJ. Whenever the random process has a finite-dimensional state 
representation, we can find a much simpler expression for ,u(s). The new 
expression is based on an alternative computation of the integralz 

Derivation. We use the state model in (76)-(80), 

3t) = JWMt) + G(t)u(t), (176) 

and the initial conditions 
s(t) = WMr), (177) 

E[x(T,)I = 0, (178) 

E[x(T~)x~( Ti)] = gp(Ti) 6 PO. (179) 

Recall that the error covariance matrix is 

&a(t) = E[(x(t) - X(t))(xT(t) - V(t))]. WV 
Using (177), 

Ep t 1 SC), 5 ( 1 2 
= C(t)gp(t)cqt). (181) 

We first recall several resul ts from Chapter I-6 and introduce some simplifying nota- 
tion. From Property 1 .6 on page I-545, we know that the variance equation (84) can be 
related to two simultaneous linear equations (I-6.335 or I-6.336), 

d 
iit i 
v#) F(t) i G(t)QGT(t)- 

, --------___-_-______-----.,____________________ I 8 
2 

0 0 
v,o > CT(t)N C(t) ; -FT(t) 

0 
I I I 

t This section may be omitted on the first reading. 
$ This derivation is due to Collins [l33. 



An Alternative Expression for &(s) 43 

The transition matrix of (182), T(t, T.), satisfies the differential equation 

L 

F(t) i G(t)QGT(t) 

; W(t, T&l = 
I _________________________I ----------_________-_ , I 

2 
I 8 W, T,), (183) 

CT(t)- C(t) 1 
No : 

-FT(t) 1 1 

with initial conditions T(T,, TJ = I. In addition, from (I-6.338), the error covariance 
matrix is given by 

&4t) = [T,,(t, T&(T,) i- Tl,(t, T,)lET,,(t, Q&<Ti) + T,,(t, TiW1. (184) 

The inverse of the second matrix always exists because it is the transition matrix of 
a linear dynamical system. For simplicity, we define two new matrices, 

Thus, 

and r,(t) and r2(t) satisfy 

r,(t) = T,,(t, T,>&4Ti> + T& Ti), 

r&l = T,,(t, T&(Ti) + T&t, Ti). 

L 

with initial conditions 

and 

tgt) = r,(t) r,l(t>, 

1 r F(t) ;G(t)QGT(t)l I I -----_--------------____I_--__----___---_---- I 
2 

I 
cqt)--f C(t) ; -FT(t) 

0 i 

ryTi) = I. 

(185) 

(186) 

9 (187) 

We now proceed with the derivation. Multiplying both sides of (181) by 2/N, and 
integrating gives 

Now recall that 

2 

s 

Tt 
=- 

N 
c(t)[r~(t)rz-l(t)IcT(t) dt. (190) 

0 Ti 

for any vector x. Thus, 
XTBX = Tr [xxTB] (190 
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Using (187) to eliminate I’,(t), we have 

s Tf = Tr 
Ti 

r Tf 

+ F*W2(t) r,l(t) dt ) 1 
1 s dt + 5 

Tr [FT(t)] dt 
Ti 

J -TX= [r2-‘(t) dr,Wl + 
s 

Tf = Tr [F(t)] dt. (193) 
Ti Ti 

From (9.31) of [14], 

s T, 
Tr [r2--l(t) dq(t)] = 

s 

Tt 
d[ln det r2(t)] 

Ti Ti 

= In det r,(r,> - In det rZ(T,) 

Thus, 
= In det r&Q. (194) 

1 k /~~p(tp(e),f$) dt = lndet r,(Tf) +L:r [F(t)]& / (195) 

which is the desired resu1t.t 

We see that we have to compute I’,(T,) at only one point rather than 
over an entire interval. This is particularly important when an analytic 
expression for &(T,) is available. If we have to find I’,(T,) by numerically 
integrating (187), there is no significant saving in computation. 

The expression in (195) is the desired result. In the next section we 
consider a simple example to illustrate the application of the result we have 
derived. 

2.2.4 Performance for a Typical System 

In this section we analyze the performance of the system described in 
the example of Section 2.1.5. It provides an immediate application of the 
performance results we have just developed. In Chapter 4, we shall 
consider the performance for a variety of problems. 

Example. We consider the system described in the example on page 26. We assume 
that the channel process b(t) is a stationary zero-mean Gaussian process with a spectrum 

w4 
2kab2 =-. 

w2 + k2 
(196) 

t This result was first obtained by Baggeroer as a by-product of his integral equation 
work [HI. See Siegert [16] for a related result. 
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We assume that the transmitted signal is a rectangular pulse, 

G -9 O<t<T, 

f() t = T 

0, elsewhere 

As we pointed out in our earlier discussion, this channel model has many of the char- 
acteristics of models of actual channels that we shall study in detail in Chapter 10. The 
optimum receiver is shown in Fig. 2.10. To illustrate the techniques involved, we cal- 
culate ,u(s) using both (138) and (195). [Notice that pD(s) is zero.] To use (138), we need 
the realizable mean-square filtering error. The result for this particular spectrum was 
derived in Example 1 on pages I-546-1-548. From (I-6.353), 

1 - [(l - a)/(1 + u)]e-2kat 
1 - [(l - oQ2/(1 + u)2]e-2kat ’ 

OStST, 

where 
(198) 

I?, 4 ab2Et (199) 

is the average received energy and 

J 4Er 
04 1+=. 

0 
(200) 

Integrating, we obtain 

We now derive (201) using the expression in (195). The necessary quantities are 

F(t) = -k, 

G(t)QGT(t) = 2kcrb2, 

C(t) = 1, 

PO = a,? (202) 

The transition matrix is given in (I-6.351) as 

T(T + Ti, Ti) = 9 (203) 

where 

Y J 4ab2Et 
=- l+kN=ku 0 
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From the definition in (185), 

rz(Tf) 
2n,2 k 

= Ny sinh (yT) + cash (yT) + - sinh (yT) 
0 Y 

1 - (a + 1)2&t - 1)2 l 

Using (202) and (205) in (195), we have 

~[F~EJ,(tls(.),~dt) =in~R,“,“~~~)~aT] -k(a+l)T, (206) 

which is identical with (201). To get the second term in (138), we define 

a* 1+ 
J 

4iQl - s) 
s- (207) 

k TN, 
and replace o! by TX, in (201). Then 

1 
p(s) = +-f in 

t 1 

[(l + CC)2e2kTa - (1 - cc)2]d, 4ET 1 1 -- - 
[(l + as)2e21’Tas - (1 - a,)2]a 1 [ No a - 1 - Cc, II ’ (208) 

We see that /c(s) (and therefore the error expression) is a function of two quantities. 
&/No, the average energy divided by the noise spectral height and the kT product, 
The 3-db-bandwidth of the spectrum is k radians per second, so that kT is a time- 
bandwidth product. 

To use the approximate error expressions in (154) and (155), we find $(s) and ,G’ (s) 
from (208). The simplest way to display the results is to fix PF and plot PM versus kT 
for various values of 2&/N,. We shall not carry out this calculation at this point. In 
Example 1 of Chapter 4, we study this problem again from a different viewpoint. At 
that time we plot a detailed set of performance curves (see Figs. 4.7--4.9 and Problem 
4.1.21). 

This example illustrates the application of our results to a typical 
problem of interest. Other interesting cases are developed in the problems. 
We now summarize the results of the Chapter. 

2.3 SUMMARY: SIMPLE BINARY DETECTlON 

In Sections 2.1 and 2.2 we considered in detail the problem of detecting 
a sample function of a Gaussian random process in the presence of additive 
white Gaussian noise. In Section 2.1 we derived the likelihood ratio test 
and discussed various receiver configurations that could be used to 
implement the test. The test is 

Wl 

I, + I, + Ziil + lE1 5 In 7, (209 
HO 
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Tf 
1 1 

R=- 
N, 11 

r(t)h,(t, u)r(u) dt du, W) 
Ti 

The operation needed to generate ZR was a quadratic operation. The 
receiver structures illustrated different schemes for computing Zfi. The 
three receivers of most importance in practice are the following: 

1. The estimator-correlator receiver (Canonical Realization No. 1). 
2. The filter-squarer receiver (Canonical Realization No. 3). 
3. The optimum realizable filter receiver (Canonical Realizations 

Nos. 4 and 4s). 

The most practical realization will depend on the particular problem of 
interest. 

In Section 2.2 we considered the performance of the optimum receiver. 
In general, it was not possible to find the probability density of lR on the 
two hypotheses. By extending the techniques of Chapter I-2, we were 
able to find good approximations to the error probabilities. The key 
function in this analysis was p(s). 

The performance was related to ,u(s) through the Chernoff bounds, 

pF < &w-sciw - 9 
PM < ~Pw- (1-W(d - 9 O<s<l, - - (217) 
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where 
p(s) = y = In q. (218) 

An approximation to the performance was obtained by an Edgeworth 
series expansion, 

PY 
1 

lkr J277(1 - s)2jqs) 
e~(s)+(l-s)I’o 9 O<s<l. WV 

By varying s, we could obtain a segment of an approximate receiver 
operating characteristic. 

We see that both the receiver structure and performance are closely 
related to the optimum linear filtering results of Chapter I-6. This close 
connection is important because it means that all of our detailed studies 
of optimum linear filters are useful for the Gaussian detection problem. 

At this point, we have developed a set of important results but have 
not yet applied them to specific physical problems. We continue this 
development in Chapter 4, where we consider three important classes of 
physical problems and obtain specific results for a number of interesting 
examples. Many readers will find it helpful to study Section 4.1.1 before 
reading Chapter 3 in detail. 

2.4 PROl3LEMS 

P.2.1 Optimum Receivers 

Problem 2.1.1. Consider the model described by (l)-(6). Assume that m(t) is not zero. 
Derive an estimator-correlator receiver analogous to that in Fig. 2.3 for this case. 
Problem 2.1.2 Consider the function h,(t, t 1 z), which is specified by the equation 

s 

Tf 
zh,(t, u I 4 + h,(t, Y I 4K,(Y, 4 dY = K,(t, 4, Ti 5 t, u 5 Tf. 

Ti 

Verify that (75) is true. [Hint: Recall (I-3.154).] 
Problem 2.1.3. 

1. Consider the waveform 

r(7) = n,(7) + 44, Ti I 7 S t, 

where n,(T) can be generated as the output of a dynamic system, 

k(t) = WW + W>N, 

n,w = C(OxW, 
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driven by a statistically independent white noise u(t). Denote the MMSE realizable 
estimate of n,(7) as h,(7). Prove that the process 

is white. 
r,(t) A r(t) - A,(t) = r(t) - C(t)G(t) 

2. Use the result of part 1 to derive the receiver in Fig. 2.11 by inspection. 

Problem 2.1.4. Read Problem I-6.6.4 and the Appendix to Part II (sect. A.4-A.6). 
With this background derive a procedure for generating IR using unrealizable filters 
expressed in terms of vector-differential equations. For simplicity, assume zero means. 

Problem 2.1.5. The received waveforms on the two hypotheses are 

r(t) = SW + w(t), 0 5 t s T:H,, 

r(t) = w(t), O<t5 T:H,. 

The process w(t) is a sample function of a white Gaussian random process with spectral 
height N,/2. The process s(t) is a Wiener process that is statistically independent of w(t). 

s(0) = 0, 

E[s2(t)) = a2t. 

1. Find the likelihood ratio test. 
2. Draw a realization of the optimum receiver. Specify all components completely. 

Problem 2.1.6. The received waveforms on the two hypotheses are 

r(t) = s(t) + w(t), 0 ,< t g T:H,, 

r(t) = w(t), Or;tr;T:H,. 

The process w(t) is a sample function of a white Gaussian random process with spectral 
height N,/2. The signal s(t) is a sample function of a Gaussian random process and 
can be written as 

s(t) = at, 0 22 6 

where a is a zero-mean Gaussian random variable with variance cra2. Find the optimum 
receiver. Specify all components completely. 

Problem 2.1.7. Repeat Problem 2.1.6 for the case in which 

s(t) = at + b, 0 I t, 

where a and b are statistically independent, zero-mean Gaussian random variables with 
variances oa2 and ob2, respectively. 
Problem 2.1.8. 

1. Repeat Problem 2.1.7 for the case in which a and b are statistically independent 
Gaussian random variables with means m, and mb and variances acr2 and ob2, respectively. 

2. Consider four special cases of part 1: 

(i) m, = 0, 
(ii) mb = 0, 
(iii) oa2 = 0, 
(iv) ob2 = 0. 

Verify that the receiver for each of these special cases reduces to the correct structure. 
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Problem 2.1.9. Consider the model in Problem 2.1.6. Assume that s(t) is a piecewise 
constant waveform, 

b 1' 0 < t 5 T,, 

b 2' To < t 5 2T,, 

b 
s(t) = 3’ 

2T, < t I 3T,, 

l 

b , ,  (n - 1)T, < t < nTo, 

The bi are statistically independent, zero-mean Gaussian random variables with 
variances equal to cTb 2. Find the optimum receiver. 

Problem 2.1.10. Consider the model in Problem 2.1.6. Assume 

where the ai are statistically independent random variables with variances oi2. Find the 
optimum receiver. 
Problem 2.1.11. Re-examine Problems 2.1.6 through 2.1.10. If you implemented the 
optimum receiver using Canonical Realization No. 4S, go back and find an easier 
procedure. 
Problem 2.1.12 Consider the model in Problem 2.15 Assume that s(t) is a segment of a 
stationary zero-mean Gaussian process with an nth-order Butterworth spectrum 

2nP sin (r/2n) 
S,(w:n) =- 

k (w/k)2” + 1 ’ 
n =1,2,.... 

1. Review the state representation for these processes in Example 2 on page I-548 
Make certain that you understand the choice of initial conditions. 

2. Draw a block diagram of the optimum receiver. 
Problem 2.1.13. From (31), we have 

T/ 
1 

In =- 
NO 

r(t)h(t, u)r(u) dt du. 

One possible factoring of h(t, U) was given in (45). An alternative factoring is 

1. Explain the physical significance of this operation. Remember that our model 
assumes that r(t) is only observed over the interval [Ti, T’]. 

2. Give an example in which the factoring indicated in (P.l) is easier than that in the 
text. 
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Problem 2.1.14. Consider the expression for IR in (31). We want to decompose h,(t, u) 
in terms of two new functions, k,(T,, 2) and k,(z, t), that satisfy the equation 

h,(t, 4 = s Tt k,(Tf, 4k,(z, t)k,(z, u) dz, Ti 
1. Draw a block diagram of the optimum receiver in terms of these new functions. 
2. Give an example in which this realization would be easier to find than Canonical 

Realization No. 3. 
3. Discuss the decomposition 

h,(t, 4 = s k,(T,, z)k,(z, Ok,@, 4 dz, 
iIT 

Problem 2.1.15. From (86) and (87), 

1 T 
In 

=- 

s No 0 
[2r(& (t) - ^s2(t)] dt. W) 

Consider the case in which 

k) + q+(t) = b,r(t), ost 
and 

9(O) = 0. u-9 

1. Implement the optimum receiver in the form shown in Fig. P.2.1. Specify the time- 
invariant filter completely. 

2. Discuss the case in which 

i(t) + a$(t) + a&t) = b,r(t). 

Suggest some possible modifications to the structure in Fig. P.2.1. 

Optimum 
realizable 

linear 
filter 

. 1 
G(t) 

2-- Squarer . Time-invariant 
filter 

> 
c . 

Sample 

CL 
1R 

Fig. P.2.1 

3. Extend your discussion to the general case in which the estimate i(t) is described 
by an nth-order differential equation with constant coefficients. 
Problem 2.1.16. On both hypotheses there is a sample function of a zero-mean Gaussian 
white noise process with spectral height No/2. On H,, the signal is equally likely to be a 
sample function from any one of M zero-mean Gaussian processes. We denote the 
covariance function of the ith process as KJt, u), i = 1, . . . , M. Thus, 

1 
r(t) = s&t) -I- w(t), Ti 5 t 5 Tf, with probability M : H,, i = 1, . . . , M. 

r(t) = w(t), Ti r; t 5 Tf:Ho. 

Find the optimum Bayes receiver to decide which hypothesis is true. 
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Problem 2.1.17. Consider the vector version of the simple binary detection problem 
The received waveforms on the two hypotheses are 

r(t) = s(t) + w(t), Ti S t S r,:H,, 
= w(t), Ti < t s Tf: H,,, 

(P 1 . 

where s(t) and w(t) are sample functions of zero-mean, statistically independent, N- 
dimensional, vector Gaussian processes with covariance matrices 

K,(t, 4 ii EbWsT(u)l (P.2) 
and 

K,(t, u) ki E[w(t)wT(u)] = 2 N”6(t - u)I. (P.3) 

1. Derive the optimum receiver for this problem. (Hint: Review Sections I-3.7 
and I-4.5.) 

2. Derive the equations specifying the four canonical realizations. Draw a block 
diagram of the four realizations. 

3. Consider the special case in which 

K&t, u) = K,(t, u)I. (P-4) 

Explain what the condition in (P.4) means. Give a physical situation that would lead 
this condition. Simplify the optimum 

4. Consider the special case in which 
receiver in part 1. 

Repeat part 3. 

-1 1 . . . 1- 

1 1 1 

1 1 

(P.5) 

Problem 2.1.18. Consider the model in Problem 2.1.17. The covariance of w(t) is 

K&t, u) = N 6(t - u)I, 

where N is a nonsingular matrix. 
1. Repeat parts 1 and 2 of Problem 2.1.17. (Hint: Review Problem I-4.5.2 on page 

I-408 .) 
2. Why do we assume that N is nonsingular? 
3. Consider the special case in which 

K,(t, u) = K,(t, u)I 

and N is diagonal. Simplify the results in part 1. 
Problem 2.1.19. Consider the model in Problem 2.1.17. Assume 

E[s(t)] = m(t). 

All of the other assumptions in Problem 2.1.17 are still valid. Repeat Problem 2.1.17 
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Problem 2.1.20. In Section 2.1.5 we considered a simple multiplicative channel. A more 
realistic channel model is the Rayleigh channel model that we encountered previously 
in Section I-4.4.2 and Chapter 11-8. We shall study it in detail in Chapter 10. 

On H, we transmit a bandpass signal, 

St(t) a 1/2p f (t) cos cu,t, 

where f (t) is a slowly varying function (the envelope of the signal). The received signal 

r(t) = 1/G b,(t)f(t) cos co,t + d2P b&If(t) sin co,t + w(t), Ti s t I; T,:H,. 

The channel processes b,(t) and b&t) are statistically independent, zero-mean Gaussian 
processes whose covariance functions are K&, u). The additive noise w(t) is a sample 
function of a statistically independent, zero-mean Gaussian process with spectral height 
N,/2. The channel processes vary slowly compared to cr),. On HO, only white noise is 
present. 

1. Derive the optimum receiver for this model of the Rayleigh channel. 
2. Draw a filter-squarer realization for the optimum receiver. 
3. Draw a state-variable realization of the optimum receiver. Assume that 

s&d 
2kob2 =-• 

u2 + k2 

Problem 2.1.21. The model for a Rician channel is the same as that in Problem 2.1.19, 
except that 

W,(t)1 = m 

instead of zero. Repeat Problem 2.1.19 for this case. 

P.2.2. Performance 

Problem 2.2.1. Consider the problem of evaluating ,u~(s), which is given by (135) or 
(147). Assume that s(t) has a finite-dimensional state representation. Define 

Find a finite-dimensional dynamic system whose output is p&, T). 

Problem 2.2.2. Consider the model in the example in Section 2.2.4. Assume that 

E[b(t)] = m 

instead of zero. Evaluate 
I-320 and I-390.1 

p=(s) for this problem. [Hint: If you use (147), review pages 

Problem 2.2.3. 

1. Consider the model in Problem 2.1 S. Evaluate ,u(s) for this system. 
2. Define 

Simplify the expression in part 1 for the case in which yT >> 1. 
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Problem 2.2.4 (continuation). Use the expression for ,u(s) in part 2 of Problem 2.2.3. 
Evaluate pgl and p&l [see (167)]. Compare their magnitude with that of pi1 and @,‘$l. 
Problem 2.2.5. Consider the model in Problem 2.15. Assume that 

40 = s(t) + m(t) + w(t), O_<t<T, 

r(t) = w(t), O<t<T, 

where m(t) is a deterministic function. The processes s(t) and w(t) are as described in 
Problem 2.1.5. Evaluate am for this model. 

Problem 2.2.6. 

1. Evaluate p(s) for the system in Problem 2.1.6. 
2. Plot the result as a function of s. 
3. Find PF and PD. 

Problem 2.2.7. Evaluate /d(s) for the system in Problem 2.1.7. 

Problem 2.2.8. Evaluate p(s) for the system in Problem 2.18. 

Problem 2.2.9. 

1. Evaluate ,u(s) for the system in Problem 2.1.9. 
2. Evaluate PF and PI>. 

Problem 2.2.10. Consider the system in Problem 2.1.17. 

1. Assume that (P.4) in part 3 is valid. Find ,I@) for this special case. 
2. Assume that (P.5) in part 4 is valid. Find p(s) for this special case. 
3. Derive an expression for ,u(s) for the general case. 

Problem 2.2.11. Consider the system in Problem 2.1.19. Find an expression for /co(s) for 
this system. 

Problem 2.2.12. Find (u(s) for the Rayleigh channel model in Problem 2.1.20. 

Problem 2.2.13. Find /d(s) for the Rician channel model in Problem 2.1.21. 

REFERENCES 

[l] R. Price, “Statistical Theory Applied to Communication through Multipath 
Disturbances,” Massachusetts Institute of Technology Research Laboratory of 
Electronics, Tech. Rept. 266, September 3, 1953. 

[2] R. Price, “The Detection of Signals Perturbed by Scatter and Noise,” IRE Trans. 
PGIT-4, 163-170 (Sept. 1954). 

[3] R. Price, “Notes on Ideal Receivers for Scatter Multipath,” Group Rept. 34-39, 
Lincoln Laboratory, Massachusetts Institute of Technology, May 12, 1955. 

[4] R. Price, “Optimum Detection of Random Signals in Noise, with Application to 
Scatter-Multipath Communication. I, ” IRE Trans. PGIT-6, 125-135 (Dec. 1956). 

[5] F. Schweppe, “Evaluation of Likelihood Functions for Gaussian Signals,” IEEE 
Trans. IT-11, No. 1, 61-70 (Jan. 1965). 

[6] R. E. Kalman and R. S. Bucy, “New Results in Linear Filtering and Prediction 
Theory,” ASME J. Basic Eng., 83, 95-108 (March 1961). 

[7] L. D. Collins, “An Expression for Zz,(s, cr: t)/&,” Detection and Estimation 
Theory Group Internal Memorandum IM-LDC-6, Massachusetts Institute of 
Technology, April 1966. 



Rfferences 55 

[B] W. Lovitt, Linear Integral Equations, Dover Publications, New York, 1924. 
[9] L. D. Collins, “Realizable Whitening Filters and State-Variable Realizations,” 

IEEE Proc. 56, No. 1, 100-101 (Jan. 1968). 
[IO] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. II, 

John Wiley, New York, 1966. 
[ll] L. D. Collins, “Asymptotic Approximations to the Error Probability for Detecting 

Gaussian Signals,” Massachusetts Institute of Technology, Department of Elec- 
trical Engineering, Sc.D. Thesis Proposal, January 1968. 

[12] H. Cramer, Mathematical Methods in Statistics, Princeton University Press, 
Princeton, N. J., 1946. 

[13] L. D. Collins, “Closed-Form Expressions for the Fredholm Determinant for State- 
Variable Covariance Functions,” IEEE Proc. 56, No. 4 (April 1968). 

[14] M. Athans and F. C. Schweppe, “Gradient Matrices and Matrix Calculations,” 
Technical Note 1965-53, Lincoln Laboratory, Massachusetts Institute of Tech- 
nology, 1965. 

[15] A. B. Baggeroer, “A State-Variable Approach to the Solution of Fredholm Integral 
Equations,” November 15, 1967. 

[ 161 A. J. F. Siegert, “A Systematic Approach to a Class of Problems in the Theory of 
Noise and Other Random Phenomena. II. Examples,” IRE Trans. IT-3, No. 1, 
38-43 (March 1957). 

[17] D. Middleton, “On the Detection of Stochastic Signals in Additive Normal Noise. 
I,” IRE Trans. Information Theory IT-3, 86-121 (June 1957). 

[18] D. Middleton, “On the Detection of Stochastic Signals in Additive Normal Noise. 
II,” IRE Trans. Information Theory IT-6, 349-360 (June 1960). 

[19] D. Middleton, “On Singular and Nonsingular Optimum (Bayes) Tests for the 
Detection of Normal Stochastic Signals in Normal Noise,” IRE Trans. Informa- 
tion Theory IT-7, 105-113 (April 1961). 

[20] D. Middleton, Introduction to Statistical Communication Theory, McGraw-Hill, 
New York, 1960. 

[21] R. L. Stratonovich and Y. G. Sosulin, “Optimal Detection of a Markov Process 
in Noise,” Eng. Cybernet. 6, 7-19 (Oct. 1964). 

[22] R. L. Stratonovich and Y. G. Sosulin, “Optimal Detection of a Diffusion Process 
in White Noise,” Radio Eng. Electron. Phys. 10, 704-713 (May 1965). 

[23] R. L. Stratonovich and Y. G. Sosulin, “Optimum Reception of Signals in Non- 
Gaussian Noise,” Radio Eng. Electron. Phys. 11, 497-507 (April 1966). 

[24] Y. G. Sosulin, “Optimum Extraction of Non-Gaussian Signals in Noise,” Radio 
Eng. Electron. Phys. 12, 89-97 (Jan. 1967). 

[25] R. L. Stratonovich, “A New Representation for Stochastic Integrals,” J. SIAM 
Control 4, 362-371 (1966). 

[26] J. L. Doob, Stochastic Processes, Wiley, New York, 1953. 
[27] K. Ito, Lectures on Stochastic Processes, Tata Institute for Fundamental Research, 

Bombay, 1961. 
[28] T. Duncan, “Probability Densities for Diffusion Processes with Applications to 

Nonlinear Filtering Theory and Detection Theory,” Information Control 13, 
62-74 (July 1968). 

[29] T. Kailath and P. A. Frost, “Mathematical Modeling of Stochastic Processes,” 
JACC Control Symposium (1969). 

1301 T. Kailath, “A General Likelihood-Ratio Formula for Random Signals in Noise,” 
IEEE Trans. Information Theory IT-5, No. 3, 350-361 (May 1969). 



General Binary Detection: 
Gaussian Processes 

In this Chapter we generalize the model of Chapter 2 to include other 
Gaussian problems that we encounter frequently in practice. After develop- 
ing the generalized model in Section 3.1, we study the optimum receiver 
and its performance for the remainder of the chapter. 

3.1 MODEL AND PROBLEM CLASSIFICATION 

An obvious generalization is suggested by the digital communication 
system on page 26. In this case we transmit a different signal on each 
hypothesis. Typically we transmit 

J2p sin (w&, Ti < t < Tf: HI B - (1) 
and 

J2p sin (a@), Ti < t < Tf: Ho. - (2) 

If the channel is the simple multiplicative channel shown in Fig. 2.9, the 
received waveforms on the two hypotheses are 

r(t) = JG b(t) sin (qt) + w(t), Ti < t < Tf : HI, (3) 

r(t) = JG b(t) sin (mot) -I- w(t), Ti ,< t ,< T,:H,, (4) 

where b(t) is a sample function of Gaussian random process. This is just 
a special case of the general problem in which the received waveforms on 
the two hypotheses are 

r(t) = m + ~(0, Ti < t < T~zH~, - - 
r(t) = %(t) + w(t), Ti < t < Tr: Ho, 

(5) 
- - 
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where sl(t) and s,(t) are Gaussian processes with mean-value functions 
nt,(t) and 771&) and covariance functions K,(t, U) and &(t, u), respectively. 

In many cases, we also have a colored noise term, I&), present on both 
hypotheses. Then 

r(t) = Q(t) + n,(t) + w(t), Ti < t < T,: HI, _ _ 
r(t) = %co + %W + w, Ti < t < T,: Ho. (6) 

_ _ , 

We can include both these problems and many others in the general 
formulation, 

r(t) = G(t), T’< t < TiIHly - - 

w = w), Ti < t < Ti:Hoe (7) 
- - 

On HI, r(t) is a sample function from a Gaussian random process with 
mean-value function m,(t) and covariance function &,(t, u). On Ho, r(t) 
is a sample function from a Gaussian random process with mean-value 
function m,(t) and covariance function KH,(t, u). For algebraic simplicity, 
we assume that r(t) is zero-mean on both hypotheses in our initial dis- 
cussion. The results regarding mean-value functions in Chapter 2 generalize 
in an obvious manner and are developed in Section 3.4. 

Some of our discussion will be for the general problem in (7). On the 
other hand, many results are true only for subclasses of this problem. For 
bookkeeping purposes we define these classes by the table in Fig. 3.1. In 
all cases, the various processes are statistically independent. The subscript 
w implies that the same white noise component is present on both hypoth- 
eses. There may also be other processes present on both HI and Ho. 
The absence of the subscript means that a white noise component is not 
necessarily present. The class inclusions are indicated by solid lines. Thus, 

B, = A, = A = GB, (8) 

B, = B. (9 

Two additional subscripts may be applied to any of the above classes. 
The additional subscript s means that all of the processes involved have 
a finite-dimensional state representation. The additional subscript m 
means that some of the processes involved have a nonzero mean. The 
absence of the subscript m implies that all processes are zero-mean. We 
see that the simple binary problem in Chapter 2 is the special case of 
class B,, in which nc(t) is not present. This class structure may seem 
cumbersome, but it enables us to organize our results in a clear manner. 

As in the simple binary problem, we want to find the optimum receiver 
and evaluate its performance. The reason the calculation of the likelihood 
ratio was easy in the simple binary case was that only white noise was 
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Aw 

B Hl:s(t) + n(t) 
Ho: n(t) 

H1:s(t)+n,(t)+w(t) B 
Ho:n,(t)+w(t) W 

White noise not 

necessarily present 
~ 

;=b White noise present 

Fig. 3.1 Classification of Gaussian detection problems. 

present on H,. Thus, we could choose our coordinate system based on the 
covariance function of the signal process on H1. As a result of this choice, 
we had statistically independent coefficients on both hypotheses. Now the 
received waveform may have a nonwhite component on both hypotheses. 
Therefore, except for the trivial case in which the nonwhite components 
have the same eigenfunctions on both hypotheses, the technique in Section 
2.1 will give correlated coefficients. There are several ways around this 
difficulty. An intuitively appealing method is the whitening approach, 
which we encountered originally in Chapter I-4 (page I-290). We shall use 
this approach in the text. 

In Section 3.2 we derive the likelihood ratio test and develop various 
receiver structures for the class A, problem. In Section 3.3 we study the 
performance for the class A, problem. In Section 3.4 we discuss four 
important special situations: the binary symmetric problem, the non-zero- 
mean problem, the bandpass problem, and the binary symmetric bandpass 
problem. In Section 3.5 we look at class GB problems and discuss the 
singularity problem briefly. We have deliberately postponed our discussion 
of the general case because almost all physical situations can be modeled 
by a class A, system. Finally, in Section 3.6, we summarize our results and 
discuss some related issues. 
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3.2 RECEIVER STRUCTURES 

In this section, we derive the likelihood ratio test for problems in class 
A, and develop several receiver configurations. Looking at Fig. 3.1, we 
see that class A, implies that the same white noise process is present on 
both hypotheses. Thus, 

r(t) = m + u’(t), Ti < t < Tf: HI, - - 
r(t) = 40 + J40, Ti < t < T,:H,. - - (10) 

In addition, we assume that both sl(t) and so(t) are zero-mean Gaussian 
processes with finite mean-square values. They are statistically independent 
of w(t) and have continuous covariance functions K,(t, z.& and K,(t, u), 
respectively. The spectral height of the Gaussian white noise is &/2. 
Therefore, the covariance functions of r(t) on the two hypotheses are 

ew(~) 1 &I a Kf& u) = &(t, u) + : s(t - u), (11) 

&(t)r(u) ( H,] a KJ& u) = K,(t, u) + T d(t - 24). (12) 

We now derive the likelihood ratio test by a whitening approach. 

3.2.1 Whitening Approach 

The basic idea of the derivation is straightforward. We whiten r(t) on 
one hypothesis and then operate on the whitened waveform using the 
techniques of Section 2.1. As long as the whitening filter is reversible, we 
know that the over-all system is optimum (see page I-289). (Notice that 
realizability is not an issue.) 

The whitening filter is shown in Fig. 3.2. We choose hwo(t, U) so that 
r,(t) is white on Ho and has a unity spectral height. Thus, 

E[r,(t)r*(u) 1 HoI = &t - 4, Ti < t, u < Tf. - - (13) 

On pages 1-290-I-297 we discussed construction of the whitening filter. 

1 

r(t) r* 0) 
* h,,(t,u) 

. c 

1 

Fig. 3.2 Whitening filter. 
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From that discussion we know that we can always find a filter such that 
(13) is satisfied. Because 

(13) implies that 

Tf 

ss 
h,,(t, cc)h,,(~, tw,,(~, P> da dB = w - a 

II li 

The covariance function of r,(l) on H1 is 

w 

0 
ii Kf(t, u). (16) 

Ti 

We now expand r,(t) using the eigenfunctions of KT(t, u), which are 
specified by the equation 

Proceeding as in Section 2.1, we find that 

(Remember that the whitened noise on Ho has unity spectral height.) 
AS before we define an inverse kernel, Q:(t, u), 

s TfQ:(t, u)K;(u, x) du = s(t - x), 
Ti 

Then we can write 
Tr 

1 Rs -9 
ss 

dt du c+(t)[Q:(t, u) - s(t - u)]r,(u). 
Ti 

(204 

It is straightforward to verify that the kernel in (2Oa) is always square- 
integrable (see Problem 3.2.11). Using (14), we can write this in terms 
of r(t,. 

1 R= -9 h,,(t, 4CQfk u) 

1 r(p) da d/3. (20b) 
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We want to examine the term in the braces. The term contributed by the 
impulse is just QH,(a, /Q, the inverse kernel of KH,(a, /3) [see (I-4.152)]. 
We now show that the remaining term is QH,(a, p). We must show that 

This result is intuitively obvious from the relationship between K&(a, Is) 

and K,*(t, U) expressed in (16). It can be verified by a few straightforward 
manipulations. [Multiply both sides of (16) by 

Integrate the left side with respect to u, /3, x2, and a, in that order. Inte- 
grate the right side with respect to t, zl, U, and x2, in that order. At each 
step simplify by using known relations.] The likelihood function in (19) 
can now be written as 

Tr 

1 R =- i 
u 

da dP rWr(B)[Q&, B) - QHo(a, ,%I- (22) 

Ti 

In a moment we shall see that the impulses in the inverse kernels cancel, 
so that kernel is a square-integrable function. This can also be written 
formally as a difference of two quadratic forms, 

The reader should note the similarity between (23) and the LRT for the 
finite-dimensional general Gaussian problem in (I-2.327). This similarity 
enables one to guess both the form of the test for nonzero means and the 
form of the bias terms. Several equivalent forms of (22) are also useful. 

3.2.2 Various Implementations of the Likelihood Ratio Test 

To obtain the first equivalent form, we write QH,(a, @) and QH,(or, 8) 

in terms of an impulse and a well-behaved function, 

QHi(a, rS) = s [S(a - B) - hi@, B)], 
0 

i = 0, 1, (24) 



62 3.2 Receiver Structures 

where hi(a, b) satisfies the equation 

No hi@, /?) + s Tf 
2 

hi(a, x)Ki(x, @) dx = Ki(a, B), 
Ti 

Using (24) in (22) gives 
T 5 a, @ < T,, i = 0, 1. (25) 

where 
1 1, = I,,- I,,9 ] (26) 

T/ 

1 
1 

Ri = - 
NO ss 

r(a)r(/3)hi(a, p) da dp, i = 0, 1. (27) 
Ti 

It is easy to verify (see Problem 3.2.1) that the bias term can be written as 

1 B= I I B,- B,, (28) 

where [by analogy with (2.73)] 

1 
s 

T/ 
1 Bi=-- 

No z’i 
&,i(t) dt, i = 0, 1. (29 

The complete LRT is 

l,, + l,, - l,, - l,, >< In q* (30) 
Ho 

We see that the receiver can be realized as two simple binary receivers in 
parallel, with their outputs subtracted. Thus, any of the four canonic 
realizations developed in Section 2.1 (Figs. 2.2-2.7) can be used in each 
path. A typical structure using Realization No. 1 is shown in Fig. 3.3. This 
parallel processing structure is frequently used in practice. 

A second equivalent form of (22) is also useful. We define a function 

Then, 

1 R 
= 

Q 
l 

r(t)h*(t, z+-(u) dt du. 

Ti 
(32) 

To eliminate the inverse kernels in (31), we multiply by the two covariance 
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Fig. 3.3 Parallel processing realization of general binary receiver (class A,). 

functions and integrate. The result is an integral equation specifying 
h,(t, u). 

This form of the receiver is of interest because the white noise level does 
not appear e,uplici~ly. Later we shall see that (32) and (33) specify the 
receiver for class GB problems. The receiver is shown in Fig. 3.4. 

Two other forms of the receiver are useful for class B, problems. In 
this case, the received waveform contains the same noise process on both 
hypotheses and an additional signal process on H1. Thus, 

r(t) = w) + %(O + w(t), Ti < t < T/HI, - - 
r(t) = n,(t) + w, Ti < t < Tf:Ho, (34) 

- B 

where s(t), nc(t), and w(t) are zero-mean, statistically independent Gaussian 
random processes with covariance functions K,(t, u), K,(t, u), and 

(N,/2)6(t - u), respectively. On Ho, 

h&9 4 
No = K&t, u) + - qt - u) A K,(t, u), 
2 

Ti < t, U < Tf. - - 
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t 
,- h& u) . 

Fig. 3.4 Receiver for class A, problem. 

For this particular case the first form is an alternative realization that 
corresponds to the estimator-correlator of Fig. 2.3. We define a new 
function h,(t, x) by the relation 

Using (36) and the definition of h,(t, u) in (33), we have 

J h,(C x)[K,(x, 21) + K&G u)] dx = &(t, u), Ti 5 x, x < Tf. 
Ti 

(37) 

This equation is familiar from Chapter 1-6 as the equation specifying the 
optimum linear filter for estimating s(t) from an observation r(t) assuming 
that HI is true. Thus, 

s 0 j(t) = h,( t, u,r(u) drr . 
Ti 

(38) 

We now implicitly define a function r,(t), 

s Tr 
r(t) = K&)(4 J+-g(x) dx, Ti < t < Tf* - - (3% 

Ti 

Equivalently, r,(t) = s ‘b,,(t. :G)T(x) dbc, T < t < T,.. - _ (40) 
Ti 

This type of function is familiar from Chapter I-5 (I-5.32). Then, from 
(36) and (40), we have 

s Tt 1 1: = 4 s”(t)-,,(t) dt. 
Ti ’ 

(41) 

The resulting receiver structure is shown in Fig. 3.5. We see that this has 
the same structure as the optimum receiver for known signals in colored 
noise (Fig. 1-4.38~) except that a MMSE estimate s^(t) has replaced the 
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Fig. 3.5 Estimator-correlator realization for class B, problems. 

known signal in the correlation operation. This configuration is analogous 
to the estimator-correlator in Fig. 2.3. 

The second receiver form of interest for class B, is the filter-squarer 
realization. For this class a functional square root exists, 

h,(t, u) = s Tf M h, Mil (2, t)h, (x9 u) dz, Ti < t, u < Tf. - - (42) 
Ti 

The existence can be shown by verifying that one solution to (42) is 

hF4’(t, u) = s Tf 
h*‘“;‘(t, z)h,,,& u) dz, 

Ti ’ 
ri < t, u < Tf, _ - (43) 

since both functions in the integrand exist (see Problem 3.2.10). This 
filter-squarer realization is shown in Fig. 3.6. For class A, problems a 
functional square root of h,(t, U) may not exist, and so a filter-squarer 
realization is not always possible (see Problem 3.2.10). 

3.2.3 Summary : Receiver Structures 

In this section we have derived the likelihood ratio test for the class A, 
problem. The LRT was given in (23). We then looked at various receiver 
configurations. The parallel processing configuration is the one most 
commonly used. All of the canonical receiver configuration developed for 
the simple binary problem can be used in each path. For class B, problems, 
the filter-squarer realization shown in Fig. 3.6 is frequently used. 

The next problem of interest is the performance of the optimum receiver 

r(t) . 
* hf2](t, u) b Squarer dt \ C 

. HO 

Fig. 3.6 Filter-squarer realization for class BZL, problems. 
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3.3 PERFORMANCE 

All of our performance discussion in Section 2.2 is valid for class A, 
problems with the exception of the closed-form expressions for p(s). In 
this section we derive an expression for p(s). Just as in the derivation of 
the optimum receiver, there is a problem due to the nonwhite process 
that is present on both hypotheses. As before, one way to avoid this is to 
prewhiten the received signal on Ho. It is possible to carry out this deriva- 
tion, but it is too tedious to have much pedagogical appeal. Of the various 
alternatives available at this point the sampling approach seems to be the 
simplest. In Section 3.5, we study the performance question again. The 
derivation of p(s) at that point is much neater. 

In the problems on pages I-231-233 of Chapter I-3, we discussed how 
many of the continuous waveform results could be derived easily using a 
sampling approach. The received waveforms on the two hypotheses are 
given by (5). We sample r(t) every T/N seconds. This gives us an N- 
dimensional vector T whose mean and covariance matrix are sampled 
versions of the mean-value function and covariance function of the 
process. We can then use the p(s) expression derived in Section I-2.7. 
Finally, we let N -+ co to get the desired result. For algebraic simplicity, 
we go through the details for the zero-mean case. 

Denote the sample at ti as ri. The covariances between the samples are 

E[rirj 1 HJ =KHa(ti,tj)=Kaij, , i,j= l,..., N,x=O,l. (44) 

The set of samples is denoted by the vector r. The covariance matrix of r is 

E[rPIHJ= K,, o!=O,l. (45) 

The matrices in (45) are N x N covariance matrices. The elements of the 
matrices on the two hypotheses are 

Notice that 

and 

K 

No 

1,ij = Ks, ij + - dij, 8 2 
(46) 

K K No 
0,ij = ’ * + - djj* SO,23 2 

(47) 

K s,,ii = K,l(ti9 tj) (48) 
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We can write (46) and (47) in matrix notation as 

N 
K, ii K,, + o I. 

2 
(51) 

We can now use the p(s) expression derived in Chapter I-2. From the 
solution to Problem I-2.7.3, 

l%ds) = -4 In (lw- IWs II(,s + w - s)l), o<s< 1. (52) 

Notice that 1.1 denotes the determinant of a matrix. Substituting (50) and 
(51) into (52), we have 

pN(s) = -i In 
(i 

~I+K,,/I~~~I+K,,/^ 

x I(?I+K,,)s+ (:I+K+ -s)i)e (53) 

The matrices in (53) cannot be singular, and so all of the indicated opera- 
tions are valid. Collecting N,/2 frf 
as a sum of logarithms, we have 

PA@> = ;((I -~)ln/I+$~ 

- 

m the various terms and rewriting (53) 

+slnlI+$&-~ 
n 1 + + (SK,,, + (1 - s)K,,) i). (54) 

0 

Now each term is the logarithm of the determinant of a matrix and can be 
rewritten as the sum of the logarithms of the eigenvalues of the matrix by 
using the Cayley-Hamilton theorem. For example, 

(55) 

where AsI i is the ith eigenvalue of Ksl. As Iv -+ 00, this function of the 
eigenvaluks of the matrix, KS , will approach the same function of the 
eigenvalues of the kernel, K$, u).? We denote the eigenvalues of K&, U) 
by $1. Thus, 

lim 5 In 1 + - 
:\r+ m i=l ( 

ry20Asl,i) =Aln (1 + $$;')- (56) 

t We have not proved that this statement is true. It is shown in various integral equation 
texts (e.g., Lovitt [l, Chapter III]). 
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The sum on the right side is familiar from (2.73) as 

Thus, the first term in ,u(s) can be expressed in terms of the realizable 
mean-square error for the problem of filtering sl(t) in the presence of 
additive white noise. A similar interpretation follows for the second term. 
To interpret the third term we define a new composite signal process, 

This is a fictitious process constructed by generating two sample functions 
s,(l) and s&) from statistically independent random processes with 
covariances K,((t, U) and &(t, u) and then forming a weighted sum. The 
resulting composite process has a covariance function 

Kxdt, 2.4: s) = SK&, u) + (1 - s)K,(t, u), T.. < t, 24 < Tf. - - (59) 

We denote the realizable mean-square filtering error in the presence of 
white noise as &(t 1 s,,,,(*), N,/2). The resulting expression for p(s) is 

We see that for the general binary problem, we can express p(s) in terms of 
three different realizable filtering errors. 

To evaluate the performance, we use the expression for ,u(s) in (60) 
in the Chernoff bounds in (2.127), or the approximate error expressions in 
(2.164), (2.166), (2.173), and (2.174). We shall look at some specific 
examples in Chapter 4. We now look at four special situations. 

3.4 FOUR SPECIAL SITUATIONS 

In this section, we discuss four special situations that arise in practice: 

1. The binary symmetric problem. 

2. The non-zero-mean problem. 

3. The stationary independent bandpass problem. 

4. The binary symmetric bandpass problem. 

We define each of these problems in detail in the appropriate subsection. 
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3.4.1 Binary Symmetric Case 

In this case the received waveforms on the two hypotheses are 

w = s1(t) + w, Ti < t < Tr: HI, - - 
r(t) = sow + dt), Ti < t < Tr: H,,. _ _ (61) 

We assume that the signal processes sl(t) and s,(t) have identical eigen- 
values and that their eigenfunctions are essentially disjoint. For stationary 
processes, this has the simple interpretation illustrated by the spectra in 
Fig. 3.7. The two processes have spectra that are essentially disjoint in 
frequency and are identical except for a frequency shift. The additive 
noise w(t) is white with spectral height N,/2. This class of problems is 
encountered frequently in binary communications over a fading channel 
and is just the waveform version of Case 2 on page I-l 14. We shall discuss 
the physical channel in more detail in Chapter 11 and see how this mathe- 
matical model arises. The receiver structure is just a special case of Fig. 
3.3. We can obtain ,LQ&) from (60) by the following observations (the 
subscript denotes binary symmetric) : 

1. The minimum mean-square filtering error only depends on the 
eigenvalues of the process. Therefore, 

fP(f I slchy = E,(t 1 so(*),:). 
I 

(62) 

2. If two processes have no eigenfunctions in common, then the mini- 
mum mean-square error in filtering their sum is the sum of the minimum 
mean-square errors for filtering the processes individually. Therefore, 

6P(t I scom(*)~ !fo) = tp(t 1 $s So(*), :) + Ep( t I Jrs so(.), :). 

S(w) 
m 

Fig. 3.7 Disjoint processes 
quencies are shown). 

is symmetric around o = 0; only 
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Using (62) and (63) in (64), we have 

+ &(t 1 so(*),?) - El+ ) “so(+)]. (64) 

This can be rewritten in two different forms. Looking at the expression for 

p(s) in (2.139) for the simple binary problem, we see that (64) can be 
written as 

where the subscript SIS denotes simple binary, and, from (2.139), 

(66) 
From (65), it is clear that ,u&) is symmetric about s = l/2. A second 
form of ,Q~(s) that is frequently convenient is 

The binary symmetric model is frequently encountered in communica- 
tion systems. In most cases the a-priori probabilities of the two hypotheses 
are equal, 

Pr wiol = Pr [HI] = ij, (68) 

and the criterion is minimum Pr (E), 

Pr (E) = p, + &p (6% 

Under these conditions the threshold, In ‘I, equals zero. All of our bounds 
and performance expressions require finding the value of s where 

In this case, we want the value of s where 

t This particular form was derived in [2]. 



From the symmetry it is clear that 

/h&> Is= I,2 = 0. 

Thus, the important quantity is ,~s(1/2). From (65), 
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From (66)) 

Using (I-2.473), we have a bound on Pr (E.), 

In order to get an approximate error expression, we proceed in exactly 
the same manner as in (2.164) and (2.173). The one-term approximation is 

1 Pr(E)‘V [erfc, (F)] exp (,+&) + y). 1 (76) 

When the argument of erfc.&) is greater than two, this can be approxi- 
mated as 

Pr (E) h) LL- [ 1 
‘A 

. . 
Tus & ( ) 

exp (rL1dN* (77) 

As before, the coefficient is frequently needed in order to get a good 
estimate of the Pr (E). On page 79 we shall revisit this problem and 
investigate the accuracy of (77) in more detail. 

Two other observations are appropriate : 

1. From our results in (2.72) and (2.74), we know that P&S) can be 
written in terms of Fredholm determinants. Using these equations, we 
have 

(7% 
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2. The negative of ,u(+) has been used as criterion for judging the quality 
of a test by a number of people. It was apparently first introduced by 
Hellinger [3] in 1909. It is frequently referred to as the Bhattacharyya 
distance [4]. (Another name used less frequently is the Kakutani distance 
[5].) It is essential to observe that the importance of ,u(+) arises from both 
the symmetry of the problem and the choice of the threshold. If either of 
these elements is changed, ,u(s) for some s + 4 will provide a better 
measure of performance. It is easy to demonstrate cases in which ordering 
tests by their ,u(+) value or designing signals to minimize ,u(Q) gives 
incorrect results because the model is asymmetric. 

The formulas derived in this section are essential in the analysis of 
binary symmetric communication systems. In Chapter 5 we shall derive 
corresponding results for Wary systems. The next topic of interest is the 
effect of nonzero means. 

3.4.2 Non-zero Means 

All of our discussion of the general binary problem up to this point has 
assumed that the processes were zero-mean on both hypotheses. In this 
section we consider a class A,, problem and show how nonzero means 
affect the optimum receiver structure and the system performance. The 
received waveforms on the two hypotheses are 

r(t) = m + w 9 Ti < t < T,:H,, _ _ 

where 

and 

The covariance functions of q(t) and so(t) are KJt, u) and &(t, u), 
respectively. The additive zero-mean white Gaussian noise is independent 
of the signal processes and has spectral height &/2. As in the simple 
binary problem, we want to obtain an expression for lD and ,u&). 
[Recall the definition of these quantities in (2.32) and (2.147).] Because of 
the similarity of both the derivation and the results to the simple binary 
case, we simply state the answers and leave the derivations as an exercise 
(see Problem 3.4.1). 

Modifying (23), we obtain 
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This can be written as 

I 1 

Tf 
1 n= WIg1W - go(u)1 du, 

Ti 
where 

and 
s Tr 

g1w ii mdOQrrl(f, u) dt, Ti < u < T' (85) 
Ti 

s 

Tf 
gow L. ~dt)Q ~t~~(t, 4 dt, Ti < tl < Tf . w-9 

Ti 

The functions gI(u) and go(u) can also be defined implicitly by the relations 

and 
s Tr m(t) = KEIl(4 aiu) du, Ti < t < Tf - - (87) 

Ti 

m,(t) = 
s 

T/ 
K,,(t, hM dk Ti < t < Tf. B - (88) 

Ti 

The resulting test is 
IT1 

hit + b r$ Yr, (89) 
0 

where ZR is given by (23) or (32) and y’ is the threshold that includes the 
bias terms. An alternative expression for the test derived in Problem 3.4.1 
1s Tf Tr 
2 * r(t)g(t) dt + - - s 1 Hl 

r 
2 

1: (0 - m,(t)]h&, u)[r(u) - m,(u)] dt dzl >< yrf, 
ff0 

Ti Ti 

(90) 

where g(t) satisfies the equation 

s 
Tf KHo(t9 u>gw du = W) - mow, q < t < 7-f - - (91) 

Ti 

and hA(t, u) satisfies (33). The advantage of the form in (90) is that it 
requires solving two integral equations rather than three. 

The derivation of ,u&) is a little more involved (see Problem 3.4.2). 
We define a function 

mA(t> = mdo - MO (92) 

and a composite signal process 

hn(t, s> = &o(t) + J1 - s @), (9% 
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whose covariance is denoted by Kcom(t, u). In (93), so(t) and sl(t) are 
assumed to be statistically independent processes. Thus, 

Kxnn(t9 4 = sK,(t, u) + (1 - s)K,(t, u). (94) 

This process was encountered previously in (58). Finally we define 
gacom(t 1 n’,/2) implicitly by the integral equation 

Tf 
m*(t) = 

SI1 
Gm.$, 4 + - 

Ti 

;oqt - rr)]ga,,,(u 1:) du. (95) 

Then we can show that 

s(l - s) s Tf 
PnW = - - 

2 Ti 
06) 

To get the p(s) for the entire problem, we add the p(s) from lE [denoted 
now by &s) and defined in (60)] and ,u&). 

PW = P&l + PnW* (97) 
The results in (84), (go), and (96) specify the non-zero-mean problem. 
Some typical examples are developed in the problems. 

3.4.3 Stationary “Carrier-symmetric” Bandpass Problems 

Many of the processes that we encounter in practice are bandpass 
processes centered around a carrier frequency. In Chapter 11, we shall 
explore this class of problem in detail. By introducing suitable notation 
we shall be able to study the general bandpass process efficiently. In this 
section we consider a special class of bandpass problems that can be 
related easily to the corresponding low-pass problem. We introduce this 
special class at this point because it occurs frequently in practice. Thus, it 
is a good vehicle for discussing some of the solution techniques in Chapter 
4. 

The received waveforms on the two hypotheses are 

r(t) = ~l(t> + J4), Ti < t < T,:H,, - - 
r(t) = sow + w(t)9 Ti < t < T,:H,. - - (98) 

The signal sl(t) is a segment of a sample function of a zero-mean stationary 
Gaussian process whose spectrum is narrow-band and symmetric about a 
carrier ml. The signal so(t) is a segment of a sample function of a zero-mean 
stationary Gaussian process whose spectrum is narrow-band and symmetric 
about a carrier mo. The two spectra are essentially disjoint, as illustrated 
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SW 

A 

*  ’ 
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I 
I > 

-u1 -wo WO Wl 
cd 

Fig. 3.8 Disjoint bandpass spectra. 

in Fig. 3.8. This problem differs from that in Section 3.4.1 in that we do 
rtot require that the two processes have the same eigenvalues in the 
present problem. 

To develop the receiver structure, we multiply r(t) by the four carriers 
shown in Fig. 3.9 and pass the resulting outputs through ideal low-pass 
filters. These low-pass filters pass the frequency-shifted versions of sI(t) 
and so(t) without distortion. We now have four waveforms, Y&), r&), 
rcn(t), and r&t), to use as inputs for our likelihood ratio test. The four 
waveforms on the two hypotheses are 

Ti < t < Tf - - 

Ti < t < Tf 
HI9 

- - 

r,,(t) = IV, (t), 

s,:(r) + &,(t), 

Ti < t < - - Tf 

r,,w = .Ti < t < Tf 
Ho* 

- - 

r,,w = s,,(t) + %o(o, Ti < t < - - Tf 

(99) 

Because of the assumed symmetry of the spectra, all of the processes are 
statistically independent (e.g., Appendix A.3.1). The processes s, (t) and 
ssl(t) have identical spectra, which we denote by &Jo). It is just be low- 
pass component of the bandpass spectrum after it has been shifted to the 
origin. Similarly, s,,(t) and sso(t) have identical spectra, which we denote 
by &&I). In view of the statistical independence, we can write the LRT 
by inspection. By analogy with (30), the LRT is 

lRc, + IRS, + ~l~cl + lfiyl - lRco - lR,, - bc, - 1H,o >< In 7, jloo) 
Ho 



Fig. 3.9 Generation of low-pass waveforms. 
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Fig. 3.10 Optimum processing of low-pass waveforms. 
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where the definitions of the various terms are parallel to (27) and (29). 
A filter-squarer version of the optimum receiver is shown in Fig. 3.10. 
(Notice that ZB = ZB .) In most cases, the filters before the squarer are 
low-pass, so thgt the Sbeal low-pass filters in Fig. 3.9 can be omitted. In 
Chapter 11, we develop a more efficient realization using bandpass filters 
and square-law envelope detectors. 

To evaluate the performance, we observe that the sine components 
provide exactly the same amount of information as the cosine components. 
Thus, we would expect that 

where the subscript BP denotes the actual bandpass problem and the 
subscript LP denotes a low-pass problem with inputs rc (t) and r&). 
Notice that the power (or energy) in the low-pass problem is one-half 
the power (or energy) in the bandpass problem. 

PBP 
p -9 LP = 

2 
(102) 

E *BP E - TLP = 
2 l 

(10~) 

It is straightforward to verify that (lOl)-(103) are correct (see Problem 
3.4.8). Notice that since the bandpass process generates two statistically 
independent low-pass processes, we can show that the eigenvalues of 
the bandpass process occur in pairs. 

The important conclusion is that, for this special class of bandpass 
problems, there is an equivalent low-pass problem that can be obtained by 
a simple scale change. Notice that three assumptions were made: 

1. The signal processes are stationary. 

2. The signal spectra on the two hypotheses are essentially disjoint. 

3. The signal spectra are symmetric about their respective carriers. 

Later we shall consider asymmetric spectra and nonstationary spectra. In 
those cases the transition will be more involved and it will be necessary to 
develop a more efficient notation. 

3.4.4 Error Probability for the Binary Symmetric Bandpass Problem 

In this section we consider the binary symmetric bandpass problem. 
The model for this problem satisfies the assumptions of both Sections 
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3.4.1 and 3.4.3. We shall derive tight upper and lower bounds for the 
pr WI- 

Because we have assumed equally likely hypotheses and a minimum 
total probability of error criterion, we have 

Pr [E] = Pr [E 1 KJ 

s 00 - - PI I m-j(L) dL 
0 

O” 1 - - 
s s 

a+im 

0 277j 
Ml,~Io(w)e-‘v~ dw dL for 0 < G < 1. (104) 

a-jc.0 

Notice that 1~ is a complex variable, $ 

W= a+jv. ( 10% 

Interchanging the order of integration and evaluating the results in the 
integral, we obtain 

Pr [E] = L 
s 

a-tic0 

2nj 
M,,,,(w) me-wL dL dw 

a-joo s 0 

1 ~--i- joo 1 -- - 
2Ti s 

- W,&)(w) dlv 
a-joo W 

1 a+ico ej.4(w) 
-- - 

c 
dw 

277j 
7 O<o_<l. uw 

ru-jm W 

For our specific problem, p(w) follows immediately from (57) and (67), 

,(,)=$Jln(l+$) -ln(l+~) -ln(l+2(1N,w)li)]o 

(107) 

Notice that we have used (101) to eliminate the one-half factor in ,u(s). As 
pointed out earlier, this is because the eigenvalues appear in pairs in the 
bandpass problem. From (107)) 

a3 
ep(w) = II 

(1 + (2Wo)) 
i=l (I + (2w&/&))(l + (2( 1 - w)nJrv,)) l 

(108) 

Thus, 
1 a-t ja3 

Pr [E] = - 
277-j s 

1 O” 
rI 

(1 + (&/J’V~)) dw 
fl--im ii i-l (1 + (2WA$Voj)(l + (2(1 - W)&/NJ) 

for 0 < 0 < 1. (109) 

7 Our discussion in this section follows [2]. The original results are due to Pierce [6]. 
$ All of our previous discussions assumed that the argument of IQ& was real. 
The necessary properties are also valid for complex arguments with the restriction 
OsRe[w]<l. 
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The result in (109) is due to Turin ([7], Eq. 27). Pierce [6] started with (109) 
and derived tight upper and lower bounds on Pr (E). Since his derivation 
is readily available, we omit it and merely state the result. (A simple 
derivation using our notation is given in [2].) We can show that 

erfc, - 
( 

The lower bound can be further relaxed to yield 

exP bw 

21 + JW) 
,< Pr [E] < exp bwl ---- 

- 2(1. + Ji*ww> ’ (110 

which is Pierce’s result. Notice that the upper and lower bounds differ at 
most by &. From (76), we see that our first-order approximation to Pr (E) 
is identical with the lower bound in (110). Thus, for the binary-symmetric 
bandpass case, our approximate error expression is always within a factor 
of 4; of the exact Pr (e). Notice that our result assumes that the spectra 
are symmetric about their carriers. The results in (110) and (111) are also 
valid for asymmetric spectra. We shall prove this in Chapter 11. 

We have not been able to extent Pierce’s derivation to the asymmetric 
case in order to obtain tight bounds on P, and P,. However several 
specific examples indicate that our approximate error expressions give 
accurate results. 

In this section we have examined four special models of the Gaussian 
problem. In the next section we return to the general problem and look 
at the effect of removing the white noise assumption. 

3.5 GENERAL BINARY CASE: WHITE NOISE NOT NECESSARILY 

PRESENT: SINGULAR TESTS 

In this section, we discuss the general binary problem briefly. The 
received waveforms on the two hypotheses are 

r(t) = m, Ti < t < T,:H,, - - 
WI = r*(t), Ti < t L; T,:H,. - (112) 

The processes are zero-mean Gaussian processes with covariance functions 
KH (t, U) and KH (t, u), respectively. We assume that both processes are 
(st&ly) positive-definite. 
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3.5.1 Receiver Derivation 

To solve the problem we first pass r(t> through a whitening filter to 
generate an output r*(t), which is white on Ho. Previously we have denoted 
the whitening filter by h,(t, x). In our present discussion we shall denote it 
by KH[-WJ(t, x). The reason for this notation will become obvious shortly. 

0 

r*(t) = 
s 

TfpAl 
Ho (4 +o) dz* (113) 

Ti 
The whitening requirement implies 

E[r*Wr*W 1 H”l = w - u) 
Tf 

- - 

ss 

K&,,“(t, z)KIIo(x, y)K:fo”;A1(u, y) dx dy. (114) 

Ti 
On HI, the covariance of r*(t) is 

E[r,(t)r,(u) 1 H,] = [/K;;;A1(t, Z)K& y)K;;;A1(u, y) dx dy /L K,*(t, u). 
JJ 

Ti 

We can now expand r,(t) using the eigenfunctions of K,*(,, u), 

Tf Ai*& = s K,*(t, 21,+i(U) dld, Ti 
The coefficients are 

Ti < t < T,-- _ - 
and the waveform is 

r*(t) = 1.i.m. 2 ri+i(t>, Ti < t < Tf* _ _ 
K-+co i=l 

The coefficients are zero-mean. Their covariances are 

and 
E[rirj 1 HI] = Ai*dij 

E [rirj ( Ho] = dij. 

Notice that we could also write (116) as 

K;-iA1(t, x)K,&, y)KI:;;“‘](u, y) dx dy 
I 

+&Q du, 

Ti 2 t 5 Tf. (121) 
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Now we define the function KH [*A]@, t> implicitly by the relation 
0 

K,o(4 u) = 
s 

Tp wil K,, (x, t)Kg<‘(z, u) dx. (122) 
Ti 

We see that Kg$(z,t) is just the functional square root of the co- 
variance function KHo(t, u). Observe that 

W u) = 
s 

Tr Ml - K,, (t, z)K;;;~‘(z, tl) dz. (123) 
Ti 

The result in (123) can be verified by writing each term in an orthogonal 
series expansion. Multiplying both sides of (121) by K~~osl(~, a), integrating, 
and using (123), we obtain 1 A” i s Tj k’,,(t, u> du Ti 
If we define 

JTi 1 . (124) 

(12% 
(124) becomes 

yiw A 
s 

TfK;-;A1(u, z)&) dx, 
Ti 

1 (126) 
Notice that we could also write the original waveform r(t) as 

7 

r(t) = 1.i.m. 5 ri K,o(4 +Piw du l 

I - - m  i=l 

(127) 

Thus we have available a decomposition that gives statistically independent 
coefficients on both hypotheses. The likelihood ratio test is 

. (128) 

If we let K -+ a, this reduces to 

1 
We now define a kernel, 
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that satisfies the integral equation 

s 

Tf 
h,(t, +K,*(x, u) dx = K;(t, u) - s(t - u), T s 4 u < Tp (131) 

Ti 
Then 

Tf 

lR = $ 

ss 

r,(t)h,(t, u)r*(u) dt du. 

Using (113), we have 
Ti 

(132) 

1, = i- jdx dy r(x)[/j&--#!A1(t, x)h,(t, tr)K;-;‘I@, y) dt d+(y). (133) 

Ti ’ Ti 
/ 

Defining 

we have 
Ti 

Starting with (134), it is straightforward to show that h,(x, 9) satisfies the 
equation Tr ss K,,(t, x)h&, YW,,(Y, 4 dx dy = K&t, u) - K&t, u), 

Ti 

As we would expect, the result in (136) is identical with that in (33). The 
next step is to evaluate the performance of the optimum receiver. 

3.5.2 Performance : General Binary Case 

To evaluate the performance in the general binary case, we use (2.126) 
to evaluate p(s). 

[S 

00 
Iu(s) 

K-,GCJ i=l 
’ exp(-$)exp(-(’ o;)R1)dRi]. 

--oo J2n (Ai*y2 
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Evaluating the integral, we have 

I ( p(s) = 5 In 
-* (l---s)/2 

(” ) 
i=l I (s + (1 - s)li*)% ’ 

where the Ai* are the eigenvalues of the kernel, 

W) 

In our discussion of performance for the case of a known signal in Gaussian 
noise, we saw that when there was no white noise present it was possible 
to make perfect decisions under some circumstances (see pages 1-303- 
1-306). We now consider the analogous issue for the general Gaussian 
problem. 

3.53 Singularity 

The purpose of our singularity discussion is to obtain a necessary and 
sufficient condition for the test to be nonsingular. The derivation is a 
sequence of lemmas. As before, we say that a test is singular if Pr (E) = 0. 
Notice that we do not assume equally likely hypotheses, and 

Pr (E) = P, Pr (E 1 HI) + P, Pr (E 1 Ho). (140) 

The steps in the development are the following: 

1. We show that the Pr (E) is greater than zero iff ,u(+) is finite. 

2. We then derive a necessary and suficient condition for ,u(i) to be 
finite. 

Finally we consider two simple examples of singular tests. 

Lemma 1. The Pr (E) can be bounded by 

${min [PHI, PH,])e2P(M) ,< Pr (E) < &?(‘/i) - 
Therefore the Pr(c) will equal zero if PO or P, or er(‘A) equals zero. If we 
assume that P, and P, are positive then Pr(E) will be greater than zero zf 
,u(+) is finite. In other words, a singular test will occur Z&U(+) diverges. 

The upper bound is familiar. The proof of the lower bound is straight- 
forward. 

a A epM = - 
s 

(142a) 
--co 

t This result is similar to that in [8]. 
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Now observe, from the Schwarz inequality, that for any set S, 

1 
‘A 5 prlH,(R 1 H,,J dR1 3 m = 0,~ U‘W 

We recall from page I-30 that the probability of error using the optimum test is 

Pr(E) = PI 
J 

prl~q(R 1 HI) dR + PO 

J 

p+&)w 1 4)) dR 

20 21 

s 

prlrlo(R 1 Ho) dR (143a) 
21 

Using the result in (142b) on each integral in (143a) gives 

2 

Pr(E) 2 min [PI, PO] ((s 
[prlHI(R 1 H,)PrlHo(R I 4w Lo2 

20 ) 

(s 

2 + [Pr(H,(R I H,)pr(H,(R I 4ds dR 

21 11 

= min [PI, PO] 
NS 

2 [Pr&(R I H,)prlH&R I %W dR 

20 1 

2 + 

( s 

a- [P&R 1 N,)pr,ri,(R 1 H,)lG dR 
20 )I 

= min [PI, P&c2 + (a - d2>, (143b) 

A X- 

s 

[prlri,(R 1 H,)prlrr,(R I &I)]~ dR, 
20 

(143c) 

and x will lie somewhere in 
The term in the brackets 

the range [0, a] 
in (143b) could 

. 
be minimized by setting 

a 
x=- 

2 
(143d) 

and the minimum value is 

a2 1 e2P(M) -= 
2 2 

(143e) 

Thus, 
1 

Pr (E) 2 min IPI, PO] l j e2p(‘h) (144) 

which is the desired result. We should emphasize tha .t the lower bound in (141) is used 
for the purpose of our singularity discussion and so it does not need to be a tight bound. 
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Lemma 2. From (138), 

I4 ) 
1” *=- n 

a L 

41: 

1 + Ai*,, 1 l 4. ?=l 
(149 

In order for p(i) to be finite, all ;1T must be greater than zero. If this is 
true, then, in order for ,u(&) to be finite, it is necessary and sufficient that 

2 (1 - q,, < 00. (146) 
i=l 

Proof (from [9]). The convergence properties of the following sums can be demon- 
strated. 

00 

2C 

4A,” 
In - <m (147) 

i=l (1 + A.“)2 a 1 
iff 

4Ai” co 

’ - (1 + Ai*) 1 
c 

(1 - Ai”)2 

=iC1(l + Ai*) < 00 
(148) 

iff 

3 (1 - Ai*) < 00. (149) 
i=l 

These equivalences can be verified easily. 

Lemma 3. Define 

and a kernel, 

Tf y(t, u) fi. ss &;"'(t, x)K~~(x, z)K&;'~(u, 2) dx da - a(t - u), 
Ti 

Ti < t, u < T’. - - (151) 

The Lf * are the eigenvalues of Y( t, u). Notice that Y(t , U) is not neces- 
arily positive-definite (i.e., some of the A’* may be negative). 

Lemma 4. The value of p(g) will be finite ifI’: 

(i) All AT* > -1, 
00 

(ii) The sum 2 (At*)” is finite. 
i=l 

Assuming the first condition is satisfied, then, in order for 

2 (A,*)’ < m 
i=l 

(152) 
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it is necessary and sufficient that Tf 
ss Y “(t, Lf) Lit drr < cc. (153) 

Ti 

The equation (151) can also be written as 

This equation must have a square-integrable solution. 

Summarizing, a necessary and sufficient condition for a nonsingular 
test is that the function Y(t, u) defined by (151) or (154) be square- 
integrable and not have - 1 as an eigenvalue. 

Several observations are useful. 

1. The result in (150)-i 154) has a simple physical interpretation. The 
covariance function of the whitened waveform v*(t) on HI must consist of 
an impulse with unit area and a positive-definite square-integrable com- 
ponent. 

2. The problem is symmetric, so that the entire discussion is valid with 
the subscripts 0 and 1 interchanged. Thus we can check the conditions 
given in (151) and (153) for whichever case is the simplest. Notice that it 
is not necessary to check both. 

3. The function p(s) can be written in terms of the eigenvalues of Y(t, u). 
Using (138) and (150), 

iw 

where the Af* are the eigenvalues of Y(t, u), which may be either positive 
or negative. Notice that in order for ,u(s) to be finite, it is sufficient, but 
not necessary, for the logarithm of the numerator and denominator of 
(155) to converge individually (see Problem 3.5.11). 

We now consider two simple examples of singular tests. 

Example 1. Let 

and 
&,(t, u) = orK(t, u). 

(156) 

(157) 
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Then 
Tf 

* ss 
KAvsJ(t, x)KHl(x, y)K&sl(u, y) dx dy = a&t - u) 0 (158) 

Ti 
and 

Y(t, II) = (a - l)s(t - u), (15% 

which is not square-integrable unless a = 1. 
Thus, when the covariance functions on the two hypotheses are identical except for 

an amplitude factor, the test is singular. 

Example 2. Let 

and 
Ka,(t, 4 = Poexp (-a It - 241) (160) 

Ka,(t, 4 = Pl exp C-B It - ul>. (1W 

For this particular 
From page I-312, 

example, the simplest procedure is to construct the whitening filter 

or 

r,(t) = 1 [i(t) + w(t)], 
42aP, 

(162) 

1 _ ..r.i _ T, \ 1 .- --\ 
t = - [#lJ(t - u) + ad(t - u).J WWI 

on H, is The covariance function of r*(t) 

+a 
WIll (t,u) WizJt, 4 
-+a- 

at au 
(164; 

Only the first term contains an impulse, 

a2Ki&, u> 
at au 

= 2/?P, 6(t - z.4) - /32P,exp (-/S It - 241). 

In order for the test to be nonsingular, we require 

BP l 1 -= 
aPo ’ 

wm 

(166) 

Otherwise (153) cannot be satisfied. 

Example 2 suggests a simple test for singularity that can be used when 
the random processes on the two hypotheses are stationary with rational 
spectra. In this case, a necessary and sufficient condition for a nonsingular 
test is 

(see Problem 3.5.12). 

7 The symbol &l](7) denotes a doublet at 7 = 0. 

I (167 > 
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Several other examples of singular tests are discussed in the problems. 
For a rigorous and more detailed discussion, the interested reader should 
consult Root [9], Feldman [lo]-[II], Hajek [12] or Shepp [15]. As we 
commented in our discussion of the class A, problem, we can guarantee 
that the test is nonsingular by including the same white noise component 
on both hypotheses. Since the inclusion of the white noise component 
usually can be justified on physical grounds, we can avoid the singularity 
problem in this manner. We now summarize our results for the general 
binary detection problem. 

3.6 SUMMARY: GENERAL BINARY PROBLEM 

In this chapter we have discussed the general binary problem. In our 
initial discussion we considered class A, problems. In this class, the same 
white noise process was present on both hypotheses. The likelihood 
ratio test can be implemented as a parallel processing receiver that 
computes lR and lB , i i 

Tf 

1 - $ Ri - 
ss 

r(~r)h&, &o) dot d/%, 
0 

Ti 
where h (a, p> is defined by (25), and i 

i = 0, 1, (168) 

(169) 

where &(t 1 N,/2) 
performs the test 

is a MMSE defined on page 22. The receiver then 

HI 

The processing indicated in (168) can be implemented using the one of the 
canonical realizations developed in Section 2.1. The performance was 
calculated by computing ,u(s) defined in (60). 

where the individual terms are defined on page 68. 
For the general binary case, the test is 

(172) 
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1 R= & dx dy r(z)h&, y)r(y) 

and 

The kernel h,(x, y) satisfies the equation 

ss K,,(t, +-dx, ?l)K,,(y, u) dx dy = KHl(t, u) - KHo(t, u), 
Ti 

The 1: are the eigenvalues of the 

(173) 

Ti < t, u < Tf. (175) 

K;(t, uj = K&;“‘(t, x)&--,(x, x)K;;;~‘(u, x) dx dx. (176) 

Ti 

When we remove the white noise assumption, we have to be careful that 
our model does not lead to a singular test. We demonstrated that a 
necessary and sufficient condition for a nonsingular test is that 

Y(t, 2.4) a qt, u) - d(t - u), Ti < t, u < Tr _ - (177) 

be a square-integrable function which does not have - 1 as an eigenvalue. 
The performance could be evaluated by computing p(s) : 

p(s) = 5 In 
(1 + Ri**)(l-S)i2 

i-l i 1 (1 + (1 - s)A”*)‘m ’ 
iw 

where the A:* are the eigenvalues of Y(t, u). 
In addition to our general discussion, we considered several special 

situations. The first was the binary symmetric problem. The most import- 
ant result was the relationship of pBs(s) to (u,,(s) for the simple binary 
problem of Section 3.4, 

We also observed that when In q = 0, ,u~&) was the appropriate quantity 
for the Pr (E) bounds. 

The second 
new terms, 

situation was the non-zero-mean case. This resulted in two 

s 

Tf 
1 D= wkl(u) - s&01 du9 Ti 
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in the LRT. The functions g&4) were specified by 

?q(t) = &&9 u)giw du, Ti<t<Tf, i=O,l. - (181) 

In the performance calculation we added a term ,u&), which was specified 
by cw- 

We then observed that for bandpass processes whose spectra are 
symmetric about the carrier there is a simple relationship between the 
actual bandpass problem and an equivalent low-pass problem. Finally, 
for the binary symmetric bandpass problem, a tight bound on the Pr (E) 
was derived. 

(182) 

This bound was useful for this particular problem. In addition, it provided 
a good estimate of the accuracy of our approximate expression. There are 
large numbers of problems in which we can evaluate the approximate 
expression but have not been able to find tight bounds. 

Throughout our discussion in Chapters 2 and 3, we have encountered 
linear filters, estimates of random processes, and mean-square error 
expressions that we had to find in order to specify the optimum receiver 
and its performance completely. In many cases we used processes with 
finite state representations as examples, because the procedure for finding 
the necessary quantities was easy to demonstrate. In the next chapter we 
consider three other categories of problems for which we can obtain a 
complete solution. 

3.7 PROBLEMS 

P.3.2 Receiver Structures 

Problem 3.2.1. 

1. Verify the result in (21) by following the suggested approach. 
2. Verify that the bias term can be written as in (28). 

Comment: In many of the problems we refer to a particular class of problems. These 
classes were defined in Fig. 3.1. 

Problem 3.2.2. Consider the class A, problem in which both so(t) and s#) are Wiener 
processes, 

E[so2(t)] = Q2f, o<t 
and 

E[s12(t)] = u12t, 0 < t. 
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Find the optimum receiver. Use a parallel processing configuration 
simplify the result. Describe the filters using state equations. 

in i tially and then 

Problem 3.2.3. Consider the class A, problem in which 

K,,k u> = aK&, u). (P.1) 
1. Use the condition in (P.l) to simplify the optimum receiver. 
2. Derive the optimum receiver directly for the case in (P.l). (Do not use the results of 

Chapter 3. You may use the results of Chapter 2.) 

Problem 3.2.4. Consider the class A, problem in which so(t ) is a Wiener process and 
sl(t) is a samp 1 .e function from a stationary Gaussian random process whose spectrum is 

2kP 
s&d = - m2 + k2’ 

Find the optimum receiver. 

Problem 3.2.5. Consider the class B, problem in which both s(t) and Qt) have finite- 
dimensional state representations. Derive a state-variable realization for the optimum 
receiver. The receiver should contain &(t), the MMSE realizable estimate, as one of the 
internal waveforms. (Notice that the parallel processing receiver in Fig. 3.3 will satisfy 
this requirement if we use Canonical Realization No. 4s in each path. The desired 
receiver is analogous to that in Fig. 3.5.) 

Problem 3.2.6 (continuation). Consider the special case of Problem 3.2.5 in which nc(t) 
is a Wiener process and s(t) is a stationary process whose spectrum is 

s&4 
2kP 

=- 
co2 + k2’ 

Specify the optimum receiver in Problem 3.2.5 completely. 

Problem 3.2.7. In the vector version of the class A, problem, the received waveforms are 

r(t) = s#) + w(t), Ti 5 t 5 Tr:Hl, 

r(t) = so(t) + w(t), Ti 5 t 5 T,:H,,. 

The signal processes are sample functions from N-dimensional, zero-mean, vector 
Gaussian random processes with covariance function matrices K,,(t, u) and KS&t, u). 
The additive noise process w(t) is a sample function from a statistically independent, 
zero-mean, vector Gaussian random process whose covariance function matrix is 
(&/2)&t - u)I. 

1. Find the optimum receiver. 
2. Derive the vector versions of (32) and (33). 
3. Consider the special case in which 

and 
Ks,(t, u> = K,,(t, UP 

b&t, 4 = I&&t, u)I. 

Simplify the optimum receiver. 
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Problem 3.2.8. Consider the model in Problem 3.2.7. Assume 

E[w(t)wT(u)] = N6(t - u), 

where N is a nonsingular matrix. Repeat Problem 3.2.7. 

Problem 3.2.9 (continuation). Consider 
Derive the vector analog to (41). 

vector version of the class B, problem. 

Problem 3.2.10. 

1. Prove the result in (43). 

2. Consider the functional square root defined in (42). Give an example of a class A, 
problem in which h, [‘Al(t, u) does not exist. 

Problem 3.2.11. Consider the development in (16)-(23). The output of the whitening filter 
is a waveform r,(t), whose covariance function on H, is K,*(t, u). Suppose that we write 

K,*(t, u) = d(t - 4 + Y(t, u). 

1. Show that Y(t, u) is not necessarily non-negative-definite. 

2. Prove that Y(t, u) is a square-integrable function. [Hint: Write j$$KF(t, u) 
dt du as a 6-fold integral using (16). Simplify the result by using the fact that the same 
white noise is present on both hypotheses.] 

P.3.3 Performance 

Problem 3.3.1. Derive the result in (60) by using a whitening approach. 

Problem 3.3.2. Consider the composite process defined in (58). Assume that both 
s,(t) and so(t) have finite-dimensional state representations. Write the state equations 
for scorn(t). What is the dimension of the resulting system? 

Problem 3.3.3 (continuation). Specialize your results in Problem 3.3.2 to the case in which 

qt, 4 = c%K()(t, u). 

Problem 3.3.4. Consider the class A, problem in which both so(t) and sl(t) are Wiener 

processes, where 
E[so2(t)] = u02t, tyo 

and 
E[s12(t)] = o12t, t 2 0. 

Evaluate p(s). 

Problem 3.3.5. Define 
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Assume that so(t) and s#) have finite-dimensional state representations. 
1. Write a differential equation for ~(s, t). 

2. Define the Bhattacharyya distance as 

NT.) = -P@, T,). 

Write a differential equation for B(t). 

P.3.4 Special Situations 

NON-ZERO MEANS 

Problem 3.4.1. In the class A w,lt problem, the received waveforms on the two hypotheses 
are 

r(t) = s&O + w(t), Ti 5 t 5 T+H, 
and 

r(f) = s,(t) + w(t), T.. 5 t I; T,: H,,, 
where 

Mel = m#) 
and 

Eb,Wl = m,(t). 
1. Derive (83)-(86). 
2. Assume that a Bayes test with threshold q is desired. Evaluate the threshold y’ in 

(89) 
3.’ Derive (90). 
4. Find the threshold y” in (90) in terms of 7. 
5. Check your results in parts l-4 for the case in which 

KH,(t, u> = K&$9 4. 
Problem 3.4.2. Consider the model in Problem 3.4.1. Derive the expression for pg(s) 
in (96). 

Problem 3.4.3. Consider the class A wm problem in which sI(t) and so(t) have finite 
dimensional representations. 

1. Derive a state-variable realization for IO. 

2. Derive a state equation for PO(S). 

Problem 3.4.4. Consider the class A,, problem in which 

m,(t) = +m, Ti I t < T,, 
m,(t) = -m, Ti I t I T,, 

E[w(t)w(u)] = $6(t - u). 
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1. Find the optimum receiver for this problem. 

2. Find pD(s) and ,u&. 

Problem 3.4.5. Consider the modification of Problem 3.4.4 in which 

where 

2uPo 
~K&)l = G2 

BP 1 -= 1. 
up, 

1. Evaluate pD(s) and ,u&) for the case in which No = 0. 

2. Find the optimum receiver for this case. 

Problem 3.4.6. Consider the class A problem in which 
from stationary random processes whose spectra are 

so(t) and sl(t) are sample functions 

(P.0 

and 

where S&J) and S,(o) are rational functions of cr). 
1. Find the optimum receiver. 
2. Find p(s). 
3. How does the model in (P.l) differ from the case in which 

E[s,(t)l = ml(t) = 1/z /3 cos (cog)? 

BANDPASS PROBLEMS 

Problem 3.4.7. Consider the model described in (98). 
1. Verify that a necessary and sufficient condition for r,,(t) and r,,(t) to be statistically 

independent is that S,(u) be symmetric around the carrier. 
2. Verify the result in (102) and (103). 

Problem 3.4.8. Consider the mode1 in (99). This is a four-dimensional vector problem 
that is a special case of the mode1 in Problem 3.2.8. 

1. Use the results of Problem 3.2.8 to verify that (100) is correct. Write out the terms 
on the left side of (100). 

2. Verify that (101) is correct. 

Problem 3.4.9. Whenever the spectra are not symmetric around the carrier, the low-pass 
processes are not statistically independent. The most efficient way to study this problem 
is to introduce a complex signal. We use this technique extensively, starting in Chapter 9. 

In this problem we carry out the analysis using vector techniques. Perhaps the prime 
benefit of doing the problem will be an appreciation for the value of the complex 
representation when we reach Chapter 9. 

1. Consider the model in (98). Initially, we assume 



so that we have the simple binary problem. Evaluate the cross-correlation function 
between s&) and s&). Evaluate the corresponding cross-spectrum. Notice that we 
do not assume that ,!&,(o) is symmetric about col. Check your answer with (A.67) and 
(A.70). 

2. Use the results of Problem 3.2.8 to find the optimum receiver. 

3. Derive an expression for p(s). 
4. Generalize your results to include the original model in (98). Allow so(t) to have 

an asymmetric spectrum about cog. 

Problem 3.4.10. 
1. Read [6] and verify that (110) is correct. 
2. Discuss the difficulties that arise 

the threshold changes). 
when the criterion is not minimum Pr (E) (i.e., 

P.3.5 Singularity 

Problem 3.5.1. Draw a block diagram of the receiver operations needed to generate the 
ri in (117). 

Problem 3.5.2. Consider the integral equation in (126). Assume 

&&,(t, u) = a2 min [t, u] 
and 

&(t, u) = PeeaitwU’ 

Find the eigenfunctions and eigenvalues of (126). 

Problem 3.5.3. Consider the integral equation in (126). 

KH,(t, u) = ;-B’t-u’ 
and 

KHl(t, u) = e-a’t-u’. 

Find the eigenfunctions and eigenvalues of (126). 

Problem 3.5.4. Assume that 

Assume 

&& u) 
N 

= K,(t, u) + $d(t - u) (P.1) 

and 

K&k u> 
NO = K,(t, u) + 2 6(t - u). (P.2) 

How does this assumption affect the eigenvalues and eigenfunctions of (126)? 

Problem 3.5.5. Assume that ro(t) and rl(t) in (112) have finite-dimensional state repre- 
sentations. Extend the technique in the Appendix to Part II to find the solution to 
(126). 

Problem 3.5.6. Assume that KH,(t, u) and KHl(t, u) are both separable: 
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and 

where 

1. Assume 
s Tf 

s 

Tf 

fiW$p) dt = gi(t)gj(t) dt = 6,. 
Ti Ti 

f 

Tf 

fi(t)gj(t) dt = 0, all i, j. (P.1) 
Ti 

Solve (126). 
2. Assume that fi(t) and g,(t) do not necessarily satisfy (P.l) for all i and j. Solve 

(126). How many eigenvalues does (126) have ? 

Problem 3.57. Assume 

and 

Solve (126). 

&&,(t, u) = 
1 

1 -It-l& It-241 < 1, 

0, elsewhere, 

q&9 4 = O2 min [t, u]. 

Problem 3.5.8. Consider the definition of I&(x, y) in (134). Verify that (136) is valid. 

Problem 3.5.9. Verify the equivalences in (147)-( 149). 

Problem 3.5.10. 

1. Can a class A problem be singular? Prove your answer. 

2. Can a class B problem be singular? Prove your answer. 

Problem 3.5.11. Give an example of a case in which the logarithm of neither the numera- 
tor nor the denominator of (155) converges but the sum in (155) does. 

Problem 3.5.12. Verify the result in (167). Is the result also true for nonrational spectra? 

Problem 3.5.13. Assume that 
1 

Assume that I-#) has a finite-dimensional state representation and that the detection 
problem is nonsingular. 

1. Find a state-variable realization of the optimum receiver. 
2. Find a differential equation specifying ,u(s). 

Problem 3.5.14 (continuation). Assume that 

and that rl(t) is a segment of a stationary process with a finite-dimensional state rep- 
resentation. Assume that the detection problem is nonsingular, 

1. Draw a block diagram of the optimum receiver. Specify all components completely. 
2. Evaluate /J(S). 
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Problem 3.5.15. 
1. Generalize the result in Problem 3.514 to the case in which 

2nP sin (r/2n), 
sf&,(“) = - 

k 1 + (cu/k)2n n 
=1,2,.... 

2. How must &(w) behave as m approaches infinity in order for the test to be 
nonsingular ? 

Problem 3.5.16. Assume that both r,Jt) and ro(t) are sample functions from stationary 
processes with flat bandlimited spectra. Under what conditions will the test be non- 
singular ? 

Problem 3.5.17. In Section I-4.3.7 we discussed the sensitivity problem for the known 
signal case. Read [13, page 4201 and discuss the sensitivity problem for the general 
binary case. 

Problem 3.5.18. Extend the discussion in Section 3.5 to the general vector case. Specifi- 
cally, find the vector versions of (126), (135), (136), (138), (139), (151), (154), and 
(167). 

Problem 3.5.19 [ 141. Consider the integral equation in (126). Assume 

It - 111 
+&t, u) = 1 - - 

2T ’ 
-T < t,u 5 T 

and 
&,(t, 4 = e-lt-t(I/Te 

Let Ti = -Tand Tf = + T. Find the eigenvalues and eigenfunctions of (126). 
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Special Categories of Detection 
Problems 

In Chapters 2 and 3, we studied the simple binary detection problem and 
the general binary detection problem. Most of our examples dealt with 
state-representable processes, because we could obtain a complete solution 
for this class of problem. In this chapter, we discuss three categories of 
problems for which we can also obtain a complete solution. The three 
categories are the following : 

1. The stationary-processes, long-observation-time (SPLOT) problem. 
2. The separable-kernel (SK) problem. 
3. The low-energy-coherence (LEC) problem. 

We shall explain the categories in detail in the appropriate sections. 
The discussion is important for two reasons. First, almost all physical 
situations fall into one of these four categories (the above three categories 
plus finite-state processes). Second, we can obtain a complete solution 
for problems in these categories. 

4.1 STATIONARY PROCESSES: LONG OBSERVATION TIME 

In many physical situations of interest, the received waveforms under 
both hypotheses are segments of stationary processes. Thus, we can 
characterize the processes by their power density spectra. If the spectra 
are rational, they will have a finite-dimensional state representation and 
we can solve the problem using state-variable techniques. In our previous 
work with state variables we saw that when the input was a stationary 
process the gains in the optimum system approached constant values and 
the system approached a time-invariant system. In this section, we consider 
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100 4.2 

cases in which the observation time is lotzg compared with the time neces- 
sary for the system transients to decay. By ignoring the transient, we can 

Stationary Processes: Long Observation Time 

obtain much simpler solutions. If desired, we can always check the validity 
of the approximation by solving the problem with state-variable techniques. 
We refer to the results obtained by ignoring the transients as asymptotic 
results and add a subscript 00 to the various expressions. As in the general 
case, we are interested in optimum receiver structures and their per- 
formance. We begin our discussion with the simple binary problem. 

4.1.1 Simple Binary Problem 

The model for the simple binary problem was given in Section 2.1. 
For algebraic simplicity we discuss only the zero-mean case in the text. 
The received waveforms are 

(1) 

We assume that s(t) is a zero-mean Gaussian process with spectrum S,(m). 
The noise w(t) is a white, zero-mean Gaussian process that is statistically 
independent of s(t) and has a spectral height N,/2. The LRT is 

We first examine various receiver realizations for computing I,. Next 
we derive a formula for ZB. Finally, we compute the performance. 

If we use Canonical Realization No. 1 (pages 1516), 

Tf 

1 
1 

R 
=N, ss 

r(t)h,(t, u)r(u) dt h-4, 

Ti 

(3) 

where h,(t, u) is a solution to (4), 

5 h,(t, u) + Tr 
2 s h,( t, x)K,(x - u) dx = K,(t - Zl), T < t, u < Tf. - - 

Ti 
(4) 

From our work in Chapter I-4 (page I-321), we know that the total 
solution is made up of a particular solution that does not depend on the 
limits and a weighted sum of bounded homogeneous solutions that give 
the correct endpoint conditions. These homogeneous solutions decay 
as we move into the interior of the interval. If the time interval is large, the 
partiCUhr solution will exert the most influence on I,, so that we can 
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obtain a good approximation to the solution by neglecting the homo- 
geneous solutions. To accomplish this, we let & = - 00 and 7’f = oo 
in (4). With the infinite limits, we would assume that we could find a 
solution to (4) that corresponded to a time-invariant filter. To verify this, 
we let 

hlk 4 = h,,(t - u) (5) 

in (4) and try to find a solution. Rewriting (4), we have 

N, h,,(t 
2 s 

Go 
- ll) + hl& - x)K,(z - Zf) dx = K,(t - u), 

-a3 
- 00 < t, u < 00, (6) 

which can be solved by using Fourier transforms. Transforming, we have 

Sk4 
H1adjoJ) = S&o) + (N,/2) ’ 

(7) 

which is the desired result. This filter is familiar from our work with 
unrealizable MMSE estimators in Section I-6.2.3. The resulting receiver is 
shown in Fig. 4.1. Notice that we have used only the infinite limits to 
solve the integral equation. The receiver still operates on r(t) over [T,, T,]. 

To implement Canonical Realization No. 3, we must solve (2.45). 

h,(t, u) = [Tfhf(z, t)h,(x, u) k 
c Ti 

Ti < t, u < Tf* - - (8) 

To find the asymptotic solution, we let Ti = - 00 and 7’, = 00, use (5), 
and assume that a time-invariant solution exists. The resulting equation is 

hla(t - u) = 
s 

* h& - t)h,,(z - u) dx, -cQ < t,tr < 00. (9 
-al 

Transforming, we have 
%o(j4 = Wfa,(jcu)12* (10) 

Hl 
> 
CY 
Ho 

Fig. 4.1 Canonical Receiver No. 1: stationary process, long observation time. 
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This type of equation is familiar from our spectrum factorization work in 
Section I-6.2. Because H,,(jcu) has all the properties of a power density 
spectrum, we can obtain a realizable solution easily. 

We recall that the superscript + means that we assign all the poles and 
zeros of H,,(s) that lie in the left half of the complex s-plane to H&(s). 
Notice that this assignment of zeros is somewhat arbitrary. (Recall the 
discussion on page I-31 1.) Thus the solution to (10) that we have indicated 
in (11) is not unique. The resulting receiver is shown in Fig. 4.2. Notice 
that we can also choose an unrealizable solution to (10). An example is 

H,,,,(j4 = I H,,(j4l x9 (12) 
To implement Canonical Realization No. 4, we must solve the realizable 

filtering problem. By letting Ti = - 00 and assuming stationarity, we 
obtain the Wiener filtering problem. The solution is given by (I-6.78), 

1 

[ 
w4 

HoT&4 = [S&o) + (N,/2)1’ [S&o) + (A/,/2)]- 1 +’ 
(13) 

The receiver is shown in Fig. 4.3. Comparing Figs. 4.1, 4.2, and 4.3, we 
see that Canonical Realization No. 3 in Fig. 4.2 is the simplest to imple- 
ment. 

To evaluate the bias lB, we begin with (2.73). 

1 
s 

Tf 
1 I;‘=-- 

N, Ti 
b40 dt, (14) 

where lps(t) is the realizable mean-square error in estimating s(t), assum- 
ing that HI is true. In our work in Section I-6.3 (particularly Examples 1 
and 2 on pages I-546-1-555), we saw that tps(t) approached the steady- 
state, mean-square error, &, reasonably quickly. Thus, if Tf - T. a T 
is long compared to the length of this initial transient, we can obtain a 
good approximation to lB by replacing &,(t) with lPco. 

. , 

r(t) ssw + -,[ II 1 
NO 

* Squarer z 

w4 + 2 

Fig. 4.2 Canonical Receiver No. 3: stationary process, long observation time. 



Fig. 4.3 Canonical Realization No. 4: stationary process, long observation time, 

In Section I-6.2.4 we derived a closed-form expression for lPco. From 
(I-6.152), 

Using (16) in (15) gives 

(17) 

where 
TA Tf- Ti. (18) 

The result in (17) can also be obtained directly from the asymptotic value 
of the logarithm of the Fredholm determinant in (2.74) [e.g., page I-207 
(I-3.182)]. 

An identical argument gives the asymptotic form of p(s), which we 
denote by ru,(s). From (2.138), 

(Notice that p(s) = ,LQ&) because of the zero mean assumption.) Replac- 
ing h--@ 1 s(% l ) by Epca (s(e), l ), we have 

Using (16), we obtain 

(21) 
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An equivalent form is 

[l + (2S,(4/N,)]1-” dcu 

[1 + (2(1 - w,bNNJ1 1 g 
To illustrate the application of these asymptotic results, we consider two 
simple examples. 

Example 1. First-Order Butterworth Spectrum. The received waveforms on the two 
hypotheses are 

r(t) = 40 + w(t), Ti 2 t 5 Tf:H,, 

r(t) = w(t), Ti < t 2 Tf:H,-,. 
(23) 

The signal process, s(t), is a sample function from a stationary, 
random process with spectrum S&O), 

zero-mean, Gaussian 

2kP 
S&u) = - 

m2 + k2, 
--<~<~. (24) 

The noise process is a statistically independent, zero-mean white Gaussian random 
process with spectral height NO/2. 

We shall use Canonical Realization No. 3 (Fig. 4.2) for the receiver. Using (24) in (7), 
we obtain 

2kP/(cu2 + k2) 
H’ co(jw) = (2kp/(m2 + k2)) + &,/2 = 

k2.& 
[co2 + k2(l + AI)]’ 

4P 
A, = - 

kNo 

(25) 

(26) 

is the signal-to-noise ratio in the message bandwidth. From (ll), 

(27) 

We obtain the bias term from (1 5). The mean-square error & was evaluated 
first-order Butterworth spectrum i n Example 3 on page I-495. From (I-6.1 12), 

2P 
6pcL) = 

1+1/iqxy 
Using (28) in (15), we have 

2PT 
lBco = - 

NoI1 + d=+h,l ’ 

(28) 

(2% 

The resulting receiver is shown in Fig. 4.4. By incorporating part of the filter gain in 
the integrator, we can implement the filter as a simple resistor-capacitor circuit. Notice 
that the location of the pole of the filter depends on A,. As A, decreases, the filter pole 
approaches the pole of the message spectrum. As A, increases, the bandwidth of the 
filter increases. 
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2PT 

No[l+ vl+A,] 

Fig. 4.4 Filter-squarer receiver: first-order Butterworth spectrum, long observation time. 

To evaluate the performance, we find ,uGo (s) by using (28) in (20). 

(1 W 
Pal(S) = + 

2P 
- - 

0 1+ 41 +A, 

At this point it is useful to introduce an efficient 
parameters in the performance expression. 

We introduce several quantities, 

ET a PT, 

which is the average energy in the signal process, 

2P 

1 + 41 + (1 - s)h, 
1 

l 

(30) 

notation to emphasize the important 

which is a measure of the time-bandwidth product of the signal process. Notice that 

Using (31) in (30), we obtain 

4 
2QIN, =- . 

4 
(33) 

and 

(30 

(32) 

(34) 

where 

g+, A,) a -4 - d{(l + 41 + hJ1 - (1 + 41 + (1 - s)hJl}. (35) 

The first factor in (34) is the average signal energy-to-noise ratio and appears in all 
detection problems. The second term includes the effect of the spectral shape, the signal- 
to-noise ratio in the message bandwidth, and the threshold. It is this term that will vary 
in different examples. To evaluate the approximate expressions for PF and PO, we need 
&(s) and ,ii&s). Then, from (2.166) and (2.174), 

1 
PF = - exp b ads) - &x&~l 

424i& (s) 
(36) 

and 
1 

pM = 1/2rr(l - s)2ji&) 
exp bb(s) + (1 - Wm(s)l (37) 

From (34) and (35) we can obtain the necessary quantities to substitute into (36) and 
(37). In Figs. 4.5-4.7 we have plotted the approximate performance characteristics 
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Fig. 4.5 Probability of miss versus time-bandwidth product: first-order Butterworth 
spectrum, PE’ = ILO-? 
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1 10 lo2 lo3 
D1 = kT/2 - 

Fig. 4.6 Probability of miss versus time-bandwidth product for first-order Butterworth 
spectrum, PF = 10w3. 

indicated by (36) and (37). In Fig. 4.5 we have constrained PF to equal 10% The 
horizontal axis is D, (= U/2). The vertical axis is Pl~jr. The solid curves correspond to 
constant values of 2@&,. We see that the performance is strongly dependent on the 
time-bandwidth product of the signal process. Notice that there is an optimum value 
of A1 for each value of 2E&N,,. This optimum value is in the vicinity of A, = 6. (We 
shall find the exact minimum in a later example.) The dashed curves correspond to 
constant values of A,. Moving to the right on a constant A, curve corresponds physically 
to increasing the observation time. Similar results are shown for PF = 10e3 and PF = 
10m5 in Figs. 4.6 and 4.7, respectively. 

For small values of D, (say, D, < 2), the curves should be checked using state- 
variable techniques, because the SPLOT approximation may not be valid. 

For larger time-bandwidth products our performance calculations give good results, 
for two reasons: 

1. The error resulting from the large time-interval approximation decreases rapidly 
as kT increases. We shall make some quantitative statements about the error on page 
142. 

2. The error resulting from truncating the Edgeworth series at the first term decreases 
as kT increases, because there are more significant eigenvalues. As the number of 
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1.0 -, I J IIIIJJJ I I I I[llll I I I Illf 
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D1 = kT/2 + 

Fig. 4.7 Probability of miss versus time-bandwidth product for first-order Butterworth 
spectrum, PF = 10v5. 

significant eigenvalues increases, the tilted density becomes closer to a Gaussian 
density. 

Notice that if the system is operating close to the optimum value of A,, D, will 
be large enough to make the SPLOT approximation valid. 

Similar results for higher-order Butterworth spectra can be obtained 
easily (see Problem 4.1.3). In the next example we consider the case in 
which the signal has an ideal bandlimited message spectrum. This is a 
problem that is difficult to treat using state-variable techniques but is 
straightforward when the SPLOT condition is valid. 

Example 2. In this example, we assume that S&B) has a bandlimited spectrum 

r P 
-27rw < w 2 2TW, 

S&o) = Tic 

\ 0, elsewhere. 



Simple Binary Problem 109 

The most practical receiver configuration is No. 3. From (38) and (7), 

I 
P 

-2rrw ,< co 2 27TW, 
Hl,(jw) = P + Now’ 

Thus, 
\ 0, elsewhere. 

1 
-27rw 5 co 2 27rW, 

N,,, (jd = (1 + N,W/P)s ’ (40) 

0, elsewhere. 

The bias term is obtained by using (38) in (17). 

lBo3 = (41) 

The resulting receiver is shown in Fig. 4.8. Notice that we cannot realize the filter in (40) 
exactly. We can approximate it arbitrarily closely by using an nth-order Butterworth 
filter, where n is chosen large enough to obtain the desired approximation accuracy. 

To calculate the performance, we find p,(s) from (21). The result is 

PC(S) = y[NoWln(l + &) - E)ln(l +‘w)}. (42) 

This can be written as 

(43) 

where 

1 
dMss Ad = - r [Cl - d ln (1 + A,) - In (1 + (1 - s)A,)l 00 

and 

Notice that the 00 subscript of Aoo and g&, 0) denotes an infinite-order Butterworth 
spectrum. In Figs. 4.9 and 4.10, we plot the same results as in Example 1. 

* 
9 

r(t) Ideal Hl 
:- low-pass 1 5 Squarer . 

filter 
-- ?r 

* HO 
c * 

II300 

Fig. 4.8 Optimum receiver: ideal low-pass spectrum, long observation time. 
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rb 

Probability of miss versus time-bandwidth product, ideal bandlimited spectrum, 
= lo-? 

In this section we have considered the simple binary problem, 
the appropriate asymptotic formulas, and analyzed two typical 
-4 _ _ A . _ - 
The next problem of interest is the general binary problem. 

examples. 

4.1.2 General Binary Problem 

In Chapter .3 we extended the results from the simple binary case to the : 
general binary case. Because of the strong similarities, we can simply 
summarize some of the appropriate asymptotic formulas for the general 
case. In Table 4.1, we have listed the transfer functions of the filters in the 
optimum receiver. In Table 4.2, we have listed the asymptotic formulas - _ I .- - - 
ior P,(S). In Table 4.3, we have listed various relationships that are 
useful in general binary problems. - .-- 4. I 

To illustrate the application of some of these results, we consider two 
examples. 

L 
I  
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\ \ 
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Fig. 4.10 Probability of miss versus time-bandwidth product, ideal bandlimited spectrum, 

PE’ = lo-3. 

Example 3. In this example we consider a binary symmetric problem. The transmitted 
signals on the two hypotheses are 

St(t) = 
J 2E 

-J sin qf, 
T 

Ti 2 t s Tf:Hl, 

J 

2E 
2 sin q#, 

T 
Ti < f < Tf;H,-,, 

(46) 

where 
Tfl Tf - Ti. (47) 

The signal passes over a fluctuating Rayleigh channel.? The received waveforms are 

m = q(t) + w(t), Ti 5 t < Tf:Hl, 

m = &J(t) + w(t), Ti 5 t ,< Tf:HO. (48) 

t We previously encountered fluctuating Rayleigh channels in Chapter II-8 and in the 
problem section of Chapter H-2. We discuss the model in more detail in Chapter 9. 



Table 4.1 Asymptotic formulas for filters in optimum receivers 

No. Problem Reference SPLOT formula 

1 General binary (3.33) H,(jd = 
s&4 - S&)(") 

sw,(cu)s,,(o) 

2 Class A, 

3 Class B, s&4 1 
+ 

(3.42) [&(jdl+ = 
(S&4 + s,@dvw4 

Table 4.2 Asymptotic formulas for p&s) 

No. Problem 
Refer- 
ence 

General 
1 binary : (3.178) Pm (4 

nonsingular 
(sH1 (w)/$&d) (s-4/2 dcc, 

= T 
s + (1 - 4 [S~l(o~IS~o(o)l I g 

2 Class A, (3.60) pm(s) = T 2/Al [(I -ss)ln (I +y) 

+sln(l+y) 

2(ss,,(~) + (1 - dS,,(4) h 

NO z 
3 Class B [S&4 + s,wl’-” ~uf4s df3 

c(1 - s)S,(w) + &(a g 

4 Class B, (3.60) p,:(s) = :\(I - s) 
2\ (1 - s)S,(m) dcu 

' + S&) + (N,/2) %i 

112 
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Table 4.3 Relationship among various p&s) results 

No. Reference Relation 

1 (3.101) PBP, co @) = WLP, co (4 

2 (3.65) PBS, co(s) = (cLSIB,,(d + 1%IB,oo(1 - $1 

3 (3.73) r’%S,BP, co (9) = 4&IB,LP,m (4) 

We assume that so(t) and sl(t) are bandpass processes centered at ~r)~ and CC)~, respectively, 
which are essentially disjoint and are symmetric about their respective carriers (see 
Figs. 3.7 and 3.8). The low-pass spectrum of the signal processes is SS,Lp(o), where 

S s, LT’@) 
=P,l? =- 

co2 + k2 ’ 
(49) 

The power in the received process depends on the transmitted power and the channel 
attenuation , 

EPb2 PLp A ---f-- ’ (50) 

where fib2 is a measure of the mean-square channel strength. Notice that the total 
average received power is 

P, = 2PL1’, 

u 

(51) 

and that the total average received signal energy is 

if?, = 2i!?r,LP = 2Epb2 = 

We assume that the hypotheses are equally likely 
Pr (E). 

2PL Tab2. (52) 

and that the criterion is minimum 

The receiver structure follows easily by combining the results from the bandpass 
discussion (pages 74-77) with the results in Example 1 (page 104). The receiver is 
shown in Fig. 4.11. The four low-pass filters are identical: 

(53) 

We have eliminated the ideal low-pass filters included in Fig. 3.9 because HfT(jo) is 
low-pass. We have also eliminated the gain in the integrator because it is the same in 
each path and the threshold is zero. 

We can evaluate the performance by suitably modifying the results of Example 1. 
The first step to go from the low-pass asymmetric problem to the bandpass asymmetric 
problem. Recall from Table 4.3 that 

~BP,c&) = 2~LP,cm(sh (54) 

Using (30) in (54) gives 

2&(1 
- 

s) l 1 
1 

PH1’,a2(S) = - 
N 0 1+ d-1 1 + dl + (1 - S)hl 

1 ’ (55) 
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* Hfr ($4 > Squarer 
, 

HI 

&in wit 
l 

z Hfr (jw) 1 * Squarer 1 

-&OS wet 

*sin wgt 
Fig. 4.11 Optimum receiver, binary symmetric bandpass problem, long observation time. 

where 

The next step is go from the asymmetric (or simple binary) problem to the binary 
symmetric problem. We recall that 

/tBS(S) = i&IB(s) + &I&l - $0 (57) 

Using (55) in (57) gives 

1 (1 - 4 
- 

1 + dl + A, - 1 + 41 + (1 - s)A, - 1 + 1/l + $A, 

This reduces to 
(58) 

l [(l + A,)% - (1 + n,(l - s))‘/ii - (1 + A# + l] . (59) 

The important quantity in the probability of error expressions is /ABS,BP,~(&> 
Letting s = & in (59) gives 

2ET l (uBS,13P,us~) = N n 
-1 [ 

(1 + A\,)% 
0 1 

-2(l +?Y+ l]]. (60) 
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If we define 
-1 

&3P,l(A,) i 2R (1 + n,P 
1 1 

-2(l+y+l), (61) 

then we can write 
J% 

/4BS,BP,co(Q) = - - ’ 4gBP,l&h 
NO 

(62) 

We refer to 4g BP,l(A1) as the efficiency function of the binary communication system. 
TO find the approximate Pr (E) we need j&S,&p,+(&). Differentiating (59) twice with 

respect to s and evaluating the result at s = 3, we have 

IhH,UP, m  (8 
d5!q1+~~). 

The approximate Pr (e) follows from (3.77) as 

[l + (A,/2)]% 
d?Th, 1 l 

(63) 

(64) 

We see that the Pr (E) depends on A1, the signal-to-noise ratio in the signal process 
bandwidth, and 2&/N,, the ratio of the average received signal energy to the noise 
spectral height. 

The next step in the analysis depends on the transmitter constraints. I f  it is completely 
specified, we simply evaluate Pr (E). I f  the signals are specified to be a segment of sine 
waves, as in (46), and the transmitter is peak-power-limited (i.e., E,/Tis limited), the 
performance is monotonic with T. On the other hand, if the transmitter is energy-limited, 
we may be able to optimize the performance by choosing T appropriately. This is an 
elementary version of the signal design problem. Later we shall look at the effect of 
different signal shapes. 

We assume that 0 & No, and k are fixed. Then, if we fix E,, this fixes E,. The only 
remaining parameter is T (or, equivalently, A,). We could choose A, to minimize the 
Pr (E). A slightiy easier procedure is to choose it to minimize PBS BpJ*). * From (60), 
we see that this is equivalent to 
plotted gL)p l(A1) as a function , 

maximizing the efficiency factor. In Fig. 4.12 we have 
of A,. We see that the maximum occurs in the vicinity 

of A, = 7. We refer to this point as A,,oPT, 

and 
A 1,OPT = 6.88, 

g~p,l(A1,0pT) = OAWE- 

(65) 

(66) 

We observe that the curve is very flat near the maximum, so that a precise adjustment of 
A, is not necessary. Using (66) in (64) gives an expression for the probability of error 
when the optimum value of A, is used. 

Pr, (E) = 1.32 ($)exp( -0.1182). (67) 

We see that when the system uses the optimum value of A,, the 
decreases exponentially with increasing E&N,. 

probability of error 
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Fig. 4.12 gn,,JAl) versus A,. 

We now consider another example. All of the techniques are identical 
with Example 3. The reason for including the example is to derive some 
specific numerical results that we shall use later. 

Example 4. Symmetric Hypotheses, Bandlimited Spectrum. The basic model is the same 
as in the preceding example [see (46) and (48)]. Now we assume that the low-pass 
signal process has a bandlimited spectrum 

-22rrw 5 cz) 5 2nW, 
w3) 

elsewhere. 

The receiver structure is an obvious combination of the structures in Figs. 4.8 and 4.11. 
As pointed out on page 109, we cannot realize the filters exactly but can approximate 
them arbitrarily closely. For the present we are concerned with the system performance. 
Using (42)-(45), Tables 4.2 and 4.3, and (68), we obtain 

where 

El + (1 - s)h,][l + &I 
El + f&l 9 (6% 

PLP no0 A - 
-lV()W’ 

(70) 

Letting s = 6 in (69) gives 

B, 
lws,nr,oo(4) = - jy l g*pp(LJ, (70 0 

where we have defined 

1 
gn,,a,(A,,) ’ h In 

[1 + uL/2)12 
(72) 
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Thus, 

exp h3S,BP,a3 WI 
[l + (A,/2)]2 -~J%fLi 

= (1 + h,) (73) 

To get the coefficient for the approximate Pr (E) expression, we differentiate (71) twice 
and evaluate the result at s = 4. The result is 

2E, A, 
jiss.m5J~) = -jy- [l + (1\. /2)]2 l (74) 

0 Go 

Then, using (3.76) 
(1 + L=JWT 

Pr (‘) = &WT A,[1 + (hoo/2)]2WT-1 
(75) 

As before, we can find an optimum value of A, by maximizingg~~~,,(h,). The result is 

A &IN, 
oo,OPT = - = 3.07. 

2WT 

Substituting (76) into (75), we obtain 

Pr, (4 -/zexp (-O.M**[$]) . 

We see that the magnitude of the coefficient in the exponent of (77) is slightly larger 
than in the one-pole case [recall (67)J. 

The communication systems in Examples 3 and 4 have illustrated the 
application of long-time approximations to particular problems. In 
addition, they have given us some interesting results for binary FSK 
communication over fluctuating symmetric Rayleigh channels. It is 
interesting to compare these results with those we obtained in Chapter I-4 
for binary PSK and FSK systems operating over an additive noise channel. 
From (I-4.40) and (I-4.36) we have 

Pr FSK (E) = erfc, (W 

PrFSK k) Vg) 

Similarly, 

Recall that the received signal energy is fixed in an additive noise channel. 
The results from (67), (77), (79), and (80) are summarized in Table 4.4. 
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Table 4.4 Efficiency Factors for Various Binary Communication Systems 

(Large &/IV*) 

System Signals Channel 
Efficiency Loss in db 
Factor (relative to system 1) 

1 PSK Additive white 1 .o 0 
Gaussian noise 

2 FSK Additive white 0.5 3 
Gaussian noise 

3 FSK Rayleigh channel : 0.149 8.28 
ideal bandlimited 
spectrum 

4 FSK Rayleigh 0.118 9.30 
channel : one-pole 
spectrum 

We denote the coefficient of &./No as the eficiency factor of a particular 
communication scheme. Comparing the exponents, we see that a band- 
limited Rayleigh channel requires about 5.28 db more average energy 
than the binary FSK system to obtain the same error exponent. A Ray- 
leigh channel with a first-order Butterworth spectrum requires about 
6.30 db more average energy to obtain the same error exponent. We have 
assumed that &/No is large. 

There are several restrictions to our analysis that should be emphasized: 

1. We assumed that a rectangular pulse was transmitted. In Chapter 11, 
we shall prove that the efficiency factor for any Rayleigh channel and any 
signal shape is bounded by 0.1488. We shall see that for certain channels 
the system in Example 4 corresponds to the optimum binary orthogonal 
signaling scheme. 

2. We used long-time-interval approximations. If &./No is large and we 
use the optimum time-bandwidth product, the approximation will always 
be valid. 

3. We detected each signal individually and did not try to exploit the 
continuity of the channel from baud to baud by performing a continuous 
measurement. In Section 5.1.3, we shall discuss this type of system briefly. 

4. We considered only Rayleigh channels whose fading spectra were 
symmetric about the carrier. In Chapter 11, we shall analyze more general 
channels. 

We now summarize briefly the results for the long time interval- 
stationary process case. 
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4.1.3 Summary : SPLOT Problem 

In this section we studied the case in which the received waveform is a 
sample function of a stationary random process and the observation 
interval is long. By neglecting the transient effects at the ends of the 
observation interval, we were able to implement the receiver using time- 
invariant filters. The resulting receiver is suboptimum but approaches the 
optimum receiver rapidly as the time-bandwidth product of the signal 
process increases. 

We have not discussed how long the observation interval must be in 
order for the SPLOT approximation to be valid. Whenever the processes 
have rational spectra, we can compute the performance of both the 
optimum receiver and the SPLOT receiver using state-variable techniques. 
Thus, in any particular situation we can check the validity of the approxi- 
mation quantitatively. A conservative requirement for using the approxi- 
mation is to check the time-bandwidth product at the input to the squarer 
in Canonical Realization No. 3. If the product is greater than 5, the 
approximation is almost always valid. In many cases, the SPLOT receiver 
is essentially optimum for products as low as 2. 

The performance expressions for the SPLOT case were simplified 
because we could use the asymptotic expressions for the Fredholm 
determinant. Thus, the calculation of ,u&) always reduced to finding the 
mean-square filtering error in some realizable Wiener filtering problem. 
This reduction meant that many of the detailed results in Section I-6.2 
were directly applicable to the Gaussian detection problem. In many 
situations we can exploit this similarity to obtain answers efficiently. 

In addition to considering the general SPLOT problem, we considered 
the problem of binary communication over a Rayleigh channel. We 
fou nd that if we were allowed to control the time-bandwidth product of 
the receiver signal process, we could achieve a Pr (E) that decreased expo- 
nentially with &/N,. This behavior was in contrast to the nonfluctuating 
Rayleigh channel discussed in Section I-4.4.2, in which the Pr (E) decreased 
linearly with &IN,. 

This completes our discussion of the SPLOT problem. There are a 
number of problems in Section 4.5 that illustrate the application of the 
results to specific situations. 

4.2 SEPARABLE KERNELS 

In this section we consider a class of signal covariance functions that 
lead to a straightforward solution for the optimum receiver and its 
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performance. In Section 4.2.1, we consider the separable kernel model 
and derive the necessary equations that specify the optimum receiver and 
its performance. In Sections 4.2.2 and 4.2.3, we consider physical situa- 
tions in which the separable kernel model is valid. Finally, in Section 
4.2.4, we summarize our results. 

4.2.1 Separable Kernel Model 

Our initial discussion is in the context of the simple binary problem 
with zero-mean processes. The received waveforms on the two hypotheses 
are 

40 = s(t) + w(t), Ti < t < T,: HI, - - 

r(t) = w(t), Ti < t < T,:H,. - - (81) 

The noise w(t) is a sample function from a zero-mean white Gaussian 
random process with spectral height N,/2. The signal s(t) is a sample 
function from a zero-mean Gaussian random process with covariance 
function K,(t, 24). 

From (2.28) the LRT is 0 1, = -!- ss 111 
N, 

r(t)hl(t, z+-(u) dt du 5 y, (824 
ml 

Ti 
where h,(t, u) is specified by the integral equation No Tf - h,(t, 21) + 
2 s h,(t, W&(X, u) dx = K,(t, u), Ti 5 t, u < Tf. (82b) 

Ti 

In Section I-4.3.6 we studied solution techniques for this integral equation. 
On page I-322, we observed that whenever the kernel of the integral 
equation [i.e., the signal covariance function K,(t, u)] was separable, the 
solution to (82b) followed by inspection. A separable kernel corresponds 
to a signal process with a finite number of eigenvalues. Thus, we can write 

Ti < t, u < Tf, - - (83) 
i==l 

where &(t) and 3Li8 are the eigenfunctions and eigenvalues, respectively, 
of the signal process. In this case the solution to (82b) is 

hl(t, u, = 5 hi$4it)+i(u) 
i=l 

A s &lt)+i(U)9 
i 

K < t, u < T,. (84) 



Separable Kernel Model 121 

. 

dt 2 

(K- 1) similar paths 0 
l 

l 

Fig. 4.13 Correlator realization of separable kernel receiver. 

This can be verified by substituting (84) into (826). For separable kernels, 
the simplest realization is Canonical Realization No. 3 (the filter-squarer 
receiver). From (2.45), 

whose solution is 

Using (85) and (86) in (82~) and performing the integration on x we 
obtain 

The operations on r(t) can be realized using either correlators or matched 
filters. These realizations are shown in Figs. 4.13 and 4.14. These receiver 
structures are familiar from Fig. I-4.66 on page I-353. Looking at 

Sample 

0 
l 

(K- 1) l similar paths 
l 

l 

0 

Fig. 4.14 Matched filter realization of separable kernel receiver. 
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(I-4.399), we see that the received signal on HI was 

r(t) = 5 a&(t) + w(t), O<t<T, - - (88) 
i=l 

where the ai are N(0, cQ and the si(t) are orthonormal. The total signal is 

s(t) = z aisi(t), 
i=l 

W) 

which is a zero-mean Gaussian process with covariance function 

K,(t, ti) = 5 crises,, 0 < t, 21 < l-t - WV 
i=l 

Comparing (90) and (83), we see that the separable kernel problem is 
identical with the problem that we solved in Section I-4.4.2, in the context 
of an unwanted parameter problem. As we observed on page I-353, the 
problem is also identical with the general Gaussian problem that we solved 
in Section I-2.6. The reason for this simplification is that the signal has 
only a finite number of eigenvalues. Thus, we can immediately map r(t) 
into a K-dimensional vector r that is a sufficient statistic. Therefore, all of 
the examples in Sections I-2.6 and I-4.4 correspond to separable kernel 
Gaussian process problems, and we have a collection of results that are 
useful here. 

The approximate performance of the optimum receiver is obtained by 
calculating p(s) and using the approximate expressions in (2.166) and 
(2.174). From the first term in (2.132), we have 

Using (91) in (2.166) and (2.174) gives an approximate expression for PF 
and P,. We recall that when the K eigenvalues were equal we could obtain 
an exact expression. Even in this case the approximate expressions are 
easier to use and give accurate answers for moderate K (see Fig. I-2.42). 

At this point we have established that the separable kernel problem is 
identical with problems that we have already solved. The next step is to 
discuss several important physical situations in which the signal processes 
have separable kernels. 

4.2.2 Time Diversity 

Historically, the first place that this type of problem arose was in pulsed 
radar systems. The transmitted signal is a sequence of pulsed sinusoids 
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at a carrier frequency w, = ~M/T, where yt is a large integer. The sequence 
is shown in Fig. 4.15. The ith signal is 

2 
- sin met, 
T 

(i - l)TP < t 5 (i - 1)7YP + T, 

elsewhere. 
(92) 

If a target is present, the pulses are reflected. We shall discuss target 
reflection models in detail in Chapter 9. There we shall see that for many 
targets the reflection from the ith pulse can be modeled as 

(i - l)T, ,< t 2 (i - I)T, + T 

elsewhere, 
(93) 

where the vi are Rayleigh random variables and the jQ are uniform random 
variables. (Notice that we have put the target at zero range for simplicity.) 
As in Section I-4.4.2,we writes&) in terms of two quadrature components, 

2 
J- y sin qt + bci J 

1 
- cos met, 
T 

elsewhere. 
u- - l)T, < t < (i - UT, + T (944 

Equivalently, we can write 

where +si(t) and &(t) include the time interval in their definition. The 
bsi and bci are statistically independent Gaussian random variables with 
variances CT b2. The average received energy per pulse is 

ET1 A 26,? - (95) 

The received waveform consists of the signal reflected from the sequence 
of pulses plus a white noise component, 

Fig. 4.15 Transmitted pulse sequence. 
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The observation interval includes all of the reflected pulses completely. 
Now, when we let vi and +i be random variables, we are assuming that 
the target reflection is essentially constant over the pulse duration. In 
general, Tp is much larger than the pulse duration. Thus, if the target is 
fluctuating, it is plausible to assume that the vi and +i are independent 
random variables for different i. This means that the bci and bSi are 
independent for different i. The covariance function of the signal process is 

Thus we have a separable kernel with 2K equal eigenvalues. Using Figs. 
4.13 and I-4.68, we obtain the receiver structure shown in Fig. 4.16. Here 
the orthogonality arises because the signals are nonoverlapping in time. 
We refer to this as the time-diversity case. 

We have already computed the performance for this problem (Case 1A 
on page I-108). By letting 

N = 2K, (98) 

the results in Fig. I-2.35 apply directly. Notice that 

IuBP.sK.(s) = K ln 
(1 + &/No)1-s 

1 + (1 - wb1/~0-l 1 (101) 

[use either (I-2.501) or (91)]. 
The ROC is shown in Fig. 4.17. The average received signal energy per 

pulse is &, and the total average received energy is i$, where 

In Fig. 4.18, we fix E,, and P* and plot P, as a function of K. (These are 
Figs. I-2.35b and c relabeled.) This shows us how to optimize the number 

.  9 

w Bandpass Square-law Sample Hl 
* matched z envelope I r every L z 

filter detector 
1 

Tp seconds 

SumK l 03y 
samples 

c HO 

Fig. 4.16 Optimum receiver for pulsed radar problem. 
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

PF - 

Fig. 4.17 Receiver operating characteristic: pulsed radar, Rayleigh target. 

of transmitted pulses in various situations. Notice that Fig. I-2.35 was 
based on an exact calculation. As shown in Fig. I-2.42, an approximate 
calculation gives a similar results. 

A second place that time-diversity occurs is in ionospheric communica- 
tion. In the HF frequency range, long-range communication schemes 
frequently rely on waves reflected from the ionosphere. As a result of 
multiple paths, a single transmitted pulse may cause a sequence of pulses 
to appear at the receiver. Having traveled by separate paths, the amplitudes 
and phases of the different pulses are usually not related. A typical 
situation is shown in Fig. 4.19. If the output pulses do not overlap, this 
is commonly referred to as a resolvable multipath problem. If the 
path lengths are known (we discuss the problem of unknown path lengths 
in a later section), this is identical with the time diversity problem 
above. 
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Fig. 4.18 P&f as a function of the number of transmitted pulses (total energy fixed). 

4.2.3 Frequency Diversity 

The obvious dual to the time problem occurs when we transmit K 
pulses at different frequencies but at the same time. A typical application 
would be a frequency diversity communication system operating over K 
nonfluctuating Rayleigh channels. On HI, we transmit K signals in disjoint 
frequency bands, 

O<t<T, - - 

elsewhere. 

On H,,, we transmit K signals in a different set of disjoint frequency bands, 

2 
- sin mOit, 
T 

O<t<T, _ - 

elsewhere. 
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Fig. 4.18 (Continued.) 

Each of the K transmitted signals passes over a Rayleigh channel. The 
output is 

sin bid + &I + w(t), O<t<T:H,, - - 
VW 

sin LmOjt + +jl + w(t>9 0 < t < T:H,. - - 
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(a) Transmitted signal (b) Received signal 

Fig. 4.19 Ionospheric model: resolvable multipath. 

The frequencies mli and moj are chosen so that the outputs due to the 
signals are orthogonal. We shall assume that the fading in the different 
Rayleigh channels is statistically independent and that each channel has 
identical statistical characteristics. The average received signal energy in 
each channel is 

We see that this problem is just the binary symmetric version of the 
problem in Section 4.2.2. The optimum receiver structure is shown in 
Fig. 4.20. To evaluate the performance, we observe that this case is 
mathematically identical with Example 3A on pages I- 130-I-132 if we let 

and 

N = 2K, (107) 

OS2 
E = Gb2 = rl , 
2 

(108) 

N 
(Tn2 = 22 . 

2 
Then I is given by (I-2.510) as 

W) 

Pl3S,HP,Sd~) = K 1Il 1 + MN0 
(1 + 41/2No)2 

WV 

We can also obtain (110) by using Table 4.3 and (101). A bound on the 
Pr (E) follows from (I-2.473) and (110) as 
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Fig. 4.20 Frequency diversity receiver. 

An approximate error expression is given by (I-2.516) and (110) as 

Pr (E) Y 
J 

1 (1 + &,IN,)” - 
d (&/A/,)( 1 + &, /2N,)K’2--1 l 

(112) 

Frequently the total energy available at the transmitter is fixed. We 
want to divide it among the various diversity branches in order to minimize 
the Pr (E). When the channel attenuations are equal, the optimum division 
can be calculated easily using either exact or approximate Pr (E) expres- 
sions. The simplest procedure is to introduce an efficiency factor for the 
diversity system. 

1z; 
I%~,BP.s&) = - z &(A), 

0 
(113) 
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where 

We see that g&) is identical with g,,, ,(&) in Example 4 on page 116. 
’ Thus, it is maximized by choosing 

a = 3.07, (116) 

and the Pr (E) is given by (78). The result in (116) says that the optimum 
strategy is to divide the energy so that the average energy-to-noise spectral 
height ratio in each Rayleigh channel is 3.07. 

The comparison of these two results is interesting. In this case we 
optimized the performance by choosing the diversity properly. Previously 
we chose the signal-to-noise ratio in the signal process bandwidth 
properly. The relationship between the two problems is clear if we inter- 
pret both problems in terms of eigenvalues. In the case of the bandlimited 
spectrum, there are 4 VU’equal eigenvalues (for ?VT >> 1) and in the diver- 
sity system there are 2K equal eigenvalues. 

4.2.4 Summary : Separable Kernels 

In this section we have studied the separable kernel problem. Here, 
the receiver output consists of a weighted sum of the squares of a finite 
number of statistically independent Gaussian variables. The important 
difference between the separable kernel case and the general Gaussian 
problem is that 
in principle at 

we have Jinite sums rather than iti$inite sums. Therefore, 
least, we can always calculate the performance exactly. 

As we observed in Chapter I-2, if the eigenvalues are different and K is 
large, the procedure is tedious. If the eigenvalues are equal, the sufficient 
statistic has a chi-squared density (see page I-109). This leads to an exact 
expression for P, and PD. As discussed in Section I-2.7 (page I-128), our 
approximate expressions based on ,u(s) are accurate for moderate K. 
Thus, even in cases when an exact probability density is available, we 
shall normally use the approximate expressions because of their simplicity. 

In the foregoing text we have considered examples in which the signal 
process had equal eigenvalues and the additive noise was white. In the 
problems in Section 4.5, we consider more general separable kernel prob- 
lems. 
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4.3 LOW-ENERGY-COHERENCE (LEC) CASE? 

In this section we consider the simple binary problem described in 
Chapter 2 (page 8). The received waveforms on the two hypotheses are 

We assume that IV(~) is a white, zero-mean Gaussian process with spectral 
height NO/2 and that s(t) is a zero-mean Gaussian random process with 
covariance function K,(t, u). The signal covariance function can be 
written as a series, 

K,(t, u> = 2 Ais+iO~i(~l), Ti < t, U < Tt- - - W) 
i=l 

If we write s(t) in a Karhunen-Loeve expansion, the eigenvalue, Ais, is the 
mean-square value of the ith coefficient. Physically this corresponds to the 
average energy along each eigenfunction. If all of the signal energy were 
contained in a single eigenvalue, we could write 

s(t) = s1#M (119) 
and the problem would reduce to known signal with Gaussian random 
amplitude that we solved in Section I-4.4. This problem is sometimes 
referred to as a coherent detection problem because all of the energy is 
along a single known signal. 

In many physical situations we have a completely different behavior. 
Specifically, when we write 

s(t) = 5 si+i( t)9 Ti < t S Tf ,  (120) 
i=l 

we find that the energy is distributed along a large number of coordinates 
and that all of the eigenvalues are small compared to the white noise level. 
Specifically, 

NO 
As << 1, i = 1,2, . . . . (129 

We refer to this case as the low-energy-coherence (LEC) case. In this 
section we study the implications of the restriction in (121) with respect 

t Most of the original work in the low-energy-coherence case is due to Price [l], [2] 
and Middleton [3], [5], [7]. It is sometimes referred to as the “coherently undetectable” 
or “threshold” case. Approaching the performance through ,u(s) is new, but it leads to 
the same results as obtained in the above references. In [9], Middleton discusses the 
threshold problem from a different viewpoint. Other references include [lo], [ll]. 
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to the optimum receiver structure ,and its performance. Before we begin 
our discussion, several observations are worthwhile. 

1. When s(t) is a stationary process, we know from page I-208 that 

Ai” < lmnx - < max S,(f). ‘- - (122) 

Thus, if 
N” max S,(f) << - , 
2 

(123) 
j 

the LEC condition exists. 
2. It might appear that the LEC condition implies poor detection per- 

formance and is therefore uninteresting. This is not true, because the 
receiver output is obtained by combining a large number of components. 
Even though each signal eigenvalue is small, the resulting test statistic 
may have appreciably different probability densities on the two hypotheses. 

3. We shall find that the LEC condition leads to appreciably simpler 
receiver configurations and performance calculations, Later we shall 
examine the effect of using these simpler receivers when the LEC con- 
dition is not satisfied. 

We begin our discussion with the general results obtained in Section 2.1. 
From (2.31) we have 

Tt 

1 
1 

lx=- 
N, 

r(t)h,(t, tl)r(u) dt du, (124) 

and from (2.19), 
Ti 

.s 
1 

A 
1 + (2;N,)A: ri2* 

(125) 

To get an approximate expression, we denote the largest eigenvalue by 
q&. If 

1 s No 
ma5 C-9 

2 
(126) 

we can expand each term of the sum in (125) in a power series in Ai, 

The convergence of each expansion is guaranteed by the condition in 
(126). The LEC condition in (121) is more stringent that (126). When 

[LEC condition] (128) 
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we can approximate lR by retaining the first two terms in the series. 
The reason for retaining two terms is that they are of the order in 2A,s/NO. 
(The reader should verify this.) The first term is 

The second term is 

Tf 

r(t)K.pit, u)r(u) dt du. 

Ti 

p = _ I 2 R 2 ( 1 N 3&2r:. 
0 i=l 

If we define a kernel 

s 
Tr K6”‘(t, u) = at, ww, 2) dz 

Ti 

then 
Tf 

r(t)Kr’(t, u)r(u) dt du. 

Ti 

Similarly, when 2&&V. < 1, we can expand lB. From (2.33), 

1 
II= 

1” lx1 
7 

n - i=l ( 1 
+ 

- 2 
NO Ais 1 

- - 

(129) 

(130) 

(133) 

When 2&&V, << 1, we can obtain an approximate expression by using 
the first two terms. 

Tr 

K;(t, u) dt du. (134) 

Ti 

Equations (129)) (132)) and ( 134) correspond to two parallel operations on 
the received data and a bias term. 

We can show that as 



134 4.3 Low-energy-coherence (LEC) Case 

the ratio of the variance of $’ + Z$ on Ho to the variance of Z$ on Ho 
approaches zero. The same statement is true on HI because 

and 
Var [Q 1 H,] h) Var [@ 1 H,] 

Var [$’ 1 H,] Y Var [@ 1 H,]. (137) 

In this case, we may replace I, (2) by its mean on H,, (the means under both 
hypotheses are approximately equal) : 

Tf 

Ks2(t, U) dt du. uw 
Ti 

Now /g) becomes a bias term and /g’ is the only quantity that depends on 
r(t). The resulting test is 

Tr 

r(t)K,(t, u)r(u) dt du 

2’ f 

Ks2(t, U) dt du. (139) 

Ti 

Including the bias in the threshold gives the test 

r(t)&@, ujt-(tl) dt du z y, 
fI0 

(140) 

d 
where Tf 

K,2(t, u) dt du. (141) 

Ti 

We refer to the receiver that performs the test in (140) as an optimum LEC 
receiver. Observe that it has exactly the same form as the general receiver 
in (124). The difference is that the kernel in the quadratic form is the signal 
covariance function instead of the optimum linear filter. Notice that the 
optimum linear filter reduces to K&t, u) under the LEC condition. One 
form of the receiver is shown in Fig. 4.21. The various other realizations 
discussed in Section 2.1 (Figs. 2.4-2.7) can be modified for the LEC case. 

When 2A~,,/No is less than 1 but does not satisfy (128), we can use more 
terms in the series of lR and IB. As long as 
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Tf (l) H1 
dt , lR > 

27 
Ti HO 

Unrealizable filter 

Fig. 4.21 Optimum SC receiver. 

we can find a series solution for the optimum detector that will converge.? 
The general form follows easily, 

and 

where 

An interesting physical interpretation of higher-order approximations 
is given in Problem 4.3.2. 

The final question of interest is the performance of the optimum 
receiver in the LEC case. We want to find a simpler expression for p(s) 
by exploiting the smallness of the eigenvalues. From (2.134), 

P(S) = 4 2 Kl - s) In (1 + 23L,“/N,j - In (1 + (1 - s)2A[/N,)]. (146) 
i=.i 

Expanding the logarithms and retaining the first two terms, we have 

We see that the terms linear in ;lis cancel. Writing z& (Ris)2 in closed 

t This approach to finding the filter is identical with trying to solve the integral equation 
iteratively using a Neumann series (e.g., Middleton [S] or Helstrom [4]). This procedure 
is a standard technique for solving integral equations. 
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form, we obtain 

Ks2(t, u) dt du k,uLEC(s). 
i 

(148) 

The term in braces has an interesting interpretation. For the krtowvt signal 
problem, we saw in Chapter T-4 that the performance was completely 
determined by d2, where 

Physically, this could be interpreted as the output signal-to-noise ratio. 
For the Gaussian signal problem discussed in this chapter, d2 is no longer 
uniquely related to the error performance, because I(A) is not Gaussian. 
However, in the coherently undetectable case, it turns out that the term in 
braces in (148) is d2, so that whenever our approximations are valid, the 
output signal-to-noise ratio leads directly to the approximate expressions 
for P,, P,, and Pr (E). It remains to be verified that the term in braces in 
(148) equals d2. This result follows easily by using the fact that the expecta- 
tion of four jointly Gaussian random variables can be written as sums of 
second moments (e.g., [8, page 1681 or page I-229). (See Problem 4.3.4.) 

Thus, for the LEC case, 

Substituting the expression for ,u,-~~ (s) given in (150) into (2.164) and 
(2.173) gives the desired error expressions as 

PF ‘Y erfc, (sd) = erfc, uw 

P lif YV erf‘c, ((1 - s)d) = erfc, (152) 

The ROC obtained by varying the threshold y is plotted in Fig. I-4.13. 
The low-energy-coherence condition occurs frequently in radar astron- 

omy and sonar problems. Price has studied the first area extensively 
(e.g., [6]), and we shall look at it in more detail in Chapter 11. In the sonar 
area the stationary process-long observation time assumption is often 
valid in addition to the LEC condition. The receiver and the performance 
are obtained by combining the results of this section with those in Section 
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Fig. 4.22 Optimum receiver, low-energy-coherence, stationary-process, long-observation- 
time case. 

4.1. A filter-squarer implementation of the resulting receiver is shown in 
Fig. 4.22. The value of d2 is 

We see that d2 increases linearly with T, the observation time. Thus, 
regardless of the relative signal and noise levels, we can achieve a desired 
performance by observing the process over a sufficiently long observation 
time. We shall discuss the sonar area in more detail in Array Processing. 

Occasionally the LEC receiver in Fig. 4.21 is used even though the LEC 
condition in (128) is not satisfied. In order to analyze the performance, 
we must treat it as a suboptimum receiver. In Chapter 5 we discuss 
performance analysis techniques for suboptimum receivers. 

4.4 SUMMARY 

In this chapter we have developed techniques for finding the optimum 
receiver and evaluating its performance for three special categories of 
detection problems. In Chapter 2, we had demonstrated a solution algo- 
rithm for cases in which the processes had finite-state representations. 

It appears that a large portion of the physical situations that we en- 
counter can be approximated by one of these four special cases. When 
this is true, we can design the optimum receiver completely and analyze 
its performance. 

4.5 PROBLEMS 

P.4.1 Stationary Process, Long Observation Time (SPLOT) 

Unless otherwise indicated, you should assume that the SPLOT condition is valid in 
all problems in this section. 

SIMPLE BINARY DETECTION 

Problem 4.1.1. Consider the model in (1). Assume that s(t) is a Wiener process such that 

and 
K,(t, 4 = G2 min [t, u] 

s(0) = 0. 
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1. Find the optimum receiver. 
2. Evaluate p,(s) by using (20). 
3. Compare your result with that in Problem 2.1.5. 

Problem 4.1.2. Consider the expression for the logarithm of the Fredholm determinant 
given in (2.75). 

1. Derive the asymptotic version of (2.75). 
2. Use the result in part 1 to obtain an alternative expression for /A&S). 

3. Evaluate /d,(s) for the model in Problem 4.1 .l. 

Problem 4.1.3. Consider the model in (1). Assume that 

s,w 
2nP sin (n/2n) 

=- 
k 1 + (co/k)2n ’ 

Evaluate ,u&s) for this case. 

Problem 4.1.4 (continuation). In Problem 4.1.3 we derived an expression for /d,(s). Fix 
s at some value sO, where 

O<s,<l. 
Study the behavior of /~&a) as a function of n. Consider different values of so. How 
does 

enter into the discussion? 

Problem 4.1.5 (non-zero means). Consider the simple binary detection problem with 
nonzero means. 

1. Derive the asymptotic version of (2.32) and (2.34). 
2. Derive the asymptotic version of (2.147). 

GENERAL BINARY DETECTION 

Problem 4.1.6. Consider the binary symmetric bandpass version of the class A, problem. 
Assume that the equivalent low-pass signal spectrum is 

S,,(co) 
2nPLp sin (w/2n) =- 

k 1 + (cu/k)2n ’ 
where 

P 

pLp=;i* 
Recall that 

i%S,BP,d*) = %IB,LP oo(*h , 

1. 
2. 

Use the result of Problem 4.1.3 to find 
Express your answer in the form 

I~Bs,BP,&) a - 

g~p,~(h~) for various n. Find 

G 
- ’ 4gBP ,&h)* 
NO 

fnax ~BP,&~B) . 
AB [ 1 
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3. Find 

Problem 4.1.7. Consider the binary symmetric bandpass version of the class A, problem. 
1. Write PBS ,BP, &l/2) as a function of &,(o) (the equivalent low-pass spectrum) 

and NO/2. 
2. Constrain 

Find the spectrum that minimizes PBS BP ,(1/2) subject to the constraint in (P.1). , , 

Problem 4.1.8. Consider the class 
Tables 4.1 and 4.2 are correct. 

B problem (see Fig. 3.1). Verify that the in 

Problem 4.1.9. Consider the class B, problem in which 

S,(w) 
2kP, =- 

w2 + k2 

S,(w) 
2wn =- 

w2 + k12 

No S,(w) = 2 . 

1. Find the optimum receiver. 
2. Evaluate p,(s). 
3. Consider the special case in which k, = k. Simplify the expressions for p&s). 

Comment: In the discussion of minimum Pr (E) tests in the text, we emphasized the 
case in which the hypotheses were equally likely and p(s) was symmetric around 
s = 6 (see pages 77-79). In many minimum Pr (E) tests the hypotheses are equally 
likely but /d(s) is not symmetric. We must then solve the equation 

for s,. We then use this value of s,, in (I-2.484) or (I-2.485). From the latter, 

1 
pr (4 = [2(27r)i(s,))+s,(l - $rJl 

exp A%&~. (F.2) 

(Assumess&i(s,) > 3 and (1 - s,)$,i(s,) > 3.) From (I-2.473), 

(F.3) 

The next several problems illustrate these ideas. 

Problem 4.1.10. Consider the class A, problem in which 

s,,Cw~ 
2kaP, =- 

w2 + k2 ’ 

s,o(w) 
2kP =- 

w2 + k2 l 
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1. Draw a block diagram of the optimum receiver. Include the necessary biases. 
2. Evaluate p&s). 
3. Assume that a minimum Pr (e) test is desired and that the hypotheses are equally 

likely. Find s, such that 
ciol,=,m = 0. 

4. Compute the approximate Pr (E) using (F.2). 
5. Compute a bound on the Pr (E) using (F.3). 
6. Plot ,u(s,) as a function of a. 

7. Evaluate 
&As, a) 

aa a 0’ 

This result will be useful when we study parameier estimation. 

Problem 4.1.11. Consider the class A, problem in which 

r 77aP 

S&o) = -z-- ’ 
I4 I k, 

0, I4 > k 

and 
7TP 

S,,(w) = -ii- ’ 
I4 ,< k 

0, 1~1 > k. 
Repeat Problem 4.1.10. 

Problem 4.1.12. Consider the class A, problem in which 

and 

s&4 
2aP, 

z-* 
m2 + a2 

1. Repeat parts l-5 of Problem 4.1.10. 
2. Evaluate the approximate Pr (E) for the case in which 

and 
No = 0. 

Problem 4.1.13. Consider the binary symmetric class A, problem. All processes are 
symmetric around their respective carriers (see Section 3.4.3 and Fig. 3.9). The received 
waveform rcl(t) is 

r,,(t) = S,,(t) + n,,(t) + w(t), q 5 t 5 Tf, 

‘cl(t) = nc,(t) + w(t), Ti 5 t < Tf. Wl) 

Notice that (P.l) completely describes the problem because of the assumed symmetries. 
The random processes in (P.l) are statistically independent with spectra S,(o), S&U), 
and No/2, respectively. 
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2. Assume that S&U) and N,/2 are fixed. Constrain the power in nc,(t), 
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s 

dcl, P 
m Sri,(m) z = -f . 

-03 

Choose S,&O) to maximize ,~cgp, BS , oo (&). 
3. Assume that S,c(o) and N,/2 are fixed. Constrain the power in s,,(t), 

s 

co dco P, 
s&4 g = 2 l 

--co 

Choose S&X) to minimize ,u]Bp, BS, a (3;). 

Problem 4.1.14. Consider the vector problem described in Problem 3.2.7. Specialize the 
results of this problem to the case in which the SPLOT condition is valid. 

Problem 4.1.15. Consider the special case of Problem 4.1.14 in which 

s 

co 
s#) = h(t - ~)s(r) dr (P.l) 

-a3 
and 

s,(t) = 0. 03 

The matrix filter h(T) has one input and N outputs. Its transfer function is H(jo). 
Simplify the receiver in Problem 4.1.14. 

Problem 4.1.16. Consider Problem 3.2.8. Specialize the results to the SPLOT case. 

Problem 4.1.17. 
1. Consider Problem 3.2.9. Specialize the results to the SPLOT case. 
2. Consider the particular case described in (P. 1) of Problem 4.1.15. Specialize the 

results of part 1. 

Problem 4.1.18. 
1. Review the results in Problem 3 S. 18. Derive an expression for ,u~ (s) for the general 

vector case. 
2. Specialize the result in part 1 to the class A, SPLOT problem. 
3. Specialize the results in part 2 to the class B, SPLOT problem. 
4. Specialize the results in part 1 to the case in which the signal is described by 

(P.l) in Problem 4.1.15. 

Problem 4.1.19. The received waveforms on the two hypotheses are 

r(t) = s#) + w(t), Ti 5 t < Tf:Hl, 

r(t) = s()(t) + w(t), Ti 5 t 5 T+H,. 

The signals sl(t) and so(t) are stationary, zero-mean, bandpass Gaussian processes 
centered at co1 and CC)~, respectively. Their spectra are disjoint and are not necessarily 
symmetric around their carrier frequencies. The additive noise is white (N,/2). 

Find the optimum receiver and an expression for ,uBP, &s). (Hint: Review the results 
of Problem 3.4.9.) 
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Problem 4.1.20. Consider the binary symmetric bandpass problem in Fig. 3.9. Assume 
that 

EL-,,(t) 1 H,l = m9 

E[~,,W 1 &I = m* 
All other means are zero. 

1. Find the optimum receiver using the SPLOT assumption. 

2. Evaluate j&s, ~8, co (8). 

Problem 4.1.21. Consider the expression for /l(s) given in (2.208) and the expression for 
p,(s) given in (30). 

1. Prove 
lim /c(s) = P,(S). 

ET--+al 

2. Consider the binary symmetric bandpass version of (2.208) and (30) [see Example 
3, (59) and (60)]. Denote the BS, BP version of (2.208) as ~~SJP(S, kT). Plot 

as a function of kT in order to study the accuracy of the SPLOT approximation. 

P.4.2 Separable Kernels 

Problem 4.2.1. Consider the pulsed radar problem. The performance is characterized by 
(98)-(102). From (lOl), 

PBP,~&) = K ln 
(1 + &/No)‘-” 

1 + (1 - sE@$J 1 - 

Choosing a particular value of s corresponds to choosing the threshold in the LRT. 
1. Fixs = s, and require 

Constrain 

Choose K to minimize 

P(%J - S&i(S,,) = c. 

ET = K&l. 

F A p&J -I- (1 - s,>P(s,)= 

Explain the physical significance of this procedure. 
2. compare the results of this minimization with the results in Figs. 4.17 and 4.18. 

Problem 4.2.2. 
1. Consider the separable kernel problem in which the ai in (89) have non-zero means 

ai. Find ,uD(s). 
2. Consider the bandpass version of the model in part 1. Assume that each successive 

pair of ai have identical statistics. Evaluate ,ug(s) and p&). 

Problem 4.2.3. 
1. Consider the binary symmetric version of the bandpass model in Problem 4.2.2. 

Evaluate PBS,BP,SK(O 
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2. Simplify the results in part 1 to the case in which all of the ai are identically 
distributed. Assume 

E[ai] = m 
and 

Var [ai] = Os2. 

Problem 4.2.4. Consider the model in Problem 4.2.3. A physical situation in which we 
would encounter this model is a frequency diversity system operation over a Rician 
channel (see Section 4.2.2). I f  the energy in the transmitted signal is E,, then 

m2 = aE,, 

OS2 = PE,, 

where a and B are the strengths of the specular path and the random path, respectively. 

1. Express ~B~,~p,&1/2) in terms of a, p, E,, and K (the number of paths). 

2. Assume that E, is fixed. Choose K to minimize ~B~,BP,sR(&). Explain your 
results intuitively and compare them with (116). 

Problem 4.2.5. Consider the diversity system described in Section 
eigenvalues were differen t, we could write the efficiency factor in (1 

4.2.2. If  the signal 
14) as 

Assume 
K 

c Ai = C* (P-2) 
i=l 

You may choose Kand Ai subject to the restriction in (P.2). Prove thatg,(h) is maximized 
by the choice 

Ai = 
t 

A, i=1,2 ,..., K,, 

0, i > Ko. 
Find KO. 

Problem 4.2.6 Consider the frequency diversity system operating over a Rayleigh 
channel as described in Section 4.2. 

1. G .eneralize the model to allow for unequal path strengths, 
mitted in each channel, and unequal noise levels. 

unequal energy trans- 

2. Consider the two-channel problem. Constrain the total transmitted power. Find 
the optimum division of energy to minimize ~B~,~~,&l/2). 

Problem 4.2.7. Consider the class A, problem in which 

N2 

K,o(t, 4 = 2 Ai”Ogj(t)gj(u), Ti I t, u I Tf, 
j=l 

(P*l) 
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where 

and 

1. Solve (3.33) for h,(t, u). 

i,k= l,..., IV,, 

i,k= I,..., IV,, 

i--l ,..., IV& j=l,..., IV& (P.2) 

2. Specialize part 1 to the case in which 

Pij =0, i-l ,..., N,, j=l,..., N2. W.3) 

Explain the meaning of (P.3). Give a physical situation in which (P.3) is satisfied. 
3. Derive a formula for psK(s). 
4. Specialize the result in part 3 to the case in which (P.3) is satisfied. 

Problem 4.2.8. Consider the class B, problem in which the received waveforms on the 
two hypotheses are 

r(t) = s(t) + w(t), Ti 5 t 5 Tf:Hl, 

r(t) = w(t), Ti < t < Tf:HO. 

The signal and noise processes are statistically independent, zero-mean processes with 
covariance functions K,(t, u) and NO &t - u)/2, respectively. The signal process 
K,(t, u) is separable and has M equal eigenvalues, 

1. Verify that the receiver in Fig. P.4.1 is optimum. 

r(t) CT 

. 

=.g dt- +y 
s 

?t HI 

Ti HO 

Fig. P.4.1 

2. Computeg. Compare the receiver in Fig. P.4.1 with the LEC receiver of Section 4.3. 

P.4.3 Low Energy Coherence (LEC) 

Problem 4.3.1. Consider the development in (129)-(139). Verify that the various approxi- 
mations made in arriving at (139) are valid. 
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1. Verify the general form in (143). 
2. An easy way to remember the structure of ZR in (143) is shown in Fig. P.4.2. This 

is an unrealizable feedback system. Verify that the output is ZR. 

dt 

Fig. P.4.2 

3. Why is the result in part 2 obvious ? Is the receiver in Fig. P.4.2 optimum for the 
general case ? Why is it a useful idea in the LEC case but not in the general case? 

Problem 4.3.3. Consider the vector model in Problem 3.2.7, in which so(t) = 0. 

1. Find the optimum receiver under the LEC condition. Define precisely what the 
LEC condition is in the vector case. 

2. Assume that both the SPLOT and LEC conditions hold. Find the optimum 
receiver and derive an expression for IU,,~&). Express the LEC condition in terms of 
the signal spectral matrix S@). 

Problem 4.3.4. Derive the result in (149). 
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5 

Discussion: Detection of 
Gaussian Signals 

In Chapters 2 through 4 we studied the problem of detecting Gaussian 
signals in the presence of Gaussian noise. In this chapter we first discuss 
some related topics. 
theory discussion. 

We then summarize the major results of our detection 

5.1 RELATED TOPICS 

5.1.1 M-my Detection : Gaussian Signals in Noise 

All of our discussion in Chapters 2 through 4 dealt with th.e binary 
detection problem. In this section we discuss briefly the M-hypothesis 
problem. The general Gaussian M-ary problem is 

where 

and 

40 = M>, T,<t<T,:H,, i=l,..., M‘, - - (1) 

E[r&) 1 Hi] = q(t) (2) 

Most of the ideas from the binary case carry over to the diary case with 
suitable modifications. As an illustration we consider a special case of the 
general problem. 

The problem of interest is described by the following model. The received 
waveforms on the 1M hypotheses are 

p(t) = s&> + fi(t>, Tb< t< T’:H,, - - i- 1,2 ,..., M’. (4) 

The additive noise n(t) is a sample function from a zero-mean Gaussian 
process with covariance function K,(t, u). A white noise term is not 
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Radar–Sonar Signal Processing and Gaussian Signals in Noise. Harry L. Van Trees
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necessarily present. The signal processes are sample functions from Gaus- 
sian processes and are statistically independent of the noise process. The 
signal processes are characterized by 

aQ(01 = m,(t)9 T,<t<T,, i=l,...,IW - - (5) 

E( h(t) - ~iwlbiw - 4Wl} = &.(t, u), z Tb < t, u < T,, - - 
i-l,.. 

l 9 AL (6) 

The a-priori probability of the ith hypothesis is Pi and the criterion is 
minimum Pr(E). We assume that each pair of hypotheses would lead to a 
nonsingular binary test. The derivation of the optimum receiver is similar 
to the derivation for the binary case, and so we shall simply state the 
results. The reader can consult [l]-[3] or Problem 5.1.1 for details of the 
derivation. 

To perform the likelihood ratio test we compute a set of A4 sufficient 
statistics, which we denote by li, i = 1, . . . , AL The first component of 
the ith sufficient statistic is 

1 Ri = 
J 

r(t)h,(t, u)r(u) dt du 
Tb 

(7) 

where hi(t, u) is specified by the integral equation 

Tr 

SJ K,(t, x)hd% Y)[K,(Y, 21) i- K,,(y, U)] dx dy = K,,(t, U), 

The component of the ith sufficient statistic is 

‘a = /T;r(t) [ i%(t) - IT;hl(t, u)m&) du] dt, 

where gi(t) is specified by the integral equation 

s Tr K,(4 u!g&O du = mz(t>, Tb 
The bias component of the ith s ufficient statistic 

1 -+n (1 + AFk), ni= L k=l 
where the A& are the eigenvalues of the kernel, 

KZ(t, u) = K[,-l/a’(t, x)K&, y)K;-sl(u, y) dx dY= 

Tb 

(9) 

(10) 

(11) 

(12) 
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The complete ith sufficient statistic is 

I i =lR +lD +lBi, i i i=l,..., M. 

The test consists of computing 

Zi+lnP,, i- l,...,M (14) 
and choosing the largest. 

A special case of (4) that occurs frequently is 

No KJt, u) = - qt - u), 
2 

q(t) = 0, i = 1, . . . , M 

Then hi(t, u) satisfies the equation 

. 

(1% 

(16) 

No 
s 

Tr 
- hi@ 4 + 
2 

hi(t9 Y)K,,(YY ‘> dy = K,,(t9 “)9 
Tb 

Tb < t, u < Tr, - - 

i=l,.. . , M. (17) 

All of the canonical realizations in Chapter 2 are valid for this case. 
The bias term is 

1 & = - +J)Pi(l I %C),4) dt, (18) 

where [pi(t ) si( a),) is defined as in (2.137). 
The performance calculation for the general Mary case is difficult. 

We would anticipate this because, even in the known signal case, exact 
M-ary performance calculations are usually not feasible. 

An important problem in which we can get accurate bounds is that of 
digital communication over a Rayleigh channel using M-orthogonal 
signals. The binary version of this problem was discussed in Examples 3 
and 4 of Chapter 4 (see pages 11 l-l 17). We now indicate the results for 
the Mary problem. 

The transmitted signal on the ith hypothesis is 

q(t) = J 24 T sin wit Tb < t < T,:H, - - (19) 

the signal passes over a fluctuating Rayleigh channel. The received wave- 
form on the ith hypothesis is 

et> = si(t) + ~(0, Tb < t < T,:H+ - - (20) 

The ith signal si(t) is a sample function of a bandpass process centered 
at CC)~, whose spectrum is symmetric around wJ The signal processes 

t The symmetric assumption is included to keep the notation simple. After we introduce 
complex notation in Chapter 9, we can handle the asymmetric case easily. 
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are essentially disjoint in frequency. The additive noise is a sample function 
from a zero-mean white Gaussian random process with spectral height 
N,/2. The low-pass spectra of the signal processes are identical. We denote 
them by SS,(CCQ. The total received power in the signal is 

6 = 2ab2 s O” S,,(m) do . -co 27T 
(21) 

Kennedy [4] and Viterbi [5] have studied the performance for this case. 
Our discussion follows the latter’s. Starting from a general result in [6], 
one can show that 

[D4No(:“, pJll+p ’ 
(22) 

where D&x) is the Fredholm determinant of the low-pass process, T is 
the length of interval, and 

R = 1nM (23) 

is the transmission rate in nats per second. The parameter p is used to 
optimize the bound. When the observation time is long, we can use 
(I-3.182) to obtain 

In DF(z) = T 
s --x 

( 4) 2 

We now define 

E,(P) A (1 + P> p 2&,(o) dto 
l+--- 

1 + p N, 1 27r 

and 

E(R) = max [E,(p) - pR]. ( 6) 2 
O$<l 

Comparing (25) and (4.21), we observe that 

T E,(P) --- 
2 1 + p p=(l--s)!e 

= P,(S) 

and, in particular, 

Pn 

(28) 



Using (24)-(26), (22) 

The final step is to 
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reduces to 

Pr (E) < e- TE(R) (29) 
perform the maximization indicated in (26). The 

result is obtained as follows: 

1. If 

has a solution for 0 < p 5 1, we denote it as pm. Then 

E(R) = Eo(p,) - p,E()(pm), (31) 

and 
R = ~o~p7n), 

Eo(l) < R < Co, = go(O). - 

(32) 

(33) 
2. If (30) does not have a solution in the allowable range of p, the 

maximum is at p = 1, and 

E(R) = E,(l) - R, (34) 

0 < R < Eo(l). (3% 
The results in (31) and (34) provide the exponents in the Pr (E) expression. 
In the problems, we include a number of examples to illustrate the applica- 
tion of these results. 

This concludes our brief discussion of the M-ary problem. For a large 
class of processes we can find the optimum receiver, but, except for 
orthogonal signal processes, the performance evaluation is usually difficult. 

5.1.2 Suboptimum Receivers 

We have been able to find the optimum receiver to implement the 
likelihood ratio test for a large class of Gaussian signal processes. Fre- 
quently, the filters in the receiver are time-varying and may be difficult to 
implement. This motivates the search for suboptimum receivers, which 
are simpler to implement than the optimum receiver but perform almost 
as well as the optimum receiver. To illustrate this idea we consider a 
simple example. 

Example . Consider the simple binary detection 
received waveforms on the two hypotheses are 

example discussed on page 104. The 

r(t) = s(t) + w(t), Ti < t 5 T+H,, 

r(t) = w(t), Ti < t 5 T+H,, (36) 
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r(t) 
’ hub (7) 

y(t) 
* Squarer ?I- l-f 

dt 
lx 

b Ti 
t 

Fig. 5.1 Suboptimum receiver. 

where w(t) is a white Gaussian process with spectral height IVY,/2 and s(t) is a Gaussian 
process with spectrum 

2kP 
S&u) = - 

w2-+ k2 l 

(37) 

We saw that the optimum receiver could be implemented as a cascade of a time-varying 
filter, a square-law device, and an integrator. The difficulty arises in implementing the 
time-varying filter. 

A receiver that is simpler to implement is shown in Fig. 5.1. The structure is the same 
as the optimum receiver, but the linear filter is time-invariant, 

hsub (4 = e-BTu-l(d, -aJ<r<a (38) 

We choose /? to optimize the 
we know that if 

performance. From our results in Section 4.1 (page 104) 

(39) 

then the suboptimum receiver will be essentially optimum for long observation times. 
For arbitrary observation times, some other choice of /I might give better performance. 
Thus, the problem of interest is to choose /? to maximize the performance. 

With this example as motivation, we consider the general question of 
suboptimum receivers. The choice of the structure for the suboptimum 
receiver is strongly dependent on the particular problem. Usually one 
takes the structure of the optimum receiver as a starting point, tries 
various modifications, and analyzes the resulting performance. In this 
section we discuss the performance of suboptimum receivers. 

To motivate our development, 
for the optimum receiver. The opti 

we fi 
mum 

rst recall the performance results 
receiver computes I, the logarithm 

of the likelihood ratio, and compares it with a threshold. The error 
probabilities are 

and 

’ P 111 = Pr (EIEQ = 
s 

J+&L 1 U,) dL. (41) 
--co 

All of our performance discussion in the Gaussian signal problem has 
been based on p(s), which is defined as 
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the logarithm of the moment-generating function of I, given that H,, is 
true. Since I is the logarithm of the likelihood ratio, we can also write 
p(s) in terms of M&&S), 

P(S) = In M,IH1(~ - 1) (43) 

(see pages I-l 18-I-l 19). Thus we can express both PN and P, in terms of 
P(S) 

A’ suboptimum receiver computes a test statistic I, and compares it 
with a threshold yZ in order to make a decision. The statistic I, is rtot 
equivalent to I and generally is used because it is easier to compute. For 
suboptimum receivers, the probability densities of I, on HI and Ho are 
not uniquely related, and so we can no longer express PM and P, in terms 
of a single function. This forces us to introduce two functions analogous 
to ,u(s) and makes the performance calculations more involved. 

To analyze the suboptimum receiver, we go through a development 
parallel to that in Sections I-2.7 and 111-2.2. Because the derivation is 
straightforward, we merely state the results. We define 

Pr (E 

and 

Pr (E 

The Chernoff bounds are 

pr (E I Ho) < exp hI(so) - s,yl9 so > 0, 

pr (E I Hl) s exp c/4%> - WI9 Sl < 0, 

where 
fio~so> = Y9 so > 0 

and 
Al = 7% s1 < 0. 

The equations (48) and (49) will have a unique solution if 

E[I, 1 HOI < Y < aI, ) HII- 

The first-order asymptotic approximations are 

) H,) - erfc* (so&“(soN exP 

1 H,) - erfc, (--sl&qs,)) exP 
[ 
p&r) - s&lw + f P&s,) 1 , (52) 
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4 9 

r(t) .  YW .+-- Filter n- Squarer 8 5 Integrator 1x > 

Fig. 5.2 General filter-squarer-integrator (FSI) receiver. 

where s, and s1 satisfy (48) and (49). Equations (51) and (52) are analogous 
to (179) and (188). Results similar to (181) and (189) follow easily. 

The results in (44)-(52) are applicable to an arbitrary detection problem. 
To apply them to the general Gaussian problem, we must be able to 
evaluate ,u&) and ,u&) efficiently. The best technique for evaluating 
,u&) and ,u&) will depend on the structure of the suboptimum receiver. 
We demonstrate the technique for the general filter-squarer-integrator 
(FSI) receiver shown in Fig. 5.2. The filter may be time-varying. For this 
structure the techniques that we developed in Section 2.2 (pages 35-44) 
are still valid. We illustrate the procedure by finding an expression for 
Pl (sh 

Calculation of pl(s) for an FSI Receiver. To find ,uJs), we expand y(t), the input to 
the squarer under HI, in a Karhunen-Loeve expansion. Thus 

where the #Ii(t) are the eigenfunctions of y(t) on HI. The corresponding eigenvalues 
are illi* We assume that the eigenvalues are ordered in magnitude so that A,i is the 
largest. From (45), 

pl(s) = In VWzx 1 &II 

= In {E[exP (’ XYi2) 1 Hl]} 
= -&z ln(1 -. 2sAli)9 

1 

i=l 
s < r . 

li 
(54) 

The expectation is a special case of Problem I-4.4.2. The sum can be written as a Fred- 
holm determinant ,t 

P&9 = -i ln Dq&-2s), 

A similar result follows for ,uo(s), 

1 
s < %. (55) 

li 

l%)(s) = -8 ln Rq&--2s), 
1 

s < %. (56) 
Oi 

We now have pa(s) and ,u~(s) expressed in terms of Fredholm determinants. The final 
step is to evaluate these functions. Three cases in which we can evaluate In Dsi&) are 
the following: 

1. Stationary processes, long observation time. 
2. Separable kernels. 
3. State-representable processes. 

t This result is due to Kac and Siegert [8] (e.g., [9, Chapter 91). 
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The procedure for the first two cases is clear. In the third case, we can use the algo- 
rithms in section 2.2.1 or section 2.2.3 to evaluate ,u&) and ,+(s). The important 
point to remember is that the state equation that we use to compute ~~(8) corresponds 
to the system that produces yl(t) when driven by white noise. Similarly, the state 
equation that we use to compute ~~(8) corresponds to the system that produces go(t) 
when driven bv white noise. 

In this section we have developed the performance expressions needed 
to analyze suboptimum receivers. Because the results are straightforward 
modifications of our earlier results, our discussion was brief. The analysis 
based on these results is important in the implementation of practical 
receiver configurations. A number of interesting examples are developed 
in the problems. In Chapter 11, we encounter suboptimum receivers again 
and discuss them in more detail. 

51.3 Adaptive Receivers 

A complete discussion of adaptive receivers would take us 
afield. On the other hand, several simple observations are useful. 

too far 

All of our discussion of communication systems assumed that we made 
a decision on each baud. This decision was independent of those made on 
previous bauds. If the channel process is correlated over several bauds, 
one should be able to exploit this correlation in order to reduce the 
probability of error. Since the optimum “single-baud” receiver is an 
estimator-correlator, a logical approach is to perform a continuous channel 
estimation and use this to adjust the receiver filters and gains. An easy 
way to perform the channel estimation is through the use of decision- 
directed feedback. Here we assume that all past decisions are correct in 
order to perform the channel estimation. As long as most of the decisions 
are correct, this reduces the channel estimation problem to that of a 
“known” signal into an unknown channel. Decision feedback schemes for 
simple channels have been studied by Proakis and Drouilhet [lo]. More 
complicated systems have been studied by Glaser [l 11, Jakowitz, Shuey, 
and White [ 121, Scudder [13, 141, Boyd [15], and Austin [16]. Another 
procedure to exploit the correlation of the channel process would be to 
devote part of the available energy to send a known signal to measure the 
channel. 

There has been a great deal of work done on adaptive systems. In 
almost all cases, the receivers are so complicated and difficult to analyze 
that one cannot make many useful general statements. We do feel the 
reader should recognize that many of these systems are logical extrapola- 
tions from the general Gaussian problem we have studied. References 
that deal with various types of adaptive systems include [ 17]-[30]. 
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5.1.4 Non-Gaussian Processes 

All of our results have dealt with Gaussian random processes. When 
the processes involved are non-Gaussian, the problems are appreciably 
more difficult. 
categories : 

We shall divide our comments on these problems into four 

1. Processes derived from Gaussian processes. 
2. Structured non-Gaussian processes. 
3. Unspecified non-Gaussian processes. 
4. Analysis of fixed receivers. 

We shall explain the descriptions in the course of our discussion. 

Processes Derived from Gaussian Processes. We have emphasized cases 
in which the received waveform is conditionally Gaussian. A related class 
of problems comprises those in which r(t) is a sample function of a process 
that can be derived from a Gaussian process. A common case is one in 
which either the mean-value function or the covariance function contains a 
random parameter set. In this case, we might have m(t, 0,J and KJt, u: 0J. 
If the probability densities of 0m and 0, are known, the parameters 
are integrated out in an obvious manner (conceptually, at least). Whether 
we can actually carry out the integration depends on how the parameters 
enter into the expression. 

If either 8, or 8, is a nonrandom variable, we can check to see if a 
uniformly most powerful test exists. If it does not, a generalized likelihood 
ratio test may be appropriate. 

Structural Non-Gaussian Processes. The key to the simplicity in Gaus- 
sian problems is that we can completely characterize the process by its 
mean-value function and covariance function. We would expect that 
whenever the processes involved could be completely characterized in a 
reasonably simple manner, one could find the optimum receiver. An 
important example of such a processes is the Poisson process. References 
[3 l]-[35] d iscuss this problem. A second important example is Markov 
processes (e.g., [2-2 l]-[2-241). 

Unspec@ed Non-Gaussian Processes. In this case we would like to make 
some. general statements about the optimum receiver without restricting 
the process to have a particular structure. One result of this type is 
available in the LEC case that we studied in Section 4.3. Middleton [36], 
[37], derives the LEC receiver without requiring that the signal process 
be Gaussian. (See [39] for a different series expansion approach.) A 
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second important result concerning unspecified Gaussian processes is 
given in [38]. Here, Kailath extends the realizable estimator-correlator 
receiver to include non-Gaussian processes. 

Analysis of Fixed Receivers. In this case, we consider a fixed receiver 
structure and analyze its performance in the presence of non-Gaussian 
signals and noise. Suitable examples of this type of analysis are contained 
in [40], 1411. 

These four topics illustrate some of the issues involved in the study of 
non-Gaussian processes. The selection was intended to be representative, 
not exhaustive. 

5.1.5 Vector Gaussian Processes 

We have not discussed the case in which the received signal is a vector 
random process. The formal extension of our results to this case is 
straightforward. In fact, all of the necessary equations have been developed 
in the problem sections of Chapters 2-4. The important issues in the 
vector case are the solution of the equations specifying the optimum 
receiver and its performance and the interpretation of the results in the 
context of particular physical situations. In the subsequent volume [42], 
we shall study the vector problem in the context of array processing in 
sonar and seismic systems. At that time, we shall discuss the above issues 
in detail. 

5.2 SUMMARY OF DETECTION THEORY 

In Chapters 2 through 5 we have studied the detection of Gaussian 
signals in Gaussian noise in detail. The motivation of this detailed study 
is to provide an adequate background for actually solving problems we 
encounter when modeling physical situations. 

In Chapter 2 we considered the simple binary problem. The first step 
was to develop the likelihood ratio test. We saw that the likelihood ratio 
contained three components. The first was obtained by a nonlinear 
operation on the received waveform and arose because of the randomness 
in the signal. The second was obtained by a linear operation on the 
received waveform and was due to the deterministic part of the received 
signal. This component was familiar from our earlier work. The third 
component was the bias term, which had to be evaluated in order to 
conduct a Bayes test. 
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We next turned our attention to the problem of realizing the nonlinear 
operation needed to generate ZR. Four canonical realizations were de- 
veloped : 

1. The estimator-correlator receiver. 
2. The filter-correlator receiver. 
3. The filter-squarer receiver. 
4. The optimum realizable filter receiver. 

The last realization was particularly appealing when the process had 
finite state-variable representation. In this case we could use all of the 
effective state-variabl e procedures that we developed in Section I-6.3 
actually to find the receiver. 

A more difficult issue was the performance of the optimum receiver. 
As we might expect from our earlier work, an exact performance calcula- 
tion is not feasible in many cases. By building on our earlier work on 
bounds and approximate expressions in Section I-2.7, we developed 
performance results for this problem. The key to the results was the ,u(s) 
function defined in (2.148). We were able to express this in terms of both a 
realizable filtering error and the logarithm of the Fredholm determinant. 
We have effective computational procedures to evaluate each of these 
functions. 

We next turned to the general binary problem in Chapter 3, where the 
received waveform could contain a nonwhite component on each hypoth- 
esis. The procedures were similar to the simple binary case. A key result 
was (3.33), whose solution was the kernel of the nonlinear part of the 
receiver. The modifications of the various canonical realizations were 
straightforward, and the nerformance bounds were extended. A new 
issue that we encountered was that of singularity. We first derived simple 
upper and lower bo unds on the probability of error in terms of p(g). We 
then showed that a necessary and sufficient condition for a nonsingular 
test was that p(Q) be finite. This condition was then expressed in terms of a 
square-integrability requirement on a kernel. As before, singularity was 
never an issue when the same 
present on both hypotheses. 

white noise component was assumed to be 

In Chapter 4 we considered three special cases that led to particularly 
simple solutions. In Section 4.1 we looked at the stationary-process- 
long-time-interval case. This assumption enabled us to neglect homoge- 
neous solutions in the integral equation specifying the kernel and allowed 
us to solve this equation using Fourier transform techniques. Several 
practical examples were considered. The separable kernel case was studied 
in Section 4.2, We saw that this was a suitable model for pulsed radars 
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with slowly fluctuating targets, ionospheric communications over resolv- 
able multipath channels, and frequency-diversity systems. The solution 
for this *case was straightforward. Finally, in Section 4.3, we studied the 
low-energy-coherence case, which occurs frequently in passive sonar and 
radar astronomy problems. The energy in the signal process is spread over 
a large number of coordinates so that each eigenvalue is small when 
compared to the white noise level. This smallness enabled us to obtain a 
series solution to the integral equation. In this particular case we found 
that the output signal-to-noise ratio (d2) is an accurate performance 
measure. In addition to these three special cases, we had previously 
developed a complete solution for the case in which the processes have 
a finite state representation. A large portion of the physical situations 
that we encounter can be satisfactorily approximated by one of these 
cases. 

In Section 5.1 we extended our results to the Wary problem. The 
optimum receiver is a straightforward extension of our earlier results, but 
the performance calculation for the general problem is difficult. A reason- 
ably simple bound for the case of M-orthogonal processes was presented. 
In Section 5.2 we derived performance expressions for suboptimum 
receivers. 

Our discussion of the detection problem has been lengthy and, in 
several instances, quite detailed. The purpose is to give the reader a 
thorough understanding of the techniques involved in solving actual 
problems. In addition to the references we have cited earlier, the reader 
may we wish to consult [43]-[48] for further reading in this area. In the 
next two chapters we consider the parameter estimation problem that was 
described in Chapter 1. 

5.3 PROBLEMS 

P.5.1 Related Topics 

MARY DETECTION 

Problem 5.1.1. Consider the model described in (4)-(6). Assume that n(t) contains a 
white noise component with spectral height I&/2. Assume that 

mi(t)=O, i--l ,..., M. 

1. Derive (7)-(8) and (1 l)-(14). 

2. Draw a block diagram of the optimum receiver. 

Problem 5.1.2. Generalize the model in Problem 5. 
unequal costs. Derive the optimum Bayes receiver. 

1 .l to include nonzero means and 
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Problem 5.1.3. Consider the model in (15)-(17). 

Assume that 

that 
KJt, u) = iK,(t - u), i = 1, . . . , M 

SEW 
2k =- 

co2 + k2, 

and that the SPLOT condition is valid. The hypotheses are equally likely. 

1. Draw a block diagram of the optimum receiver. 
2. Consider the case in which M = 3. Derive a bound on the Pr (E). 

Problem 5.1.4. Consider the communication system using M-orthogonal signals that is 
described in (19)-(21). On pages 1-263-I-264, we derived a bound on the Pr (E) in an 
M-ary system in terms of the Pr (E) in a binary system. 

1. Extend this technique to the current problem of interest. 

2. Compare the bound in part 1 with the bound given by (22)-(35). For what values 
of R is the bound in part 1 useful? 

ing one of M-orthogonal bandpass 
that each process has N eigenvalues. 

Problem 5.1 S. Consider 
processes in the presence 

the problem of detect 
of white noise . Assume 

1. We can immediately reduce the problem to one with MN dimensions. Denote this 
resulting vector as R. Compute Prim (R 1 H&. 

2. In [6], Gallager derived the has; formula for a bound on the error probability, 

Pr (E 1 H,) 5 
s s 

9 9 l dR[prlII 
m 

(R 1 f&)l”(‘+P) 

-00 

[ 

,II 
x 2 [PrlHI,(R I Hk)ll’(‘+P) ‘, p 2 0. (P-1) 

kZm 1 
Use (P.l) to derive (22). (Hint: Use the fact that E[@] < (Et+‘, 0 < p 5 1.) 

Problem 5.1.6. 

1. Verify the results in (29)-(35). 
2. One can show that Car is the capacity of the channel for this type of communica- 

tion system (i.e., we require M-orthogonal signals and use rectangular signal envelopes). 
Assume 

and 

Plot C,, as a function of 
P, n 2q. (P.2) 

(P.3) 

3. Repeat for 
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Problem 5.1.7. The error exponent, E(R), is defined by (31) and (34). 

1. Plot E(R) as a function of NOR/P,. for the bandlimited message spectrum in (P.4) 
of Problem X1.6. 

2. Plot E(R) as a function of NOR/P,. for the one-pole message spectrum in (P.l) 
of Problem 5.1.6. 

Problem 5.1.8. Assume that we want to signal at low rates so that 

E(R) NE(O). 

1. Consider the one-pole message spectrum in (P. 1) of Problem 5.1.6. Plot E(O)/ 
(P,/N,) as a function of A,. What value of AB maximizes E(O)/(P,/N,)? 

2. Repeat part 1 for the ideal bandlimited message spectrum in (P.4) of Problem 5.1.6. 
3. Compare the results in parts 1 and 2 with those in (4.60) and (4.69). 

Problem 5.1.9. Assume that we want to signal at the rate 

1 
R 1 p, =- ca3 =----• 

10 lON,, 

We want to maximize E(R)/(P,./N,)) by choosing AB. 

1. Carry out this maximization for the one-pole spectrum. 
2. Carry out this maximization for the ideal bandlimited spectrum. 
3. Compare your results with those in Problem 5.1.8. 

Problem 5.1.10. Define 

E;(R) E(R) = max - 
AB P,lNo l [ 1 

1. Find E,*(R) as R varies from 0 to C, for the ideal bandlimited spectrum. 
2. part 1 for the one-pole spectrum. 

Problem 5.1.11 [S]. Assume that each signal process has a non-zero mean. Specifically, 

E{[s&Z cos (qt)]Lp} = m(t), 

E{[si(t)dZ sin (WtJ]Lp} = 0. 

Show that the effect of the non-zero mean is to add a term to E,(p) in (25), which is 

Problem 5.1.12 [7]. Consider the special case of Problem 5.1.11 in which 

s,l(w) = 0. 
1. Prove 

E(R) -= 
cm 

I 

P-$9 
co 

-2 R 

(J) 
l- 

c,’ 
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CCQ 
6 1 =- =- 
No No 

2. Discuss the significance of this result. 

SUBOPTIMUM 

1 
a3 

m2(t) dt. 
-a3 

RECEIVERS 

Problem 5.1.13. Consider the definitions of /lo(s) and ,ul(s) given in (44) and (45). 

1. Derive the Chernoff bounds in (46)-(49). 
2. Derive the approximate error expressions in (51) and (52). 

Problem 51.14. Consider the simple binary detection problem described on page 151 and 
the filter-squarer-integrator receiver in Fig. 5.1. The filter is time-invariant with transfer 
function 

The message spectrum is given in (37). 

1. Write the state equations that are needed to evaluate pl(s) and (uo(s). 
2. Assume that the long-time-interval approximation is valid. Find pl,(s) and 

poao(s). Verify that the value of ,!Y in (39) is optimum. 

Problem 51.15. 

1. Repeat part 1 of Problem 5.1.14 for the case in which s(t) is a Wiener process, 

s(0) = 0, t 2 0, 
E[s2(t)] = a2t, t 2 0. 

2. Find the optimum value of /? for long observation times. 

Problem 5.1.16. Consider the binary symmetric communication problem whose model 
was given in Section 3.4.3. The quantities r,,(t), rsl(t), rc,(t), and r,,(t) were defined in 
Fig. 3.9. We operate on each of these waveforms as shown in Fig. 3.10. Instead of the 
optimum filter h,,(t, u), we use some arbitrary filter hsU&) in each path. Denote the 
output of the top branch as [I and the output of the bottom branch as I,. Define 

I ,  = Zl -  I , .  

The bias terms are both zero and 
In 7 LL ya: = 0. 

Define 
E1ljCs) = In E[eS1l 1 Hi], j = 0, 1, 

and 

1 Prove 

2. Prove 

/loj(s) = In E[eS20 1 Hj], j = 0, 1. 

PBSJO = rull(S) + iJol(-s)9 

PBS,&) = am + h)(s) = /LBS,l(-S). 

where 
Pr (4 < 4 exp (P~S,l(s,N, 

fiBS,l(s)~s=s, = 0. 
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3. Prove 

Pr (c) = 
1 

2(2~Pss,lcGn))~s,(1 - SmJ 
exp ~BS,lbn)~ 

4. Express ,uBS,Js) in terms of Fredholm determinants. 

Problem 51.17. Consider the binary communication system described in Problem 5.1 .16. 
Assume that s&) is a sample function of a stationary process whose low-pass equivalent 
spectrum is S,,(o) and h(t, T) is a time-invariant filter with a rational transfer function. 
Assume that the SPLOT condition is valid. 

1. Find an expression for ,uBS,~&S) in terms of X&I), H(jcu), and IV,,. 

2. Verify that (u BS,J&S) reduces t0 p()pT&~) when H($I) is chosen optimally. 

3. Plot ,uBS,~&S) for, the case in which 

and 

Find s,. 

1 
H(jo) = - 

jo+p' 

Problem 51.18 (continuation). Consider the binary communication system discussed in 
Problems 51.16 and 51.17. We are interested in the case discussed in part 3 of Problem 
5.1.17. 

One of the problems in designing the optimum receiver is that P,. may be unknown or 
may vary slowly. Assume that we think that 

p, = pm 
and design the optimum receiver. 

1. Evaluate ,uB~,&& and poPT,(# for this receiver when 

1l A 2pm 
1 --= 

kN0 
100 

2. Now assume that 

OSP,, I[ P,< IOP,,. 

Plot ,uBS,~&,). The receiver design is fixed. 
3. Assume that the receiver is redesigned for each P,.. Compare /joPT,co(&) with 

PBS,laA%n)* 

Problem 5.1.1 .9. The LEC receiver was derived in Section 4.3 and was shown 
This receiver is sometimes used when the LEC condition is not satisfied. 

in Fig. 4.21. 

1. Derive an approximate expression for the performance of this receiver. 
2. Assume that s(t) has a finite-dimensional state representation. Find a state equa- 

tion for ,ul(s) and ,uo(s). 
3. Assume that the SPLOT condition is valid. Find a simple expression for ,u~(s) and 

P&). 
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6 

Estimation of the Parameters 
of a Random Process 

The next topic of interest is the estimation of the parameters of a Gaussian 
process. We study this problem in Chapters 6 and 7. Before developing a 
quantitative model of the problem, we discuss several physical situations 
in which parameter estimation problems arise. 

The first example arises whenever we model a physical phenomenon 
using random processes. In many cases, the processes are characterized 
by a mean-value function, covariance function, or spectrum. We then 
analyze the model assuming that these functions are known. Frequently 
we must observe a sample function of the process and estimate the 
process characteristics from this observation. The measurement problems 
can be divided into two categories. IQ the first, we try to estimate an entire 
function, such as the power density spectrum of stationary processes. In 
the second, we parameterize the function and try to estimate the param- 
eters; for example, we assume that the spectrum has the form 

S(w) = -L- 
co2 + k2 ’ (1) 

and try to estimate P and k. In many cases, this second category will fit 
into the parameter estimation model of this section. An adequate dis- 
cussion of the first category would take us too far afield. Some of the 
issues are discussed in the problems. Books that discuss this problem include 
WPl* 

The second example arises in such areas as spectroscopy, radio astron- 
omy, and passive sonar classification. The source generates a narrow-band 
random process whose center frequency characterizes the source. Thus, the 
first step in the classification problem is to estimate the center frequency 
of the signal process. 
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168 6.1 Parameter Estimation Model 

The third example arises in the underground nuclear blast detection 
problem. An important parameter in deciding whether the event was an 
earthquake or bomb is the depth of the source. At the station, we receive 
seismic waves whose angle of arrival depend on the depth of the source. 

The common feature in all these examples is that in the parameters of 
interest are imbedded in the process characteristics. In other words, the 
mapping from the parameter to the signal is random. In this chapter and 
the next, we develop techniques for solving this type of problem. 

In Chapter 6 we develop the basic results. The quantitative model of 
the problem is given in Section 6.1. In Section 6.2 we derive the likelihood 
function, the maximum likelihood equations, and the maximum a- 
posteriori probability equations. In Section 6.3 we develop procedures 
for analyzing the performance. 

In our study of detection theory we saw that there were special categories 
of problems for which we could obtain complete solutions. In Chapter 7 
we study four such special categories of problems. In Section 7.1 we con- 
sider the stationary-process, long-observation-time case. The examples 
in this section deal with estimating the amplitude of a known covariance 
function. Several issues arise that cannot be adequately resolved without 
developing new techniques, and so we digress and develop the needed 
expressions. This section is important because it illustrates how to bridge 
the gap between the general theory of Chapter 6 and the complete solution 
to an actual problem. In Sections 7.2, 7.3, and 7.4 we consider processes 
with a finite state representation, separable kernel processes, and low- 
energy-coherence problems, respectively. In Sections 7.5 and 7.6 we 
extend the results to include multiple parameter estimation and summarize 
the important results of our estimation theory discussion. 

Two observations are useful before we begin our quantitative discussion. 

1. The discussion is a logical extension of our parameter estimation 
work in Chapters I-2 and I-4. We strongly suggest that the reader review 
Section I-2.4 (pages 52-86), Sections 1-4.2.2-I-4.2.4 (pages 271-287), and 
Section I-4.3.5 (pages 307-309) before beginning this section. 

2.’ Parameter estimation problems frequently require a fair amount of 
calculation to get to the final result. The casual reader can skim over this 
detail but should be aware of the issues that are involved. 

6.1 PARAMETER ESTIMATION MODEL 

The model of the parameter estimation problem can be described 
easily. The received waveform r(t) consists of the sum of signal waveform 
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and a noise waveform, 

r(t) = s(t, 4 + w(t), Ti < t < Tfa - - (2) 

The waveform s(t, A) is a sample function from a random process whose 
characteristics depend on the parameter A, which we want to estimate. 

To emphasize the nature of the model, assume that A is fixed and w(t) 
is identically zero. Then, each time the experiment is conducted, the signal 
waveform s(t, A) will be different because it is a sample function of a 
random process. By contrast, in the parameter estimation problems of 
Chapter I-4, the mapping from the parameter to the signal waveform is 
deterministic. 

We assume that the signal process is a conditionally Gaussian process. 

Definition. A random process s(t, A) is conditionally Gaussian if, given 
any value of A is the allowable parameter range xa, s( t, A) is a Gaussian 
process. 

A conditionally Gaussian process is completely characterized by a 
conditional mean-value function 

Ebk 4 I 4 * WY 4, - Ti < t < Tf - - (3) 

and a conditional covariance function 

E[(s(t, A) - m(t, A))(@, A) - m(u, A)) I Al A K,(t, u : A), 
Ti < t, u < Tf. - - (4) 

The noise process is a zero-mean, white Gaussian noise process with 
spectral height N,/2 and is statistically independent of the signal process. 
Thus r(t) is also a conditionally Gaussian process, 

and 

EW 1 AI = Eb(4 A) 1 A] = m(t, A), Ti < t < Tf, _ _ (9 

E([r(t? - m(t, A)l[r(~Q - m(u, A)] 1 A} a K,(t, u:A) 

No 
= K,(t, u : A) + - s(t - zi), 

2 
K 2 t, u < Tt. (6) 

Observe that any colored noise component in r(t) can be included in 
s(t, A). We assume that m(t, A), K,(t, U: A), and No/2 are known. 

The parameter A will be modeled in two different ways. In the first, 
we assume that A is a nonrandom parameter that lies in some range xa, 
and we use maximum likelihood estimation procedures. In the second, we 
assume that A is the value of a random variable with a known probability 
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density p&4). For random parameters we can use Bayes estimates with 
various cost functions. We shall confine our discussion to MAP estimates. 

These assumptions specify our model of the parameter estimation prob- 
lem. We now develop an estimation procedure. 

6.2 ESTIMATOR STRUCTURE 

Our approach to the estimation problem is analogous to the one 
taken in Chapters I-2 and I-4. We first find the likelihood function A(A). 
Then, if A is a nonrandom parameter and we want an ML estimate, we 
find the value of A for which A(A) is a maximum. If A is the value of a 
random variable and we desire an MAP estimate, we construct the 
function 

f(A) a ln 44 + lqL(A), (7) 

and find that value of A where it is a maximum. The only new issue is the 
actual construction of A(A) and the processing needed to find the maxi- 
mum. In this section we address these issues. 

62.1 Derivation of the Likelihood Function 

The derivation of the likelihood function is similar to that of the 
likelihood ratio in Chapter 2, and so we can proceed quickly. The first 
step is to find a series expansion for r(t). We then find the conditional 
probability density of the coefficients (given A) and use this to find an 
appropriate likelihood function. The procedure is simplified if we choose 
the coordinate system so that the coefficients are conditionally statistically 
independent. This means that we must choose a coordinate system that is 
conditionally dependent on A. The coefhcients are 

r,(A) a s 
Tr 

r(t)+&: A) dt. 
Ti 

e-9 

The ri(A) are Gaussian random variables whose mean and variance are 
functions of A. 

E[ri(A) 1 A] = E 

We choose the &(r: A) so that 
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From our earlier work, we know that to achieve this conditional inde- 
pendence the #&: A) must be the eigenfunctions of the integral equation 

s Tf 
ai(Aj$i(t I A) = K,(t, U: A)+i(u: A) dl4, 

Ti 
Ti < t < 7”. - - (11) 

Because the covariance function depends on the parameter A, the eigen- 
functions, eigenvalues, or both will depend on A. If K,(t, U: A) is positive 
definite, the eigenfunctions form a complete set. If K,(t, U: A) is only 
non-negative-definite, we augment the set of eigenfunctions to make it 
complete. 

Since the resulting set is complete, we can expand the mean-value func- 
tion m(t, A) and the received waveform r(t) in a series expansion. These 
series are 

and 

m(t, A) = 2 mi(Aj&(t: A), T < t < Tf (12) 
i=l 

r(t) = 1.i.m. i [r,(A) - %(A)lq4(4 A) + m(t, A), & 5 t < Tfe (13) 
Ir’-+ co i=l 

We denote the first K coefficients by the vector R. The probability 
density of r given the value of A is 

P,,G(R 1 A) = fi 1 

i=l J% (~$42 + l,(A)) 

(14) 
Just as in the known signal case (Section I-4.2.3), it is convenient to 

define a likelihood function &(A), which is obtained from p,,,(R 1 A) 
by dividing by some function that does not depend on A (see page I-274). 
As before, we divide by 

Dividing (14) by (15), taking the logarithm of the result, and letting 
a, we have 

1* 
lnA(A) = -2 

N&4 &(A> + No/2 

K-+ 

(16) 
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Comparing (16) with the limit of (2.19) as K -+ 00 in our detection theory 
discussion, we see that there is a one-to-one correspondence. Thus, all of 
the closed-form expressions in the detection theory section will have 
obvious analogs in the estimation problem. By proceeding in a manner 
identical with that in Chapter 2, we can obtain four terms corresponding to 
those in (2.3 lj-(2.34). 

The first term can be written as 

Tf 

l,(A) = -!- 
No ss 

r(t)h(t, u: A)r(u) dt du, 

Ti 

(17) 

where h(t, U: A) satisfies the integral equation N, s Tf 

- h(t, u:A) + 
2 

hit, x: A)K,(x, u: A) dx = K&t, u: A), 
Ti 

K ,< t, u 2 Tf. (18) 

We see that h(t, u: A) is the optimum unrealizable filter for the problem in 
which we observe 

r(t) = s(t, 4 + w(t), Ti < t < Tr, - - (19) 

and we want to make the MMSE error estimate of s(t, A) under the 
assumption that A is known. As in the detection problem, we shall fre- 
quently use the inverse kernel Q,<t, U: A), which can be written as 

Q,(t, u: A) = ; [6(t - u) - h(t, u: A)], 
0 

Ti < t, u < Tf. (20) 

The second term in (16) can be written as 

Tf 

MA) = 

ss 

r(t)Q,(t, u: Ajm(u, A) dt du. 

Ti 

(21) 

Recall that the subscript D denotes deterministic and is used because I,(A) 
is a’nalogous to the receiver output in the known signal problem. Alter- 
natively, 

I I 

I 1 
Tj 

MA) = r(tjg(4 4 dt, Ti (22) 

where g(t, A) is defined as 

s Tf rs(t, 4 = Q,(t, u: A)m(u, A) du. 
Ti 

(23) 
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We can also specify g(t, A) implicitly by the equation 

s Tf 
m(t, A) = K,(t, u :A)g(u, A) du, Ti < t < Tf* - - (24) 

Ti 

The function g(t, A) is familiar from the problem of estimating the 
parameters of a known signal in colored noise. 

The remaining terms in (16) are the bias terms. The first is 

1 + y) = - k/TyE&:A) dt, (25) 

where &Jt : A) is the realizable mean-square filtering error for the filtering 
problem in (19). As in the detection case, we can also evaluate the second 
term in I,(A) by means of the Fredholm determinant [see (2.74)]. The 
second bias term is 

m(t, A)Q,(t, 21: A)m(u, A) dt du 

/ = --$:m(t,A)g(t,A)dt. 

(26) 

Notice that the integral in $](A) is’just d2(A) for the problem of detecting 
a known signal m(t, A) in colored noise. The likelihood function is 

In A(A) = b(A) + l,(A) + l%‘(A) + Z%‘(A), (27) 

where the component terms are defined in (17), (22), (25), and (26). 
We can now use In A(A) to find cimap (r(t)) or ci,&(t)). The procedure 

is conceptually straightforward. To find a,,, we construct In A(A) as a 
function of A and find the value of A where it is a maximum. To find 
A amap we construct the function 

f(A) A ln A(A) + lnp,(A) = b(A) -I- I,(A) -i- b(A) + 1~ p,(A) (28) 

and find the value of A where it is a maximum. 
Even though the procedure is well defined, the actual implementation is 

difficult. A receiver structure analogous to that in the PFM problem 
(Fig. I-4.31) of Section I-4.2.3 is usually needed. 

To illustrate this, we consider the case of the maximum likelihood 
estimation of a parameter A. We assume that it lies in the interval [A,, AB]. 
In addition, we assume that the mean m(t, A) is zero. We divide the 
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parameter range into intervals of length A. The center points of these 
intervals a re 

A, 
A 

=A,+-, 
2 

3A 
A, = A, + - 9 

2 

(29) 

and so forth. There are M intervals. We then construct In A(&), i = 
1 M’, by using the parallel processing shown in Fig. 6.1. Several 
observations are worthwhile : 

1. In general we have to solve a different integral equation to find the 
filter in each path. Thus the estimation problem has the same degree of 
complexity as an M-ary detection problem in the sense that we must 
build M-parallel processors. 

2. The bias terms are usually functions of A and cannot be neglected. 
3. In analyzing the performance, we must consider both global and 

local errors. 

4. We have to consider the effect of the grid size A. There is a trade-off 
between accuracy and complexity. 

Before leaving our discussion of the estimator structure, we digress 
briefly and derive two alternative forms for I,(A). Repeating (17), 

E,(A) = -!- 
No 

r(t)h(t, u: A)r(u) dt du. (17) 

This corresponds to Canonical Realization No. 1 in the detection 
problem. To obtain Canonical Realization No. 3, we define /?(t, U: A) 
implicitly, 

h(t, u:A) = 
s 

T’hc’/iJ(z, t : A)h[‘ml(z, u : A) dx, 
Ti 

Then 

Ti < f, u < Tf. (30) 

2 

t : A)r(t) dt 1 . (31) 

This can be implemented by a filter-squarer-integrator for any particular A. 
To obtain Canonical Realization No. 4, we go through an argument 

parallel to that on pages 19-21. The result is 

Z,(A) = 2- N 
s 
aI2r(t)S,(r : A) - &“(t: A)] dt, 

0 i 
(32) 
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Fig. 6.1 Generation of In A(A). 

where 

s t ,$(t: A) = h,(t, u : A)r(u) du. 
Ti 

(33) 

The filter h,(r, U: A) satisfies the equation 

No h,(t, u: A) + s t 2 
h&t, 2: A)K,(z, u : A) dx = K&t, u : A), 

Ti 

T$ < u 5 t. (34) 

For the zero-mean case, the function !,(t : A) is the realizable MMSE 
estimate of s(t: A), assuming that A is given. We encounter examples of 
these realizations in subsequent sections. Many of the same issues that we 
encountered in the detection problem will also arise in the estimation 
problem. 

Before considering some specific cases, we derive the maximum likeli- 
hood (ML) equations and the maximum a-posteriori probability (MAP) 
equations. 

6.2.2 Maximum Likelihood and Maximum A-Posteriori Probability 
Equations 

If the maximum of In A(A) is interior to ~a and In A(A) has a continuous 
first derivative, the ML equations specify a necessary condition on dml. 

The ML equation follows easily by differentiating (27) and setting the 
results equal to zero. Taking the partial derivative of In h(A) with respect 
to A, we have 

a ln 44 - WA) + al&o + al,(A) _- . 
aA i?A aA aA 

(35) 
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To evaluate the first term, we differentiate the function in (17). The 
result is Tf WA) 1 ah(t, u : A) --m - 

aA N, ss r(t) 
aA 

r(u) dt du 

Ti 
Tr 

1 =-- 
2 ss 

r(t> aQ,(t, u : A) 
aA 

r(u) dt du. (36) 

Ti 

Notice that to find a/i@, U: A)/&4 we must solve (17) as a function of A 
and then differentiate it. To evaluate the second term, we differentiate 
(21) and use (20) to obtain Tr ah&9 2 i?h(t, u : A) - - -- 

aA N, 
f-0) 

aA 
m(u, A) dt du 

Ti 
Tf 

+ 
WG 4 

r(t)Q,(t, u: A) - 
aA 

dt du. (37) 

Finally, from (25) and (26), I’f %3(A) 1 i?h(t, u: A) --- - 
aA N, ss m(4 A) 

aA 
m(u, A) dt du 

Ti Tf - m(t, A)Q,(t, u :A) - am(u, Aj dt du 
aA 

Ti 

1 -- 
s 

Tf at,‘,(t, A) dt. 
No Ti aA 

Two alternative forms of the last term in (38) are 

1 
s 

Tr 
-- 

N 0 Ti aA 
dt 

1 -- - 
2 SC 

K,(t, u : A) 

T;  

aQ,(t, U: A) 

aA 
dt du 

Tr 1 aK,(t, u : A) - -- - 
2 ss aA 

Q,(t, u : A) dt du (39) 

Ti 
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(see Problem 6.2.1). Collecting terms, we have 

TI 
au(A) 1 aQ,(t, u : 4 -- - dt du 

aA 2 
K,(t, u : A) 

aA 

Tf + am@, A) - Q,(t, u: A)[r(u) - m(u, A)] dt du 
aA 

- m(t, 41 
aQ,(t, u : A) 

aA 
Ti 

x W) - m(u, A)] dt du. 

(40) 

If we assume that the derivative exists at the maximum of In A(A) and that 
the maximum is interior to the range, then a necessary condition on the 
maximum likelihood estimate is obtained by equating the right side of (40) 
to zero. To find the MAP equation, we add (a InpJA)/aA) to (40) and 
equate the result to zero. 

The likelihood equation obtained from (40) is usually difficult to solve. 
The reason is that even if the parameter appears linearly in the signal 
covariance function, it may not appear linearly in the inverse kernel. Thus, 
the necessary condition is somewhat less useful in the random signal case 
than it is in the known signal case. 

6.3 PERFORMANCE ANALYSIS 

The performance analysis is similar to that in the nonlinear estimation 
problems in Chapters T-2 and I-4. We divide the errors into local and 
global errors. The variance of the local errors can be obtained from a power 
series approach or by a generalized Cramer-Rao bound. The global 
behavior can be analyzed by an extension of the analysis on pages 1-279- 
1-284. In this section we derive the generalized Cramer-Rao bound and 
discuss methods of calculating it. 

6.3.1 A Lower Bound on the Variance 

We assume that A is a nonrandom variable that we want to estimate. We 
desire a lower bound on the variance of any unbiased estimate of A. 
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The derivation on pages 1-66-I-68 extends easily to this case. The result 
is that for any unbiased estimate ci(r(t)) of the nonrandom variable A, the 
variance satisfies the inequality 

with equality if and only if 

a ‘;tcA) = {d(r(t)) - A}k(A). (42) 

To evaluate the bound we differentiate (40). The result is 

’ a2 In A(A) 1 a2Qr(t, u : A) ---- 
aA 2 - 

K,(t, u : A) dt du 
2 aA 2 

a&( t, u : A) . aQ,(t, u : A) dt du 
aA aA Tf 

a44 4 - - Q,(t, u:A) ““;A A) dt du 
aA 

Ti 
Tf 

- m(t, A)] 
a”Q,.(t, u : A) 

aA 2 [r(u) - m(u, A)] dt du 

Ti 

+ (terms whose expectations are zero). (43) 

When we take the expectation of the last integral, we find that it cancels 
the first term in (43). Thus any unbiased estimate of A will have a variance 
satisfying the bound 

Var [d(r( t)) - A] 2 - Q,(t, ti : A) - 
aA 

am(u, A) dt du 
aA 

Tf -1 

1 -- 
2 ss 

a&U, u:A) aQ,(t, u :A) dt du 
aA aA 

Ti 

(44) 
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For notational convenience in the subsequent discussion, we denote the 
first term in the braces by J(l)(A), the second by J@)(A), and the sum by 

a44 A) 7 Qr( t, u : Aj am(u, A) dt du aA 
, 

and 

Tf 

Jf2’(A) a - + dt du a&k u : A) aQ,(t, u : 4 . 
aA aA 

I 

(45) 

(46) 

Several observations are useful : 

1. The terms in the bound depend on A. Thus, as we have seen before, 
the variance depends on the actual value of the nonrandom parameter. 

2. The bound assumes that the estimate is unbiased. If the estimate is 
biased, a different bound must be used. (See Problem 6.3.1.) 

3. The first term is familiar in the context of detection of known 
signals in colored noise. Specifically, it is exactly the value of d2 for the 
simple binary detection problem in which we transmit &z(t, A)/aA and 
the additive colored noise has a covariance function K,(t, U: A). Thus, the 
techniques we have developed for evaluating d2 are applicable here. 

We now consider efficient procedures for evaluating J’“)(A). 

6.3.2 Calculation of J(2)(A)t 

The Jt2)(A) term arises because the covariance function of the process 
depends on A. It is a term we have not encountered previously, and so we 
develop two convenient procedures for evaluating it. The first technique 
relates it to the Bhattacharyya distance (recall the discussion on pages 
7 l-72), and the second expresses it in terms of eigenfunctions and 
eigenvalues. 

The techniques developed in this section are applicable to arbitrary 
observation intervals and processes that are not necessarily stationary. 
In Section 7.1, we shall consider the stationary-process, long-observation- 
time case and develop a simple expression for J(2)(A). 

t This section may be omitted on the first reading 
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Relation to Bhattacharyya Distance. In this section we relate J(A) to the 
Bhattacharyya distance. We first work with r,~-(t) and the vector R and 
then let K --+ co in the final answer. We define a function 

This is simply ~(8) for the general binary detection 

p,,H,(R 1 K) = Pr,a(R 1 Al) 
and 

PrlH,(R ( m = &z(R IA)* 

The Bhattacharyya distance is just 

WA19 4 = -pk Al, 4. 

Using (50) and (47) leads to 
Pm 

A) dR. (47) 

problem in which 

(48) 

(49) 

(50) 

We are interested in the case in which 

AA a A, - A (52) 

is small, and so we expand both sides of (51) in a series. Expanding the 
left side in a Taylor series in A1 about the point Al = A gives 

e-UL41,A) = (@3L4,A) _ aB(A1y A) e-B(A1 A) , AA 

aA 1 1 *4 4 l=L 

+ 1 a2w1, A) 
z aAl N 

- (a’(-$ A))lje-s(~l~~)lAl=A(AA)2 + . . . . 

From (47), it follows easily that 

a~(& 4 =0 
aA 1 Al=A 

(see Problem 6.3.2). Thus, (53) reduces to 

e-B(A~.A) = 1 + a2w1, 4 . . . 
aA 2 

1 

(54) 

(5% 

To expand the right side of (51), we use a Taylor series for the first term 
in the integrand and then integrate term by term. The result is s -00 m p$(RIA,)p$(RIA) dR P 1 - (x 8 2 s -00 cQ ( [aPr,a(R 1 A)l/aA])2 dR 

l P,,(p 1 4 
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The integral on the right side of (56) can be written as 

@,A) do - jy a2 In &,dRIA) 
- 

2 
. 

aA 

The term on the right side of (57) is just the negative of J(A). Substituting 
(55) and (56) into (51) and equating the coefficients of (AA)2, we have 

Notice that the expression in (58) includes both P(A) and J(“)(A). To 
calculate Jt2)(A), we assume that the process is zero-mean and use the 
formula for ,u(s) given in (3.60), 

In the last term we have a composite process of the type discussed in 
(3.63). We emphasize that s(t, A) and s(t, A,) are statistically independent 
components in this composite process. Differentiating twice and sub- 
stituting into (58) gives the desired result. 

f2’(A) = k-5 /T;tp(t 1 ,/is<=, A,) + ,&(a, A), :) dt 

I a2 Tf - 2 s b t 1 SC, Al), No (60) 
1 s ( 

T 
i 2 Al=A’ 

It is worthwhile pointing out that in many cases it will be easier to 
evaluate Jt2)(A) by using the Fredholm determinant (e.g., Section 2.2.3). 

Ei’genvalue Approach. In this section we derive an expression for J(2)(A) 
in terms of the eigenvalues and eigenfunctions of &(t, u : A). From (20) 
it is clear that we could also write Jf2)(A) as Tr J’“‘(A) = se!- dt du aK,(f, u :A) ah@, u: A) 

l 

NO ss aA dA 
Ti 

This expression still requires finding h(t, u : A), the optimum unrealizable 
filter for all t and u in [T,, T,]. In order to express Jt2)( A) in terms of 
eigenvalues and eigenfunctions, we first write h(t, u : A) as the series 

tfi(t: A)+i(u : A). (62) 
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Differentiating K,.(t, u : A) h(t, u : A) and using the results in (69, we obtain 

where 

2 * a3 -- cc AicAvj(A) &i(A), (63) 
N,i=lj=lA&4) + NJ2 

and 

a,,(A) cs s Tf y +j(t:A) &. (65) Ti 
The expression in (63) is not particularly useful in the most cases. A 
special case of interest in which it is useful is the one in which the eigen- 
functions do not depend on A. A common example of this case is when A 
corresponds to the amplitude of the covariance function. Then the last 
two terms in (63) are zero and 

l 

(66) 

The form in (66) is reasonably easy to evaluate in many problems. 
A simple example illustrates the use of (66). 

Example. The received waveform is 

r(t) = s(t, A) + w(t), O<t<T. (67) 

The signal is a sample function of a Wiener process. It is a Gaussian process with 
statistics 

EM 41 = 0, t>O (68) 
and 

s(0, A) = 0, (69) 

K,(t, u : A) = A min (t, u), 0 < t, u. (70) 

This process was first introduced on page I-195. The additive noise w(t) is a sample 
function from a statistically independent white Gaussian process with spectral height 
N,/2. We want to estimate the nonrandom parameter A. 

In Problem 7.2.1, we shall derive the optimum receiver for this problem. In the 
present example, we simply evaluate the expression in (66). From page I-196, the eigen- 
values are 

AT2 
4b4>= (i-*)2n2 9 i=LL**, 

and the eigenfunctions do not depend on A. Differentiating (71) gives 

(71) 

aAi(A) T2 --E-. 
8A (i - *)2~2 
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Using (71) and (72) in (66) gives 

J(A) = &c2)(A) 
1 

1 + [NO/2AT2](i - 1)2n2 ’ 

The bound on the normalized variance of any unbiased estimate is 

Var [ci - A] 2 
A2 '03 

2 [(l + [NO/2AT2](i - 1)2,2)2]-1’ 
i=l 
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(74) 

The sum can be expressed in terms of polygamma functions whose values are tabulated 
(e.g., [4, page 2651). In Chapter 7 we shall see that for large values of 2AT2/N0, the ML 
estimate is essentially unbiased and its variance approaches this bound. For small 
values of 2AT2/N0, the bias is an important issue. We discuss the bias problem in detail 
in Section 7.1. 

The final topic of interest is the performance when we estimate a random 
variable. In the next section we derive a lower bound on the minimum 
mean -square error. 

6.3.3 Lower Bound on the Mean-Square Error 

To derive the bound on the mean-square error we go through a similar 
procedure (e.g., page I-72). Since the derivation is straightforward, we 
leave it as an exercise. The result is 

The expressions for P(A) and Jt2J(A) are given in (45) and (46). This 
bound holds under weak conditions analogous to those given on page 
I-72. Two observations are useful: 

1. Since a is a random variable, there is no issue of bias. The bound is 
on the mean-square error, rtot the variance. 

2. There is an expectation over p,(A) in each term on the right side of 
(75). Thus the bound is not a function of the actual value of A. In most 
cases it is difficult to perform this integration over A. 

Most of our examples in the text will deal with nonrandom variables. 
The extension of any particular example to the random-variable case is 
straightforward. 

6.3.4 Improved Performance Bounds 

Our discussion of performance has concentrated on generalizations of 
the Cramer-Rao bounds. In many problems when the processes are 
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stationary, one can show that the variance of the ML estimate approaches 
the bound as the observation time increases (e.g., [S]). On the other hand, 
as we have seen before, there are a number of problems in which the bound 
does not give an accurate indication of the actual performance. 

One procedure for obtaining a better estimate is suggested by the 
structure in Fig. 6.1. We consider the problem as an M-ary detection 
problem, find the error probability, and translate this into a global 
estimation error. This technique was introduced for the problem of 
estimating deterministic signal parameters by Woodward [6] and Kotel- 
nikov [7]. It was subsequently modified and extended [8]-[13]. We 
discussed the approach on pages 1-278-I-284. The extension to the random 
signal parameter case is conceptually straightforward but usually difficult 
to carry out. In Problem 7.1.23, we go through the procedure for a 
particular estimation problem. 

A second procedure for evaluating the performance is to use the 
Barankin bound [14]. This technique has been applied to the deterministic 
signal parameter problem [ 15]-[ 171. Some progress has been made in the 
random signal problem by Baggeroer [18]. Once again, the basic ideas are 
straightforward but the actual calculations are difficult. 

In Chapter 7, we study some particular estimation problems. At that 
point, we consider the performance question again in more detail. We 
may now summarize the results of this chapter. 

6.4 SUMMARY 

In this chapter we have developed the basic results needed to study the 
parameter estimation problem. The formal derivation of the likelihood 
function. was a straightforward extension of our earlier detection results. 
The resulting likelihood function is 

Tf 

In A(A) = ?- 
No ss 

Tf 

r(t)h(t, 21: A)r(u) nt du + 

s 
m& 4 tft 

Ti 

Ti 

1 0 Tf 
-- 

s No Ti 
Eld(t:A) dt - i 

s 
m(t, A)g(t, A) dt, (76) T 

i 

where the various functions are defined in (18), (23), and (25). To find 
A awE we plot In R(A) as a function of A and find the point where it is a 
maximum. 

The next step was to find the performance of the estimator. A lower 
bound on the variance of any unbiased estimate was given in (44). 
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At this point in our discussion we have derived several general results. 
The nest, and more important, step is to see how we can use these results 
actually to solve a particular estimation problem. We study this question 
in detail in Chapter 7. 

6.5 PROBLEMS 

This problem section is brief because of the introductory nature of the chapter. 
Section 7.7 contains a number of interesting estimation problems. 

P.6.2 Estimator Structure 

Problem 6.2.1. Verify the result in (39). (Hint: use the original definition of Q,(t, u: A) 
and an eigenfunction expansion of the various terms.) 

Problem 6.2.2. Consider the vector version of the model in (2). The received waveform is 

r(t) = Sk 4 + w(t), Ti < t 5 Tf. 

The signal process s(t, A) is a vector, conditionally Gaussian process with conditional 
mean-value function m(t, A) and conditional covariance function matrix K,(t, u: A). 
The additive white Gaussian noise has a spectral matrix (N,/2)1. 

1. Find an expression for In A(A). 
2. Find an expression for Z&t) in terms of Canonical Realizations No. 1, 3, 4, 

and 4s. 
3. Derive the vector version of the bound in (44). 

Problem 6.2.3. In Section 6.1, we indicated that if a colored noise component was 
present it could be included in s(t, A). In this problem we indicate the colored noise 
explicitly as 

r(t) = ss(t, A) + n,(t) + w(t), Ti < t 5 Tf* 

The processes are zero-mean Gaussian processes with covariance functions K,,(t, u), 
K,,(t, u), and (&/2)8(t - u), respectively. 

1. Modify (16), (17), and (25) to include the effect of the colored noise explicitly. 
2. Can any of the above expressions be simplified because of the explicit inclusion 

of the white noise? 

Problem 6.2.4. The model in Problem 6.2.3 is analogous to a class B, detection problem. 
Consider the model 

dt> = s(t, A) + n,(t), Ti 5 t I Tf9 

where n,(t) does not contain a white component. 
1. Derive an expression for In R(A). 
2. Derive a lower bound on the variance of any unbiased estimate analogous to (44). 

(Hint: Review Section 3.5.) 

Problem 6.2.5. Assume that 

r(t) = Sk 4 + w(t), Ti I t < Tf, 
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with probabilityp, and that 

r(t) = w(t), Ti S t Ls Tf9 

with probability (1 - p), 
1. Derive an expression for In A(A). 
2. Check your answer for the degenerate cases when p = 0 and p = 1. 

P.6.3 Performance 

Problem 6.3.1. Assume that 
EL@ - A)] = B(A). WI 

Derive a lower bound on the variance of any estimate satisfying (P.1). 

Problem 6.3.2. Use the definition of B(A,, A) in (47) and (50) to verify that (54) is valid. 

Problem 6.3.3. Carry out the details of the derivation of (75). 
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Special Categories of 
Estimation Problems 

As in the detection problem, there are several categories of processes 
for which we can obtain a reasonably complete solution for the estimator. 
In this chapter we discuss four categories: 

1. Stationary processes, long observation time (7.1). 
2. Finite-state processes (7.2). 
3. Separable kernel processes (7.3). 
4. Low-energy coherence (7.4). 

We exploit the similarity to the detection problem whenever possible and 
use the results from Chapter 4 extensively. For algebraic simplicity, we 
assume that m(t, A) is zero throughout the chapter. 

In Section 7.5, we consider some related topics. In Section 7.6, we 
summarize the results of our estimation theory discussion. 

7.1 STATIONARY PROCESSES: LONG OBSERVATION TIME 

The model of interest is 

40 = s(t., 4 + w(t>, Ti < t < Tf. _ - (1) 

We assume that s(t, A) is a sample function from a zero-mean, stationary 
Gaussian random process with covariance function 

K,(t, u:A) ii K,(t - UA). (2) 

The additive noise w(t> is a sample function from an independent, zero- 
mean, white Gaussian process with spectral height N,/2. Thus, 

K,(t, u :A) = K,(t - u :A) + 3 d(t - 24). 
2 

(3) 
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The power density spectrum of r(t) is 

S&xA) = S,(co:A) + 5 
2 

In addition, we assume that 

T LL Tf - Ti 

(4) 

(5) 

is large enough that we can neglect transient effects at the ends of the 
interval. (Recall the discussion on pages 99-101.) 

In this section we discuss the simplifications that result when the SPLOT 
condition is valid. In Section 7.1.1, we develop some general results and 
introduce the amplitude estimation problem. In Section 7.1.2, we study 
the performance of truncated estimators (we define the term at that point). 
In Section 7.1.3, we discuss suboptimum receivers. Finally, in Section 
7.1.4, we summarize our results. 

7.1.1 General Results 

We want to find simple expressions for I,(A), I,(A), the MAP and ML 
equations, and the lower bound on the variance. Using (6.17), (6X), (4), 
and the same procedure as on pages 100-101, we have Tf I,(A) = J- N, ss r(t)h(t - 24 : A)r(u) dt du, (6) Ti 
where h(7 : A) is a time-invariant filter with the transfer function 

H(jwA) = 
S,( cr) : A) 

S&o : A) + No/2 ’ (7) 

The filter in (7) is unrealizable and corresponds to Canonical Realization 
No. 1 in the detection theory problem. A simple realization can be 
obtained by factoring H( jax A). 

HfPOO(& : A) ii 
S,(o: A) + 

’ S,(cu: A) + No/2 1 I 
(8) 

Then 

1 
2 

hfrast - x: A)r(z) dx . (9) 

This is a filter-squarer-integrator realization and is analogous to Canonical 
Realization No. 3. Notice that h&~: A) is a realizable filter. 
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The bias term follows easily from the asymptotic mean-square-error 
expression. Using (4.16) and (6.25), we obtain 

From (6.27) we construct 

and choose the value of A where the maximum occurs. The general receiver 
structure, using (9) and (lo), is shown in Fig. 7.1. 

The ML equation is obtained by substituting (6) and (10) into (1 l), 
differentiating, and equating the result to zero for A = 6,. Normally, we 
refer to the solution of maximum likelihood equation as 8,,. However, 
the ML equation only provides a necessary condition and we must check 
to see that the maximum is interior to ~a and that B0 is the absolute 
maximum. In several examples that we shall consider, the maximum can 
be at the endpoint of xa. Therefore, we must be careful to check the 
conditions. The solution A = B, can be interpreted as a candidate for B,,. 
Carrying out the indicated steps, we obtain 

T O” 
i ( 
-- 

2 s -a3 

Tf 

+ 
1. 

u 

ah(t 

N, 
r(t> - 

u:A) 

aA 
r(u) dt du = 0, (12) 

Ti 
A=& 

where 

(NO/2)[aSS(w : A)laAl jar dcl, 
(S,(co:A) + N,/2)2 1 e %i’ 

(13) 

To find the Cramer-Rao bound, we take the asymptotic version of (6.61). Tf J’2’(A) = L ss dt du aK,(t - u:A)ah(t - u:A) 

No aA aA 

= $f$ - ;)aK;;:A)ah;;A)d7e 



Fig. 7.1 Generation of i(A) for stationary-process, long-observation-time case. 

For large T, this can be written in the frequency domain as 

J(2)(A) = x s 
* as&o : A) i?H(jw : A) dcc, 

N, -co aA 3A 2 

Using (13) in (15), we obtain 

(1% 

(16) 

From (6.44) we have 

m ci - A12} > [J’2’(A)]-1 - (17) 

for any unbiased estimate. 
To illustrate these resuits, we consider a series of amplitude estimation 

problems. The examples are important because they illustrate the diffi- 
culties that arise when we try to solve a particular problem and how we 
can resolve these difficulties. 

Example 1. The first problem is that of estimating the amplitude of the spectrum of a 
stationary random process corrupted by additive white noise. The signal spectrum is 

s&x A) = AS(m), (18) 

where S(W) is known. The parameter A lies in the range [A,, A$ and is nonrandom. 
Substituting (18) into (7) gives 

H(jo:A) = 
AS(w). 

AS(u) + No/2 (19) 
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From (8) we have 

Hfra,(jwA) = &i 
SW 1 + 

AS(w) + NO/2 ’ 
and from (lo), 

(20) 

(21) 

We construct 
Tf 

1 
I(A) = F 

J 
r(t)h(t - u: A)r(u) dt du + lB(A) (22) 

0 

Ti 

as a function of A and choose that value of A where it is a maximum. The resulting 
receiver is shown in Fig. 7.2. 

To obtain the ML equation we substitute (18) into (12). The result is 

r(t) 
i3h(t - u:A) T O” 

8A 
r(u) dt du - z 

s 

2S(o)/N, dco 

vao 1 + (2AS(cu))/No % = OF (23 

d=& 

where 
aH( jo : A) -= 

aA 
NoSW12 

(No/2 + AS@))’ - (24) 

In general, we cannot solve (23) explicitly, and so we must still implement the receiver 
using a set of parallel processors. If  the resulting estimate is unbiased, its normalized 
variance is bounded by 

We now examine the results in Example 1 in more detail for various 
special cases. 

Example 2. We assume that S(U) is strictly bandlimited: 

S(w) = 0, [co1 > 277W. (26) 

We can always approximate Hf Ta (jm) arbitrarily closely and use the receiver in Fig. 7.2, 
but there are two limiting cases that lead to simpler realizations. 

The first limiting case is when the signal spectrum is much larger than No/2. This case 
is sometimes referred to the high-input signal-to-noise ratio case: 

2 
AS@) >> N, lw[ I2nW. 

0 
(27) 

To exploit this, we expand the terms in (24) and (23) in a power series in (No/2AS(o) to 
obtain 

N,ww 
(No/2 + ASP =z&{l-2(&J +-] 

(28) 
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Fig. 7.2 Generation of In A(A): Canonical Realization No. 3. 

T m -- s 
2S(cu)/& dcc, T No dco 

-c e- -- 

’ l 2 

+ 
’ 1 24 ?fi -- + [2AS(WN,l277 2AS(w) I;yT TN, 2n’Cll’ 1 dco =-- 

A +z s --+...* 
-saw 2mo 27r (2% 

Using (28) and (29) in (22) and neglecting powers of l/S(a) greater than 1, we obtain 1 6, = 
2WT 

u)r(u) dt du (30) 

where 
1 

H&(jw) = S(Q)), 
I4 I2vK 

0, elsewhere. 
(31) 

Now we see why we were careful to denote the estimate in (30) as c3, rather than 6,,. 
The reason follows by looking at the right side of (30). The first term is a random var- 
iable whose value is always non-negative. The second term is a negative bias. Therefore 
6, can assume negative values. Because the parameter A is the spectral amplitude, it 
must be non-negative. This means that the lower limit on the range of A, which we 
denoted by A,, must be non-negative. For algebraic simplicity we assume that A, = 0. 
Therefore, whenever Li, is negative, we choose zero for the maximum likelihood estimate, 

Notice that this result is consistent with our original discussion of the ML equation on 
page I-65. We re-emphasize that the ML equation provides a necessary condition on B,, 
only when the maximum of the likelihood function is interior to the range of A. We 
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shall find that in most cases of interest the probability that 8, will be negative is small. 
In the next section we discuss this issue quantitatively. 

It is easy to verify that 6, is unbiased. 

1 
E[ci,] = - 

2WT Wh,(t - u)r(u) dt du 

1 =- 2n~v AS(o) + [N,/2] dcr, TN, 
2WT S(w) 

2rr -- s grrW 1 dco -- = A. 
2 -21rw S(w) 27r i 

(33) 

Looking at (32), we see that (33) implies that brnl is biased. This means that we cannot 
use the Cramer-Rao bound in (17). Moreover, since it is difficult to find the bias as a 
function of A, we cannot modify the bound in an obvious manner (i.e., we cannot use 
the results of Problem 6.3.1). Since this issue arises in many problems, we digress and 
develop a technique for analyzing it. 

7.1.2 Performance of Trtincated Estimates 

The reason BmZ is biased is that we have truncated ci, at zero. We study 
the effect of this truncation for the receiver shown in Fig. 7.3. This receiver 
is a generalization of the receiver in Example 2. We use the notation 

where 

Equivalently, 

1 
2 1 - - (t - x)r(z) nz , (36) 

where hyAl(t - x) is the functional square root of h,(t - u). The constants 
G and B denote “gain” and “bias,” respectively. 

In Example 2, 

and 

G --!- 
= 2WT 

(37) 

s 2aw B=-Es -- 1 n0, 
2 -2aW S(c0) 277 l 

In our initial discussion, we leave G and B as parameters. Later, we 
consider the specific values in (37) and (38). Notice that ci, will satisfy 
(30) only when the values in (37) and (38) are used. We shall assume that 
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. 

r(t) >. $W (T) y Squarer +- 
s 

T f  
. 

dt ’ *G 
a^0 ) Threshold ‘* z 

a 
Ti ‘ , at zero 

& 
* 

B 
Fig. 7.3 Filter-squarer-integrator receiver to generate &. 

G and B are adjusted so that &, is an unbiased estimate of A. We denote the 
truncated output as 6,. In Example 2, 8, equals Bml, but for an arbitrary 
h,(7) they will be different. Notice that we can compute the variance of 
do exactly (see Problem 7.1.1) for any h,(7). 

A typical probability density for I is shown in Fig. 7.4. Notice that A is a 
nonrandom parameter and JI+.& 1 A) is our usual notation. We have 
shaded the region of L where do will be truncated. If the probability that I 
will lie in the shaded region is small, B, will have a small bias. We would 
anticipate that if the probability of 1 being in the shaded region is large, 
the mean-square estimation error will be large enough to make the 
estimation procedure unsatisfactory. We now put these statements on a 
quantitative basis. Specifically, we compute three quantities : 

1. An upper bound on Pr [I < I?]. 
2. An upper bound on the bias of 8,. 
3. A lower bound on E[(ci, - A)2]. 

The general expressions that we shall derive are valid for an arbitrary 
receiver of the form shown in Fig. 7.4 with the restriction 

E[l] > B. - (39) 

The general form of the results, as well as the specific answers, is important. 

Upper Bound on Pr[l < B]. Looking at Fig. 7.4, we see that the problem 
of interest is similar to the computation of PM for a suboptimum receiver 

Fig. 7.4 Typical probability density for 1. 



I96 7.1 Stationary Processes: Long Observation Time 

that we solved in Section 5.1.2.t Using the asymptotic form of the Fred- 
holm determinant in (5.55), we have 

T * 
I+, A) = - 2 

s 
In (1 - 2sS,(co: A) a’cc, , s < 0. - (40) -a3 27T 

The waveform y(t) is the input to the squarer, and ‘-(;Y(w) is its power 
density spectrum. The Chernoff bound is 

pr [I < 4 < exp [/@I, 4 - M% (41) 
where s1 is chosen so that 

a/& 4 & ,C(s, A) = B. 
as S”S1 s=s1 (42) 

[Recall the result in (I-2.461) and notice the change of sign in s.] Since 

B 5 EElI, (43) 
(42) will have a unique solution. Notice that this result is valid for any 
FSI receiver subject to the constraint on the bias in (43) [i.e., different 
h [%I(,) could be used] To illustrate the calculation, we consider a special 
case of Example 2. 

. 

Example 2 (continuation). We consider the receiver in Example 2. In (26) we assumed 
that the signal spectrum, s(m), was strictly bandlimited to u’ cycles per second. We 
now consider the special case in which S(m) is constant over this frequency range. Thus, 

Then 

Using (45) in (40) gives 
B = (2 WT)(N, W). 

p(s, 4 = -lVln [I -,,(, +y)] 

lcvl < 27Tw, 

elsewhere, 
(45) 

(46) 

(47) . 

To find sl, we differentiate (47) and equate the result to B. The result is 

sl= - [2(1 +y)NoW]-‘. 

t We suggest that 
this discussion. 

the reader review Section 5.1.2 and Problem 51.13 reading 
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Substituting (48) into (47) and (41) gives 

Pr [I < B] 5 
(  

1 + (49) 

We see that the bound depends on A/NOW, which is the signal-to-noise ratio in the 
message bandwidth, and on WT, which is one-half the time-bandwidth product of the 
signal. We have plotted the bound in Fig. 7.5 as a function of u/T for various values of 
A/NOW. In most cases of interest, the probability that ti, will be negative is negligible. 
For example, if 

and 

A -= 10 
NOW 

WV 

wr=5, (51) 

the probability is less than lOA that Li, will be negative. 

We used the Chernoff bound in our discussion. If it is desired, one can 
obtain a better approximation to the probability by using the approximate 
formula 

Pr [Z < B] IV 
1 

&s12/4s,, A) 
exP [ru(% 4 - @I 

(see Problem 5.1.13). In most cases, this additional refinement is not neces- 
sary. The next step is to bound the bias of c?*. 

Upper Bound on Bias of 6,. We can compute a bound on the bias of 
8, by using techniques similar to those used to derive (41). Recall that 8, 
is an unbiased estimate of A and can be written as 

Therefore, 
&O = Cl - GB. (53) 

s 

co 
E[S,] = W - B)p,,JLIA) dL = A. (54) 

--oo 

Dividing the integration region into two intervals, we have 

s l3 W - = A. (55) 
0 

m&p) dL + ])(L - m%la(L 1 4 a4 s 
The second integral is E[6,]. Thus, the bias of B, is 

g(8.J L? E[i,] - A = - 
s 

nG(L - B)plla(L 1 A) dL. (56) 
0 

The next step is to bound the term on the right side of (56). We develop 
two bounds. The first is quite simple and is adequate for most cases. The 
second requires a little more computation, but gives a better result. 
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1o-4 

lo+ 
1 IO lo* 

A--+ 
NOW 

Fig. 7.5 Bound on probability that iO will be negative. 

198 
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Bound No. 1. The first bound is 

s I3 9i?(B*) = - G(L - B)p& I4 dL 
0 

s 

n 
< .BG Plla (L I4 dL 

0 

= BG Pr [I < B] 

I BG exp b&, 4 - s,Bl, (57) 

where s1 satisfies (42). The result in (57) can be normalized to give 

qi*) < BG 
A 

_ T exp [&I, 4 - slB]* 

For the spectrum in (44), this reduces to 

(58) 

After deriving the second bound, we shall plot the result in (59). Notice that (59) can 
be plotted directly from Fig. 7.5 by multiplying each value by NOW/A. 

Bound No. 2 [Z]. We can obtain a better bound by tilting the density. We define 

P ,#) = exp bL - P(S, A)lpqa(+O, s 5 0. (60) 

[Recall (I-2.45O).j Using (60) in (57) gives 

33(&J = G 
s 

‘b - U exp b(s, $1 - 4pls(L) dL 
0 

s 

I3 
= G exp [~(s, A) - sB] (B - L) exp b(B - Up,,(L) dL 

0 

5 G exp [~(s, A) - sB] { max [(B - L) exp [s(B - L)]} 
OLL<B 

(61) 

We now upperbound the integral by unity and let 

Z=B-L (62) 
in the term in the braces. Thus, 

33(ci,) 5 G exp [~(s, A) - sB]{ max [Zesz]}, s 5 0. (63) 
O<Z<B 

The term in the braces is maximized by 

1 
Z=Z&min B,-- , [ 1 s < 0. (64) 

S 

Using (64) in (63) gives 

s(&) 5 Gz, exp [~(s, A) - s(B - ZJ, s < 0. (65) 
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We now minimize the bound as a function of s. The minimum is specified by 

(66) 

We can demonstrate that (66) has a solution in the allowable range (see Problem 7.1.2). 
Thus, 

W,) < -- 
- _ us exp b4s2, 4 - s2B - 11, A (67) 

2 

For the spectrum in (44), 

As2= -3 .Jq], 

where 

(68) 

(69a) 

NOW - 2WTA (696) 

(see Problem 7.1.3). In Fig. 7.6, we plot the bounds given by (59) and (67) for the case 
in which WT = 5. We see that the second bound is about an order of magnitude better 
than the first bound in this case, and that the bias is negligible. Similar results can be 
obtained for other IVTproducts. From Fig. 7.5, we see that the bias is negligible in most 
cases of interest. Just as on page 198, we can obtain a better approximation to the bias 
by using a formula similar to (52) (see Problem 7.1.4). The next step is computing a 
bound on the mean-square error. 

Mean-square-evvor Bound. The mean-square error using 6, is 

E* * E[(li* - A)2] - 
- - EK 8, - 60 + 8, - kQ2] 

= E[d, - ao)2] + 2E[(4 - cio)(cio - A)] + E[(B, - A)2]. (70) 

Observe that 

and 
8, = 8, for 8, > - 0 (71) 

8, = 0 for Li, < 0. (72) 

Thus, (70) can be written as 

Recalling that 
6,(L) = G(L - B), (74) 
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Fig. 7.6 Comparison of bounds on normalized bias [WT = 51. 
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we have 

The term in the braces is always positive. Thus, 

where 
(76) 

At a “[2AG(B 
s 

- L) + G2(B - Q21P&IA) CfL (77) 
0 

We can now proceed as on pages 199-201 to find a bound on A& A simple 
bound is 

A[ < [2AGB + G2B2] Pr (I < B). - (78) 

A tighter bound can be found in the same manner in which (67) was 
derived (see Problem 7.1.5). In many cases, the simple bound in (78) is 
adequate. For example, for the numerical values in (50) and (51), 

- < 1.25 x lo-! 
A2 - 

v-9 

Notice that we must also find 5,-O. As we indicated on page 195, we can 
always find f& exactly (see Problem 7.1.1.). 

We have deteloped techniques for evaluating the bias and mean-square 
error of a truncated estimate. A detailed discussion was included because 
both the results and techniques are important. Iin most of our subsequent 
discussion, we shall neglect the truncation effect and assume that the 
performances of &* and 8, are essentially the same. The results of this 
section enable us to check that assumption in any particular problem. 
We now return to Example 2 and complete our discussion. 

Example 2 (continuation). I f  we assume that the bias is negligible, the performance 
6,, can be approxima ted by the performance of 2,. The Cramer-Rao bound on the 
variance of 6, is given by (18). When 2AS(cu)/No is large, the bound is independent of 
the spectrum 

We can show that t he actual variance 
Two observations are useful : 

Var[cio-A] 2 
A2 ‘2WT* 

approaches this bound as N,/2AS@) + 0 

1. In the small-noise case, the normalized variance is independent of the spectral 
height and spectral shape. This is analogous to the classical estimation problem of 
Chapter I-2. There, we estimated the variance of a Gaussian random variable x. We 
saw that the normalized variance of the estimate was indebendent of the actual variance 1 
a& 
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2. We recall from our discussion in Chapter I-3 that if a stationary process is band- 
limited to FY and observed over an interval of length T, there are lV = 2WT significant 
eigenvalues. Thus, (80) can be written as 

which is ident ical with the corresponding classical estimation results. 

Var [&, - A] 2 
(81) 

We have used Example 2 as a vehicle for studying the performance of 
a biased ML estimate in detail. There were two reasons for this detailed 
study. 

1. We encounter biased estimates frequently in estimating random 
process parameters. It is necessary to have a quantitative estimate of the 
effect of this bias. Fortunately, the effect is negligible in many problems of 
interest. Our bounds enable us to determine when we can neglect the bias 
and when we must include it. 

2. The basic analytic techniques used in the study are useful in other 
estimation problems. Notice that we used the Chernoff bound in (41). 
If the probability is non-negligible and we want a better estimate of its 
exact value, we can use the approximate expression in (52). 

We now consider another special case of the amplitude estimation 
problem. 

Example 3. Low-input Signal-to-Noise Ratio. The other limiting case corresponds to a 
low-input signal-to-noise ratio. This case is analogous to the LEC case that we 
encountered in detection problems (see page 131). Assuming that 

NO 
AS@) << 2 , (82) 

then (22) can be 
first term gives 

expanded in a series. Carrying out the expansion and retaining the 

where 
Hp(jw) = S(u). (84) 

Notice that 
estimate is 

it is not necessary to assume that S(c0) is bandlimited. The approximate ML 

All of 
case. 

the general derivations concerning bias and mean-square error are valid for this 

d,, 6, 2 0, = i &), 

0, 6, < 0. 
(85) 
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For the flat bandlimited spectrum in (44), the probability that B, will be negative is 
bounded by 

Pr [6, < 0] < exp 

The restriction in (82) implies that 

(86) 

A 
m << 1. 

0 

Thus, WT must be very large in order for the probability in (86) to be negligible. 
The Cramer-Rao bound on the variance of any unbiased estimate is 

Var [6 - A] 
A2 2 

mo/2)2 

s 

2nW 
. 

(A2 T/2) l S2(w)(dw/2n) 
-2aW 

For the flat bandlimited spectrum, (88) reduces to 

038) 

We see that WT must be large in order for this bound to be small. When this is true, 
we can show that the variance of 8, approaches this bound. Under these conditions the 
probability in (86) is negligible, so that brnl q e uals i. on almost all realizations of the 
experiment. In many cases, the probability in (86) will not be negligible, and so we use 
the results in (34)-(78) to evaluate the performance. This analysis is carried out in 
Problem 7.1.6. 

In these two limiting cases of high and low signal-to-noise ratio that we 
studied in Examples 2 and 3, the receiver assumed the simple form shown 
in Fig. 7.7. In the high signal-to-noise ratio case, 

with 

H&o) = -!- 
SW 

[an inverse filter], (90) 

B TN0 -- s 28w 1 dcc, C 
2 -2?i’c7/’ S(c0) 277 

and 

(91) 

-a 

do 
* Hrl (ju) - 

T f  
Y- Squarer >ldt ‘+q >+ a^, > Truncates k. 

4 
Ti 

at Co = 0 
- 

B 

Fig. 7.7 Amplitude estimator. 
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In the low signal-to-hoise ratio case, 

with 

and 

TN, 2RW B=- 
2 s S(w) dx (94) 

-2nw 2m 

G = [ Tj.-;Sl(w) E--’ (9% 

A receiver of the form in Fig. 7.7 is commonly referred to as a radiometer 
in the radio astronomy field 131. It is, of course, a form of filter-squarer- 
integrator receiver that we have seen previously in this chapter. 

The obvious advantage of the structure in Fig. 7.7 is that it generates the 
estimate by passing r(t) through a single processing sequence. By contrast, 
in the general case we had to build A4 processors, as shown in Fig. 7.1. 
In view of the simplicity of the filter-squarer-integrator receiver, we con- 
sider briefly a suboptimum receiver that uses the structure in Fig. 7.7 but 
allows us to choose H&m), B, and G. 

7.1.3 Suboptimum Receivers 

The receiver of interest is shown in Fig. 7.7. Lo&ing at (IQ, we see 
that a logical parametric form of H&U) is 

W.h) = s(4 
(NJ2 + cs(42 ’ 

(96) 

where C is a constant that we shall choose. Observe that we achieve the 
two limiting cases of high and low signal-to-noise ratio by letting C 
equal infinity and zero, respectively. 

We choose B and G so that B0 will be an unbiased estimate for all values 
of A. This requires 

f 

00 

B 
N&w)/2 dco = 

-aI (Iv42 + cs(m))2 2x 
and 

S2(w) 

(N,/2 + cs(c41))2 

(97) 

(98) 

The only remaining parameter is C. In order to choose C for the general 
case, we first compute the mean-square error. This is a straightforward 
calculation (e.g., Problem 7.1.7) whose result is 

GT 6 * S2(o)[AS(co) + IVo/212 dco a^0 a E[d, - A)21 = - 
2 s ---co (NJ2 + m(o) ) *  5 l 

(99 
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If we plot (99) as a function of A, we find that it is a minimum when 
C = A. This result is exactly what we would expect but does not tell us 
how to choose C, because A is the unknown parameter. Frequently, we 
know the range of A. If we know that 

A, < A < A,. - - (100) 

then we choose a value of C in [A,, As] according to some criterion. Some 
possible criteria will be discussed in the context of an example. 

Notice that we must still investigate the bias of Li, using the techniques 
developed above. In the regions of the most interest (i.e., good per- 
formance) the bias is negligible and we may assume ci, = 6, on almost all 
experiments. 

In the next example we investigate the performance of our suboptimum 
receiver for a particular message spectrum. 

Example 4. In several previous examples we used an ideal bandlimited spectrum. For 
that spectrum, the H&o) as specified in (96) is always an ideal low-pass filter. In 
this example we let 

S(o : A) 
2kA 

=- 
co2 + k2 ’ 

--<<<a uw 

Now W&co) will change as C changes. The lower bound on the variance of any un- 
biased estimate is obtained by using (101) in (25). The result is (see Problem 7.1.8) 

Var [& - A] 
A2 

> 8 (1 + A(A))% 
- kT A2(A) ’ 

where A(A) is the signal-to-noise ratio in the message bandwidth 

(102) 

(103) 

We use the suboptimum receiver shown in Fig. 7.7. The normalized variance of Li, 
is obtained by substituting (101) into (99). The result is 

Var [do - A] 1 
A2 = wm2w~ 

[l + cl(A)~U)J~[5C&O + 2~34 + 11, (104) 

(105) 

44) = 
1 + A(A) 

1 + Q&f&I) ’ (106) 

When c,(A) equals unity, the variance in (104) reduces to that in (102). In Fig. 7.8, we 
have plotted the variance using the suboptimum estimator for the case in which kT = 
100. The value at c,(A) = 1 is the lower bound on any unbiased estimate. For these 
parameter values we see that we could use the suboptimum receiver over a decade range 
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0.001~~~1 1 J 1 1 ll1IIII I I I 
100 10 1 0.1 

J+ 

Fig. 7.8 Performance of suboptimum receiver (from [2]). 

(A B = lOA,) at the cost of about a 50% increase in the error at the endpoints. Two 
observations are appropriate: 

1. We must compute the bias of Lilr,. I f  it is negligible, the mean-square error given in 
(102) can be used. If  not, we evaluate (41) and (78). (See Problem 7.1.10.) 

2. I f  the increase in variance because of the suboptimum receiver is too large, there 
are several possibilities. The first is to return the original receiver in Fig. 7.1. The second 
is to use several suboptimum receivers in parallel to cover the parameter range. The 
third is to estimate A sequentially. We record r(t) and process it once, using a sub- 
optimum receiver to obtain an estimate that we denote as 6,. We then let C = d, in the 



Stationary Processes: Long Observation Time 

suboptimum receiver and reprocess r(t) to obtain an estimate 6,. Repeating the proce- 
dure will lead us to the desired estimate. The difficulty with the third procedure is 
proving when it converges to the correct estimate. 

This completes our discussion of suboptimum amplitude estimators. 
We now summarize the results of our discussion. 

7.1.4 Summary 

In this section we have studied the stationary-process, long-observation- 
time case in detail. We chose this case for our detailed study because it 
occurs frequently in practice. When the SPLOT condition is valid, the 
expressions needed to generate In A(A) and evaluate the Cram&-Rao 
bound can be found easily. 

Our discussion concentrated on the amplitude estimation problem be- 
cause it illustrated a number of important issues. Other parameter estima- 
tion problems are discussed in Section 7.7. 

The procedure in each case is similar: 

1. The ML estimate is the value of A that maximizes (11). In the general 
case, one must generate this expression as a function of A and find the 
absolute maximum. The utility of this estimation procedure rests on being 
able to find a practical method of generating this function (or a good 
approximation). 

2. In some special cases (this usually will correspond physically to 
either a low or high input signal-to-noise ratio), approximations can be 
made that lead to a unique solution for Li,,. 

3. If the estimate is unbiased, one can find a lower bound on the 
variance of the estimate using (16). Usually the variance of 8,, approaches 
this bound when the error is small. If the estimate is biased, we must modify 
our results to include the effect of the bias. If the bias can be found as a 
function of A, then the appropriate bound follows. Usually g(A) cannot 
be found exactly, and we use approximation techniques similar to those 
developed in Section 7.1.2. 

The procedure is easy to outline, but the amount of work required to 
carry it out will depend on how the parameter is imbedded in the process. 

In the next sections we discuss three other categories of estimation 
problems. Many of the issues that we have encountered here arise in the 
cases that we shall discuss in the next three sections. Because we have 
treated them carefully here, we leave many details to the reader in the 
ensuing discussions. 
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7.2 FINITE-STATE PROCESSES 

of a In our discussion up to this point we have estimated a parameter 
random process, s(t, A). The statistics of the process depended on A 
through the mean-value function m(t, A) and the covariance function 
K,(t, U: A). We assume that m(t, A) is zero for simplicity. Instead of 
characterizing s(t, A) by its covariance function, we can characterize it by 
the differential equations 

and 

where 

ir(t, A) = WY 4x@, A) + w, 4u(O, t > Ti - (107) 
s(t, A) = w A)x(t, 4, t > Ti, - (108) 

JWOU~(~I = Q(A) d(t - 71, (109) 

Two observations are useful : 

1. The parameter A may appear in F(t, A), G(t, A), C(t, A), Q(A), and 
P,(A) in the general case. Notice that there is only a single parameter. 
In most problems of interest only one or two of these functions will de- 
pend on A. 

2. In the model of Section 6.1 we assumed that s(t, A) was conditionally 
Gaussian. Thus the linear state equation in (107) is completely general if 
s(t, A) is state-representable. By using the techniques described in Chapter 
11-7, we could study parameter estimation for Markovian non-Gaussian 
processes, but this is beyond the scope of our discussion. 

For the zero-mean case the likelihood function is 

From (6.32) 
w = l,(A) + I,(A). (112) 

and from (6.25), 

/n(A) = - -L 
s 

Tr 

No Ti 
fI’(t : A) nt. VW 
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The function s”,(t, A) is the realizable MMSE estimate of s(t, A), assuming 
that A is known. From Chapter I-6, we know that it is specified by the 
differential equations 

k(t, A) = F(t, A)a(t, A) + t&(t, A)CT( t, A) : b(t) - w, 4% 41, 
0 

(113 

and 

2 - b& WT(t, 4 + 4Q(A>c*(t, A), N CO, 4&4t, 4 GO, 
0 

(116) 

d,(h 4 = C(t, kqqt, A). WV 

with appropriate initial conditions. The function l,(U) is the minimum 
mean-square error in estimating s(t, A), assuming that A is known. In 
almost all cases, we must generate I(A) for a set of Ai that span the allow- 
able range of A and choose the value at which Z(AJ is the largest. This 
realization is shown in Fig. 7.9. 

In order to bound the variance of any unbiased estimate, we use the 
bound in (6.44), (6.46), and (6.60). For finite-state processes, the form in 
(6.60) is straightforward. The expression is 

. (118) 

Fig. 7.9 Likelihood function generation for finite-state processes. 
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The error expression in the integrand of the second term follows from 
(116) as 

To compute the error expression in the first term, we go through a similar 
analysis for the composite process. Notice that the composite process is 
the sum of two statistically independent processes with different values of 
A. As in the analogous detection theory problem, there is an alternative 
form for J(2)(A) that is sometimes simpler to compute (see pages 179-181). 
The details are developed in Problem 7.2.1. 

Several examples of estimating a parameter of a state-representable 
process are developed in the problems. We now consider separable 
kernel processes. 

7.3 SEPARABLE KERNELS 

In Chapter 4 we discussed several physical situations that led to detec- 
tion theory problems with separable kernels. Most of these situations have 
a counterpart in the estimation theory context. In view of this similarity, 
we simply define the problems and work a simple example. The signal 
covariance function is K,(t, u : A). If we can write it as 

for some finite K and for every value of A in the range [A,, AB], we have a 
separable-kernel estimation problem. Notice that both the eigenvalues 
and eigenfunctions may depend on A. To illustrate some of the implica- 
tions of separability, we consider a simple amplitude estimation problem. 

Example 5.t The received waveform is 

r(t) = so, 4 + w, Ti < t < Tfe 

The signal is zero-mean with covariance function 

K,(t, u:A) = AK,(t, 4, Ti 5 t, u < Tf. 

We assume that K,(t, U) is separable: 

(120 

(122) 

t This particular problem has been studied by Hofstetter [7]. 
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The likelihood function is 

In h(A) = z l E In (1 +q +&-$I1 (No,;$Ai,)ri”, (124) 
i=l 

s 

Tf 

“i = ‘-wi(t 

Ti 

(12% 

where 

To find 6,,, we must find the value 
unbiased, its variance is bounded by 

of A where In 11(A) has its maximum. If cim, is 

Var [(li - A)] 

[ 

T 
22 $ 

li2 
A2 i-l (N,/2A + Ii)’ - 1 

-1 

(126) 

If the maximum is interior to t he range of 4 and In R(A) has a continuous first derivative, 
then a necessary condition is obtained by differentiating (124), 

For arbitrary va lues of No, A, and iii this condit ion is not 
cases in which a simple result is obtained for the estimate : 

1. The K eigenvalues are all equal. 
2. All of the iii are much greater than &/2A. 
3. All of the iii are much less than N,/2A. 

too useful. There are three 

The last two cases 
and so we relegate 

In the first case, 

and (127) reduces 

are analogous to the limiting cases that we discussed 
them to the problems (see Problems 7.3.1 and 7.3.2) 

iii = A,, i = 1, 2, . . . , K, 
to 

in Section 7.1, 

(128) 

Since ci, can assume negative values, we have 

In this particular case we can compute pi,(Ao) exactly. It is a chi-square density (page 
I-109) shifted by N,/2&. We can also compute the bias and variance exactly. For 
moderate K (K > 8) the approximate expressions in Section 7.1.2 give an accurate 
answer. The various expressions are derived in the problems. 

We should also observe that in the equal eigenvalue case, 6, is an eficient unbiased 
estimate of A. In other words, its variance satisfies (126) with an equality sign. This can 
be verified by computing Var [do - A] directly. 

This example illustrates the simplest type of separable kernel problem. 
In the general case we have to use the parallel processing configuration in 
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Fig. 6.1. Notice that each path will contain K filter-squarers. Thus, if 
there are M paths, the complete structure will contain MK filter-squarers. 
In view of this complexity, we usually try to find a suboptimum receiver 
whose performance is close to the optimum receiver. The design of this 
suboptimum receiver will depend on how the parameter enters into the 
covariance function. Several typical cases are given in the problems. 

7.4 LOW-ENERGY-COHERENCE CASE 

In Section 4.3 of the detection theory discussion, we saw that when the 
largest eigenvalue was less than A&-J2 we could obtain an iterative solution 
for h(t, u). We can proceed in exactly the same manner for the 
estimation problem. The only difference is that the largest eigenvalue 
may depend on A. From (6.16) we have 

4(4 
&(A) + No/2 

(13~) 

uming that 

for all A, we can expand each term in the sums in a convergent power 
series in [2Ai(A)]/N,. The result is 

In the LEC case we have 

for all A. When this inequality holds, we construct the approximate 
likelihood function by retaining the first term and the average value of the 
second term in (133) and the first two terms in (134). (See discussion on 
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page 133.) This gives 

Tf 

r(t)K,(t, u : A)-(u) dt du 

Ti 

To find 8,, we must construct In R(A) as a function of A and choose the 
value of A where it is a maximum. 

The lower bound on the variance of any unbiased estimate is 

Var [b - A] > - Tf 

If A is the value of a random parameter, we obtain the MAP estimate by 
adding In pa(A) to (136) and finding the maximum of the over-all function. 
To illustrate the simplicity caused by the LEC condition, we consider two 
simple examples. 

Example 6. Jn this example, we want to estimate the amplitude of the correlation 
function of a random process, 

K,.(t, u:A) = AK(t, u) + NO 
2 w - u), (138) 

where K(t, u) is a known covariance function. Assuming that the LEC condition is 
satisfied, we may use (136) to obtain 

r(t)K(t, U)Y(U) dt du 

Ti 
No Tf 

-- A 
s 2 T  

K(t, t) dt 
i 

Ti 

t This particular problem has been solved by Price fl] and Middleton [4]. 
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Differentiating and equating to zero, we obtain 

21s 

Tf ss No s Tf 

r(t)K(t, U)Y(U) dt du - 2 K(t, t) dt 
Ti 

A Ti a, = 
Tf 

[K(t, u)12 dt du 

(140) 

As before, 

We can obtain an upper bound on the bias of ci,, by using the techniques on pages 
198-201. The lower on the variance on any unbiased estimate 

Var [ci - A] 
A2 ’ 

w&)2 
T f  

A2 [K(t, u)12 dt du ’ (142) 

We see that the right side of (142) is the reciprocal of d2 in the LEC detection problem 
[see (4.148)]. We might expect this relation in view of the results in Chapter I-4 for 
amplitude esti mation in the known signal case. 

Al1 
eters. 

our 
We 

examples 
indicated 

have con sidered the estim ation of nonrand om param- 
that the modification to include random parameters 

was straightforward. In the next example we illustrate the modifications. 

Example 7. We assume that the covariance function of the received signal is given by 
(138). Now we model A as the value of a random variable a. In general the probability 
density is not known, and so we choose% density with several free parameters. We then 
vary the parameters in order to match the avai 
discussed on page I- 142 9 we frequently choose a 

.lable experimental evidence. As we 
reproducing density for the a-priori 

density because of the resulting computational simplicity. For this example, a suitable 
a-priori density is the Gamma probability density, 

A < 0, 

where A is a positive constant and n is a positive integer that we choose based on our 
a-priori information about a. In our subsequent discussion we assume that 12 and A are 
known. We want to find Cjmap. To do this we construct the function 

f(A) = In A(A) + lnp,(A) (144) 

and find its maximum. Substituting (139) and (143) into (144) and collecting terms, we 
have 

f(A) = -c,A2 + f (r(t))A i- n In @A) i- In k A 20, (149 
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4 

.  

J-0) 
Nonlinear device 

-- 
4 

T f  
dt > to implement *&lap 

Ti (147) - (148) 
1 

Fig. 7.10 Realization of MAP amplitude estimator under LEC conditions. 

where 

[K(t, u)12 dt du (146) 

Ti 
and 

NO 
u)r(u) dt du - 2 - 2 (147) 

Differentiating f(A) with respect to A, equating the result to zero, and solving the 
resulting quadratic equation, we have 

%-nap = 

f W)) 
4% [( i - -- 45 

8cln ‘A 

‘+[mA 1 +19 1 
f (40) 

f (r(t)) 2 09 

1 
(148) 

9 f (r(t)) < 0. 

The second derivative of f(A) is always negative and f (0) = - m, so that this is a 
unique maximum. The receiver is shown in Fig. 7.10. We see that the receiver carries 
out two operations in cascade. The first section computes Tf ,,MO) = ss r(t)K(t, u)r(u) dt du. 

Ti 

(149) 

The quadratic operation is familiar from our earlier work. The second section is a 
nonlinear, no-memory device that implements (147) and (148). The calculation of the 
performance is difficult because of the nonlinear, no-memory operation, which is not a 
quadratic operation. 

Several other examples of parameter estimation under LEC conditions 
are developed in the problems. This completes our discussion of special 
categories of estimation problems. In the next section, we discuss some 
related topics. 
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7.5 RELATED TOPICS 

In this section we discuss two topics that are related to the parameter 
estimation problem we have been studying. In Section 7.5.1, we discuss 
the multiple-parameter estimation problem. In Section 7.5.2, we discuss 
generalized likelihood ratio tests. 

7.5.1 Multiple-Parameter Estimation 

As we would expect from our earlier work (e.g., Section I-4.6), the basic 
results for the single-parameter case can be extended easily to include the 
multiple-parameter case. We state the model and some of the more 
important results. The received waveform is 

r(t) = s(t, A) + w(t), Ti < t < Tf, - - (150) 

where A is an M-dimensional parameter vector. The signal s(t, A) is a 
sample function from a Gaussian random process whose statistics depend 
on A, 

Jwt, 41 = m(t, A), Ti < t < Tf, L - (151) 
and 

E[(s(t, A) - m(t, A))(+, A) - m(u, A))] = K&t, u:A), Ti < t, u < Tr. 

(152) 

The additive noise w(t) is a sample function from a zero-mean white 
Gaussian process with spectral height N,/2. We are interested both in the 
case in which A is a nonrandom vector and in the case in which A is a value 
of a random vector. 

Nonrandom Parameters. We assume that A is a unknown nonrandom 
vector that lies in the set xa. The likelihood function is 

In A(A) = b 
Tf 

s s 

Tf 
dt du r(t)h(t, u : A)#) 

0 Ti Ti 

Tf 

s s 

Tr 
+ dt du r(t)Q,(t, u :A)m(u, A) 

Ti Ti 

1 Tf Tf 
-- 

s s 
dt 

2. T  
du m(t, A)Q,(t, U: A)m(u, A) 

i i 

1” 
lx1 ( 2 -- 2 n l+- 
i=l No 

&(A> 1 9 A fE xc (153) 
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The ML estimate, &, is that value of A where this function is a maximum. 
In general, we must construct this function for some set of Ai that span 
the set xa and choose the value of Ai where In A(AJ is the largest. If the 
maximum of In A(A) is interior to xB and In A(A) has a continuous first 
derivative, a necessary condition is given by the 1M likelihood equations, 

a In A(A) 

dA 
K,(t, u : A) 

aQ,(t, u :A) 
dt du 

Tr 

aA i 

+ 

am(t, A) - QT(t, u : A)[r(tl) 
aA 

- m(u, A)] dt du 

Ti 
i 

Tr  

Ti 

- m(t9 A)1 aQ,(t, u : A) aA 
i 

x [r(u) - m(u, A)] dt du = 0, 

A=& 

i = 1,2,. . . , AL (154) 
The elements in the information matrix are 

J,,(A) = am09 A) amcu, A) - 
aA 

Q,(t, u : A) - 
i aA 

Ti 
i 

1 %(t, u :A) aQll.0, 2-4 :A) -- 
2 

dt du . 
aA i aA i 1 (155) 

The information matrix is used in exactly the same manner as in Section 
I-4.6. The first term is analogous to @(A) and can be computed in a 
straightforward manner. The second term, J..;)(A), is the one that requires 
some work. 

We can also express $)(A) in terms of the derivative of the Bhatta- 
charyya distance. 

w,, A) = -,u(Q, A,, A) a --In 
s 

mp$(R 1 ~IhtfcdR 1 A) dR* (156) 

Then, using a derivation similar to (6;7)-(6.60), we obtain 

The expression for B(A,, A) is an obvious modification of (6.59). This 
formula provides an effective procedure for computing J,{;)(A) numerically. 



Composite-hypothesis Tests 219 

(Notice that the numerical calculation of the second derivative must be 
done carefully.) 

For stationary processes and long time intervals, the second term in 
(155) has a simple form, 

X Sg(w A) + 2 I)1 l (158) 

The results in (153)-(158) indicate how the single-parameter formulas 
are modified to study the multiple-parameter problem. Just as in the 
single parameter case, the realization of the estimator depends on the 
specific problem. 

Random Parameters. For the general random parameter case, the 
results are obtained by appropriately modifying those in the preceding 
section. A specific case of interest in Chapter II-8 is the case in which the 
parameters to be estimated are independent, zero-mean Gaussian random 
variables with variances aii. The MAP equations are 

X wt, A) aQ,(t, u : A) 
- 

aA 
Q,<t, u : A) - Q[r(t> - m(t, A)] A 3 i aA i 11 I A=%l,, 

The terms in the information matrix are 
i = 1,2,. . . , AL (159) 

J.. = - 23 dij + E,[Jii’(a) + Jif’(a)], 
Gi 

(160) 

where J’,:!(a) and $$(a) are the two terms in (155). Notice that Jdj contains 
an average over pa(A), so that the final result does not depend on A. 

Several joint parameter estimation examples are developed in the 
problems. 

7.5.2 Composite-hypothesis Tests 

In some detection problems the signals contain unknown nonrandom 
parameters. We can write the received waveforms on the two hypotheses 
as 

r(t) = s,(t, e> + w, Ti < t < Tt:Hl, - - 

r(t) = s,(t, e) + w(t), Ti s t < Tr: H,,, (161) 



220 7.6 Summary of Estimation Theory 

where s&, 6) and so@, 0) are conditionally Gaussian processes. This model 
is a generalization of the classical model in Section I-2.5. Usually a uni- 
formly most powerful test does not exist, and so we use a generalized 
likelihood ratio test. This test is just a generalization of that in (r-2.305). 
We use the procedures of Chapters 6 and 7 to fird 6,,. We then use this 
value as if it were correct in the likelihood ratio test of Chapter 4. Although 
the extension is conceptually straightforward, the actual calculations are 
usually quite complicated. It is difficult to make any general statements 
about the performance. Some typical examples are developed in the 
problems. 

7.6 SUMMARY OF ESTIMATION THEORY 

In Chapters 6 and 7, we have studied the problem of estimating the 
parameters of a Gaussian random process in the presence of additive 
Gaussian noise. As in earlier estimation problems, the first step was to 
construct the log likelihood function. For our model, 

Tf 

In A(A) = -!- 
Ff 

N, ss 
p.( t)h(t, l-4 : A)r(u) dt du + 

s 
~(tk(t, 4 dt 

Ti 

Ti 

1 Tf 
-- 

s No Ti 
&@:A) dt - ; 

s 

Tf 
m(t, A)g(t, A) dt. (161) T 

i 

In order to find the maximum likelihood estimate, we construct In A(A) 
as a function of A. In nractice it is usually necessary to construct a discrete 
approximation by computing In A(&) for a set of values than span x,. 

In order to analyze the performance, we derived a lower bound of the 
variance of any unbiased estimate. The bound is 

Var [ci - A] 2 amu, 4 - Q,(t, u : A) am(u, A) dt du 
aA aA 

Tf -1 

1 
-- a&(& u : A) aQ,(t, 11: A) dt dz& 

2 aA aA 
(162) 

Ti 

for any unbiased estimate. In most problems we must evaluate the bound 
using numerical techniques. Since the estimates of the process parameters 
are usually not efficient, the bound in (162) may not give an accurate 
indication of the actual variance. In addition, the estimate may have a 
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bias that we cannot evaluate, so that we cannot use (162) or the generaliza- 
tion of it derived in Problem 6.3.1. We pointed out that other bounds, 
such as the Barankin bound and the Kotelnikov bound, were available 
but did not discuss them in detail. 

The discussion in Chapter 6 provided the general theory needed to study 
the parameter estimation problem. An equally important topic was the 
application of this theory to a particular problem in order actually to 
obtain the estimate and evaluate its performance. 

In Chapter 7 we illustrate the transition from theory to practice for a 
particular problem. In Section 7.1 we studied the problem of estimating 
the mean-square value of a stationary random process. After finding 
expressions for the likelihood function, we considered some limiting cases 
in which we could generate Li,, easily. We encountered the issue of a 
truncated estimate and developed new techniques for computing the bias 
and mean-square error. Finally, we looked at some suboptimum estima- 
tion procedures. This section illustrated a number of the issues that one 
encounters and must resolve in a typical estimation problem. In Sections 
7.2-7.4, we considered finite-state processes, separable kernel processes, 
and the low-energy-coherence problem, respectively. In all of these special 
cases we could solve the necessary integral equation and generate In A(A) 
explicitly. It is important to emphasize that, even after we have solved the 
integral equation, we usually still have to construct In A(&) for a set of 
values that span xa. Thus, the estimation problem is appreciably more 
complicated than the detection problem. 

We have indicated some typical estimation problems in the text and in 
the problem section. References dealing with various facets of param- 
eter estimation include [5]-[ 151. 

This chapter completes our work on detection and estimation of Gaus- 
sian processes. Having already studied the modulation theory problem in 
Chapter 11-8, we have now completed the hierarchy of problems that we 
outlined in Chapter I-l. The remainder of the book deals with the applica- 
tion of this theory to the radar-sonar problem. 

7.7 PROBLEMS 

P.7.1 Stationary Processes : Long Observation Time 

Problem 7.1.1. Consider the FSI estimator in Fig. 7.3. The filter h?(7) and the param- 
eters G and B are arbitrary subject to the constraint 

E[ci,] = A. (P.1) 
1. Derive an exact expression for 

5,-O ii E[(d, - A)2]. 



222 7.7 Problems 

2. Consider the condition in (26) and (27) and assume that (31), (37), and (38) are 
satisfied. Denote the Cramer-Rao bound in (25) as ECR. Prove 

Problem 7.1.2. The function &s, A) is defined in (40), and B satisfies (43). Prove that (66) 
has a solution in the allowable range. A possible procedure is the following: 

(i) Evaluate fi(O, A) and p(- 00, A). 
(ii) Prove that this guarantees a solution to (66) for some s < 0. 
(iii) Use the fact that @(s, A) > 0 to prove the desired result. 

Problem 7.1.3. Assume 

1 
1 

S(o)) = 2w ’ I4 5 2nw 

Then, from (47), 
to, elsewhere. 

p(s, A) = -Wu/T In [l -&A(, + y)]. 

1. Solve (66) for s2. 
2. Verify the results in (68) and (69). 

Problem 7.1.4. 

1. Modify the derivation of bounds 1 and 2 to incorporate (52). 
2. Compare your results with those in Fig. 7.6. 

Problem 7.1.5 [2]. 

1. Consider the expression for & given in (73). Use the same procedure as in 
(60)-(69) to obtain a bound on 6,. 

2. Modify the derivation in part 1 to incorporate (52). 

Problem 7.1.6. Recall the result in part 1 of Problem 7.1.1 and consider the receiver in 
Example 3. 

1. Show that fdO approaches the Cramer-Rao bound as WT - 00. 
2. Investigate the bias and the mean-square error in the ML estimate. 

Problem 7.1.7. Recall the result in part 1 of Problem 7.1.1. Substitute (96)-(98) into 
this formula and verify that (99) is true. 

Problem 7.1.8. Consider the model in Example 4. Verify that the result in (102) is true. 

Problem 7.1.9. Consider the result in (99). Assume 

elsewhere. 
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Problem 7.1.10. Carry out the details of the bias calculation for the model in Example 4. 

Problem 7.1.11. Assume that s(t, A) is a Wiener process, 

E[s2(t)] = At, 

and that the SPLOT assumption may be used. 

1. Evaluate the Cramer-Rao bound by using (25). 

2. Consider the suboptimum receiver described by (96)-(98). Evaluate 66 in (99). 
Plot ti0 as a function of C. 

0 

3. Calculate a bound on Pr [6, < 01. 

Problem 7.1.12. Consider the model in (l)-(5). Assume that 

Ks(7: A) = eBA41Tl, --<~<~, 

where A is a nonrandom positive parameter. 

1. Draw a block diagram of a receiver to find 

2. Evaluate the Cramer-Rao bound in (16) . 

Problem 7.1.13. Consider the model in (l)-(5). Assume that ~(t, A) is a bandpass process 
whose spectrum is 

S&x A) = S, Lp(-” - A) + Se,Lp(a - A), , 

where S,,,,(cu) is a known low-pass spectrum. 

1. Draw a block diagram of a receiver to find brnl. 
2. Evaluate the Cramer-Rao bound in (16). 
3. Specialize the result in part 2 to the case in which 

7 2kP 
Ss,LPW = W2 l 

Problem 7.1.14 [5]. Suppose that 

s(t, A) = c&(t) + c,s(t - 41, 

where cL and c2 are known constants and s(t) is a sample function from a stationary 
random process. Evaluate the Cramer-Rao bound in (16). 

Problem 7.1.15. Jn the text we assumed that s(t, A) was a zero-mean process. In this 
problem we remove that restriction. 

1. Derive the SPLOT version of (6.16)-(6.26). 
2. Derive the SPLOT version of (6.45) and (6.46). 

Problem 7.1.16. Consider the system shown in Fig. P.7.1. The input s(t) is a sample 
function of a zero-mean Gaussian random process with spectrum S(o). The additive 
noise w(t) is a sample function of a white Gaussian random process with spectral height 
N,/2. We observe r(t), Te: 5 t 5 Tf, and want to find 6,,. 

1. Draw a block diagram of the optimum receiver. 
2. Write an expression for the Cramer-Rao bound. Denote the variance given by this 

bound as tCR. 
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Fig. P.7.1 

3. Constrain 

s 

00 dw 
S(0) z = P. 

--co 

Choose S(o) to minimize ECR. 

Problem 7.1.17. The received waveform is 

v(t) = s(t, 4 + n,(t), Ti < t < Tf. (P.0 

The additive noise n,(t) is a sample function of a zero-mean, finite-power, stationary 
Gaussian noise process with spectrum S,(W). Notice that there is no white noise 
component . 

1. Derive an expression for the Cramer-Rao bound. 

2. Discuss the question of singular estimation problems. In particular, consider the 
case in which 

Sh 4 = AS(a). WV 

3. Assume that (P.l) and (P.2) hold and 

(P.3) 

Choose S,(o) to maximize the Cramer-Rao bound. 

Problem 7.1.18. The received waveform is 

r(t) = s(t, A) + w(t), Ti 5 t 5 7”. 

Assume that the SPLOT conditions are valid. 

1. Derive an expression for In R(A). 

2. Derive an expression for the Cramer-Rao bound. 

Problem 7.1.19. Consider the two-element receiver shown in Fig. P.7.2. The signal s(t) 
is a sample function of a zero-mean stationary Gaussian random process with spectrum 
S(o). It propagates along a line that is a radians from the y-axis. The received signals 
at the two elements are 
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Fig. P.7.2 

where c is the velocity of propagation. The additive noises WI(t) and q,(t) are statistically 
independent white noises with spectral height N0/2. Assume that lori < v/8 and that 
S(o) is known. 

1. Draw a block diagram of a receiver to generate 6zn11. 
2. Write an expression for the Cramer-Rao bound. 
3. Evaluate the bound in part 2 for the case in which 

elsewhere. 

4. Discuss various suboptimum receiver configurations and their performance. 
5. One procedure for estimating a is to compute 

1 

s 

T, 
cm = - 

Tf-Ti Ti 
rl(t)r2(t - 7) dt 

as a function of T and find the value of T where ~(7) has its maximum. Denote this point 
as +*. Then define 

c+* 
&*LQ. 

Discuss the rationale for this procedure. Compare its performance with the Cramer-Rao 
bound. 
Problem 7.1.20. Consider the problem of estimating the height of the spectrum of a 
random process s(t) at a particular frequency. A typical estimator is shown in Fig. P.7.3. 

Fig. P.7.3 
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Denote the particular point in the spectrum that we want to estimate as 

A ii S(q). (W 

The filter H,(~w) is an ideal bandpass filter centered at ol, as shown in Fig. P-7.4. 

of 

Fig. P.7.4 

1. Compute the bias in Z. Under what conditions will this bias be negligible? 
2. Assume that the bias is negligible. Compute the normalized variance as a function 
the various parameters. 

3. Demonstrate a choice of parameters such that the normalized variance goes to 
zero as T--+ co 

4. Demonstrate a choice of parameters such that the normalized variance goes to 
two as T-, GO. 
Comment: This problem illustrates some of the issues in power spectrum estimation. 
The interested reader should consult [6.1]-[6.3] for a detailed discussion. 

Problem 7.1.21. Assume that 

S(o: A) = AS(w). 

Denote the expression in the Cramer-Rao bound of (25) as &. 

1. Evaluate EC,{ for the case 

2. Assume 

2nP sin (7r/2n) 
s(w) = k (w/k)2n + 1 l 

Find the spectrum S(o) that minimizes &. 

Problem 7.1.22. Assume that 

2AP sin (42A) 
S(o:A) = - 

k (o/k)2” + 1 ’ 
where A is a 

1. Find a 
2. Find a lower bound on the variance of any unbiased estimate ofA. 

positive 

receiver 

integer. 

to generate ci,,. 
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Problem 7.1.23. Consider the estimation problem described in Problem 7.1.13. Assume 

A, < A < A@, 

elsewhere, 
and 

1. Draw a block diagram of a receiver to generate 6,,. 
2. Is the Cramer-Rao bound valid in this problem? 
3. Use the techniques on pages 1-278-I-284 and the results of Section 5.1 to evaluate 

the receiver performance. How can you analyze the weak noise performance (local 
errors) ? 

P.7.2 Finite-state Processes 

Problem 7.2.1. The signal process is a Wiener process, 

We want to find ciml. 
E[s2(t)] = At. 

1. Draw a block diagram of the receiver. Specify all components (including initial 
conditions) completely. 

2. Verify that 
exp [-2(2A/N,)‘%] 1 + exp [-2(2A/N,)%] l 

3. Use the result in part 2 to compute J12)(A) in (118). 
4. Plot Jf2)(A)/A2 as a function of 2AT2/No. 

Problem 7.2.2. Assume 
s(t, 4 = As(t), 

where s(t) has a known finite-dimensional state representation. Consider the FSI 
receiver in Fig. 7.4. Assume that /zC,lAl(~) has a finite-dimensional state representation. 

Derive a differential equation specifying &Q 

Problem 7.2.3. Consider the model in (107)-(111). Assume that F(t, A), G(t A), Q(A), 
and P,(A) are not functions of A. 

C(t, A) = f(t - A)C, 

where f (t) is only nonzero in [a < t < /3] and a - A and /3 - A are in [Ti, Tf]. We 
want to make a maximum-likelihood estimate of A. 

1. Draw a block diagram of the optimum receiver. 
2. Write an expression for the Cramer-Rao bound. 
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Problem 7.2.4. Consider the model in (107)-(111). Assume 

F(t, A) = -k, 

G(t, A) = 1, 

C(t, A) = 1, 

and 
Q(A) = 2kP, 

P,(A) = A. 

We want to make a maximum-likelihood estimate of A. 

1. Draw a block diagram of a receiver to generate cim,. 
2. Discuss various suboptimum configurations. (Hint: What segment of the received 

waveform contains most of the information about A?) 
3. Write an expression for the Cramer-Rao bound. 

P.7.3 Separable Kernels 

Problem 7.3.1. Consider the model described in Example 5. Assume 

NO Ai >>z for all A in xa. 

1. Find an expression for 6,. 
2. Derive an expression for Pr [do < 01. 
3. Derive an expression for 62 . 
4. Compare the expression in part 3 with the Cramer-Rao bound. 

Problem 7.3.2. Repeat Problem 7.3.1 for the case in which 

Problem 7.3.3. Consider the 
condition in (1 28) is vali d. 

NO Ai <<z for all A in xa. 

in (121)-(127) and assume that the equal eigenvalue 

1. Calculate 
Es 

0 
ii E[(tio - A)2]. 

2. 
3. 

Compute 
Assume 

Pr [& < 0] by using (41). 

Choose K to minimize Eao. Compare your results with those in (4.76) and (4.116). 

4. Calculate pao(Ao) exactly. 
5. Evaluate Pr [ii0 < 0] using the result in part 4 and compare it with the result in 

part 2. 
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Problem 7i3.4. Consider the model in (120), but assume that 

K,(t, u : A) 

Assume that A;l(A) exists. 

1. Draw a block diagram of the optimum receiver to generate 8,,1. 
2. Derive an expression for the Cramer-Rao bound. 
3. What difficulty arises when you try to compute the performance exactly? 

Problem 7.3.5. Consider the model in Problem 7.3.4. Let 

&(A) = f  . 

Assume that A is the value of a random variable whose a priori density is 

pa@ 1 k,, k,) = c(AklP--1) exp ( -*Aklk2), A 20, k,, k, > 0, 

where c is a normalization constant 

1 l Find &,&)(A 1 W ) .  

2. Find QIms. 
3. Compute E[(ri,, - a)2]. 

Problem 7.3.6. Consider the model in (120). Assume that 

K,(t, u:A) = $ &vi(t, Ah&, 4. 
*= 

Assume that the qi(t, A) all have the same shape. The orthogonality is obtained by 
either time or frequency diversity (see Section 4.3 for examples). 

1. 
2. 

Draw a block diagram of 
Evaluate the Cramer-Rao 

a receiver to genera te dm,. 

P.7.4 Low-energy Coherence 

Problem 
satisfied. 

7.4.1. Assume that both the LEC condition and the SPLOT condition 

1. Derive 
2. Derive the 

SPLOT 
SPLOT 

of (136). 
of (137). 

Problem 7.4.2. Consider the model in Example 6. 

1. Evaluate (142) for the case in which 

K(t, u) = emaltvul. (P.1) 

2. Evaluate the SPLOT version of (142) for the covariance function in (P.l). Compare 
the results of parts 1 and 2. 

3. Derive an expression for an upper bound on the bias. Evaluate it for the covariance 
function in (P.1). 



230 7.7 Problems 

Problem 7.4.3. Consider the model in Example 6. Assume that 
in (140), , even though the LEC condi tion may no t be valid. 

we use the LEC receiver 

1. Prove that ci, is unbiased under all conditions. 
2. Find an expression for ti . 

3. Evaluate this expression Ofor the covariance function in (P.l) of Problem 7.4.2. 
Compare your result with the result in part 1 of that problem. 

Problem 7.4.4. Assume that 

K,(t, u: A) = Af (t)K,(t - u)f (u) 

and that the LEC condition is valid. 
Draw a block d iagram of the optimum receiver to generate &,,. 

P.7.5 Related Topics 

Problem 7.5.1. Consider the estimation model in (150)-(158). Assume that 

m(t, A) = 0, 

s&h A) Al =- 
co2 + A22 ’ 

and that the SPLOT assumption is valid: 

1. Draw a block diagram of the ML estimator. 
2. Evaluate J(A). 
3. Compute a lower bound on the variance of any unbiased estimate of A,. 
4. Compute a lower bound on the variance of any unbiased estimate of A,. 
5. Compare the result in part 4 with that in Problem 7.1.12. What effect does the 

unknown amplitude have on the accuracy bounds for estimating A,? 

Problem 7.5.2. Consider the estimation model in (150)-(158). Assume that 

and 
m(t, A) = 0 

s,(w A) 
Wl =,A2 =- 

m2 + k12 
+- 

w2 + k22 ’ 
(P-0 

where k, and k2 are known. 

1. Draw a block of the ML estimator of A, and A,. 
2. Evaluate J(A). 
3. Compute a lower bound on the variance of an unbiased estimate of A,. 
4. Compute a lower bound on the variance of an unbiased estimate of A,. 
5. Assume that A, is known. Compute a lower bound on the variance of any unbiased 

estimate of A,. Compare this result with that in part 3. 
6. Assume that the LEC condition is valid. Draw a block diagram of the optimum 

receiver. 
7. Consider the behavior of the result in part 3 as No --+ 0. 



Problem 7.5.3. Let 

S(w : A) = AS@: a). 

Assume that S(o: a) is bandlimited and that 

AS(co: a) >> No/2 for all A and a. 

1. Assume that a is fixed. Maximize In A(A) over A to find &&a), the ML estimate 
ofA. 

2. Substitute this result into ln A(A) to find In I\(&,, a). This function must be 
maximized to find ^Qmr. 

3. Assume that a is a scalar a. Find a lower bound on the variance of an unbiased 
estimate of a. Compare this bound with the bound for the case in which A is known. 
Under what conditions is the knowledge of A unimportant? 

Problem 7.5.4. Repeat Problem 7.5.3 for the case in which 

AS(o: a) << NO/2 for all A and a 

and S(o:a) is not necessarily bandlimited. 

Problem 7.5.5. Consider the model in Problem 7.5.2. Assume that 

Repeat Problem 7.5.2. 

S&o, A) = co2 + - 
o2 + k22 l 

Problem 7.5.6. Consider the model in Problem 7.5.2. Assume that 

s,(w A) 
co2 + Al2 =-, 
a~* + A,* 

Evaluate J(A). 

Problem 7.5.7. Derive the SPLOT versions of (153) and (154). 

Problem 7.5.8. Consider the estimation model in (150)-(158). Assume that 

m(t, A) = A,m(t), 

S&o, A) = A,S(o). 

1. Draw a block diagram of the receiver to generate the ML estimates of A, and A,. 
2. Evaluate J(A). 

3. Compute a lower bound on the variance of any unbiased estimate of Al. 
4. Compute a lower bound on the variance of any unbiased estimate of A,. 

Problem 7.5.9. Consider the binary symmetric communication system described in 
Section 3.4. Assume that the spectra of the received waveform on the two hypotheses 
are 

s,e-J) = A,S,W + N,P: H,, 

s,(o) = A,S,(w) + N,/2: HO. 
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The hypotheses are equally likely and the criterion is minimum Pr (E). The parameters 
A, and A, are unknown nonrandom parameters. The spectra s&Q and So@) are 
bandpass spectra that are essentially disjoint in frequency and are symmetric around 
their respective frequencies. 

1. Derive a generalized likelihood ratio test. 
2. Find an approximate expression for the Pr (e) of the test. 

Problem 7.5.10. Consider the following generalization of Problem 7.5.4. The covariance 
function of s(t, A) is 

K,(t, u: A) = AK& u: or). 

Assume that the LEC condition is valid. 

1. Find In A@&, a). Use the vector generalization of (136) as a starting point. 

2. Derive J(a; A), the information matrix for estimating a. 
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The Radar-sonar Problem 

In the second half of this book, 
theory results that we have derived 

we 
to 

apply the detection a 
proble ms encountered 

nd estimation 
in the analysis 

and design of modern radar and sonar systems. We shall confine our 
discussion to the signal-processing aspects of the problem. There are a 
number of books dealing with the practical and theoretical aspects of the 
design of the overall system (e.g., for radar [l]-[6], and for sonar 

In this Chapter we discuss the problem qualitatively and outline the 
organization of the remainder of the book. 

A simple model of an active radar system is shown in Fig. 8.1. A narrow- 
band signal centered around some carrier frequency cc), is transmitted. If 
a target is present, the transmitted signal is reflected. The properties of the 
reflected signal depend on the target characteristics (e.g., shape and 
motion). An attenuated and possibly distorted version of the reflected 
signal is returned to the receiver. In the simplest case, the only source of 
interference is an additive Gaussian receiver noise. In more general cases, 
there is interference due to external noise sources or reflections from other 
targets. In the detection problem the receiver processes the signal to 
decide whether or not a target is present at a particular location. In the 
estimation problem the receiver processes the signal to measure some 
characteristics of the target, such as range and velocity. 

As we pointed out in Chapter 1, there are several issues that arise in the 
signal processing problem. 

1. The reflective characteristics of the target. 
2. Transmission characteristics of the channel. 
3. Characteristics of the interference. 
4. Optimum and suboptimum receiver design and performance. 

t We strongly suggest that readers who have no fami liarity with the basic 
or sonar read at least the first chapter of one of the above references. 

ideas of radar 
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Returns of other target 

receiver 
noise 

External noise fields 

Fig. 8.1 Model of an active radar or sonar system. 

We study these issues in detail in Chapters 9-13. Before beginning our 
detailed discussion, it is worthwhile outlining the hierarchy of the target 
models that we shall discuss. 

The simplest model of the target is one that assumes that the target 
characteristics are fixed during the time it is illuminated by the transmitted 
pulse. If we further assume that its depth (measured in seconds) is 
negligible compared to the pulse length, we may consider it as a point 
reflector (with respect to the envelope of the pulse). Thus, the only effect of 
the target on the envelope is to attenuate and delay it. The carrier acquires 
a random phase shift. For this case, the attenuation and phase shift will be 
essentially constant over the pulse length, and we can model them as 
random variables. We refer to this type of target as a slowly fluctuating 
point target. 

In Chapter 9 we discuss the problem of detecting a slowly fluctuating 
point target at a particular range and velocity. First, we assume that the 
only interference is additive white Gaussian noise and develop the opti- 
mum receiver and evaluate its performance. We then consider nonwhite 
Gaussian noise and find the optimum receiver and its performance. We 
use complex state-variable theory to obtain complete solutions for the 
nonwhite noise case. The final topic in the chapter is a brief discussion of 
signal design. 

In Chapter 10 we consider the problem of estimating target parameters. 
Initially, we consider the problem of estimating the range and velocity 
of a single target when the interference is additive white Gaussian noise. 
Starting with the likelihood function, we develop the structure of the 
optimum receiver. We then investigate the performance of the receiver 
and see how the signal characteristics affect the estimation accuracy. We 
find that the signal enters into the analysis through a function called the 
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ambiguity function; we therefore develop various properties of the ambig- 
uity function and discuss how to design signals with desirable ambiguity 
functions. The final topic is the detection of a target in the presence of 
other interfering targets (the discrete resolution problem). 

Although the material in Chapters 9 and 10 deals with the simplest type 
of target model it enables the reader to understand the signal processing 
aspects of most modern radar and sonar systems. The only background 
needed for these two chapters is the material in Chapter I-4. 

In the remaining three chapters we study more complicated target 
models. Except for the reverberation discussion in Section 13.2, they 
assume familiarity with the material in Chapter 111-2-111-4. The work in 
Chapters 11-13 is more advanced than that in Chapter 10 but is essential 
for readers doing research or development of more sophisticated signal- 
processing systems. 

In Chapter 11, we consider a point target that fluctuates during the time 
the transmitted pulse is being reflected. This fluctuation causes time- 
selective fading, and we must model the received signal as a sample 
function of a random process. 

In Chapter 12, we consider a slowly fluctuating point target that is 
distributed in range. We shall find that this type of target causes frequency- 
selective fading and, once again, we must model the received signal as a 
sample function of a random process. 

In Chapter 13, we consider fluctuating, distributed targets. This model 
is useful in the study of reverberation in sonar systems and clutter in 
radar systems. It is also appropriate in radar astronomy and scatter 
communications ‘problems. In the first part of the chapter we study the 
problems of signal and receiver design for systems operating in reverbera- 
tion and clutter. This discussion will complete the resolution problem 
development that we begin in Chapter 10. In the second part of the 
chapter we study the detection of fluctuating, distributed targets and 
communication over fluctuating distributed channels. Finally, we study 
the problem of estimating the parameters of a fluctuating, distributed 
target. 

In Chapter 14, we summarize the major results of the radar-sonar 
discussion. Throughout our discussion we emphasize the similarity between 
the radar problem and the digital communications problem. In several 
sections we digress from the radar-sonar development and consider 
specific digital communications problems. 

All of our discussion in Chapters 9-l 3 describes the signals, systems, 
and processes with a complex envelope notation. In the Appendix we de- 
velop this complex representation in detail. The idea is familiar to electrical 
engineers in the context of phasor diagrams. Most of the results concerning 
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signals, bandpass systems, and stationary processes will serve as a review 
for many readers, and our discussion merely serves to establish our 
not .ation. The material dealing with nonstationary processes, eigenfunc- 
tions, and complex state variables may be new, and so we include more 
examples in these parts. The purpose of the entire discussion is to develop 
an efficient notation for the problems of interest. The time expended in 
developing this notation is warranted, in view of the significant simplifica- 
tions it allows in the remainder of the book. Those readers who are not 
familiar with the complex envelope notation should read the Appendix 
before starting Chapter 9. 
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Detection of Slowly 
Fluctuating Point Targets 

In this chapter we discuss the problem of detecting a slowly fluctuating 
point target in the presence of additive noise. The first step is to develop 
a realistic mathematical model for the physical situations of interest. In 
the course of that development we shall explain the phrases “slowly 
fluctuating” and “point” more explicitly. Once we obtain the mathe- 
matical model, the detection problem is directly analogous to that in 
Sections I-4.2 and I-4.3, so that we can proceed quickly. We consider 
three cases : 

1. Detection in white bandpass noise. 

2. Detection in colored bandpass noise. 

3. Detection in bandpass noise that has a finite state representation. 

In all three cases, we use the complex notation that we develop in detail 
in the Appendix. We begin by developing a model for the target reflection 
process in Section 9.1. In Section 9.2, we study detection in white bandpass 
noise. In Section 9.3, we study detection in colored bandpass noise. In 
Section 9.4, we specialize the results of Section 9.3 to the case in which the 
bandpass noise has a finite state representation. In Section 9.5, we study 
the question of optimal signal design briefly. 

9.1 MODEL OF A SLOWLY FLUCTUATING POINT TARGET 

In order to develop 
sonar system transmits 

our target model, we first a ssume 
a cosine wave continuously. Thus, 

that the radar/ 

%W = JF..cos act = J i Re [J Pt eioct], -oo<t<c;o. (1) 
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Now assume that there is a zero-velocity target located at some range R 
from the transmitter. We assume that the target has a physical structure 
that includes several reflecting surfaces. Thus the returned signal may be 
written as 

s,(t) = & Re (& z gi exp [ jmC(t - T) + OJ]. 
i=l 

(2) 

The attenuation gi includes the effects of the transmitting antenna gain, 
the two-way path loss, the radar cross-section of the ith reflecting surface, 
and the receiving antenna aperture. The phase angle Oi is a random phase 
incurred in the reflection process. The constant T is the round-trip delay 
time from the target. If the velocity of propagation is c, 

We want to determine the characteristics of the sum in (2). If we assume 
that the 0, are statistically independent, that the gi have equal magnitudes, 
and that K is large, we can use a central limit theorem argument to obtain 

s,(t) = JTRe {& b exp (jo,(t - T)]}, (4) 

where 8 is a complex Gaussian random variable. The envelope, 181, is a 
Rayleigh random variable whose moments are 

r 
(5) 

and 

The value of gb2 includes the antenna gains, path losses, and radar cross- 
section of the target. The expected value of the received power is 2P,ob2. 
The phase of d is uniform. In practice, K does not have to very large in 
order for the complex Gaussian approximation to be valid. Slack [l] 
and Bennett [2] have studied the approximation in detail. It turns out that 
if K = 6, the envelope is essentially Rayleigh and the phase is uniform. 
The central limit theorem approximation is best near the mean and is less 
accurate on the ta.il of the density. Fortunately, the tail of the density 
corresponds to high power levels, so that it is less important that our 
model be exact. 

We assume that the reflection process is frequency-independenr. Thus, 
if we transmit 

s,(t) = &Re [‘Fexp (@,t + jcut)], (7) 
we receive 

$(t) = h Re [&6 exp [j(a, + CO)@ - T)]]. (8) 
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We also assume that the reflection process is linear. Thus, if we transmit 

s,(t) = & Re [&&t)ejWct] 

Et 6 exp [ jw& - T)] s 00 
P( jw) exp [ jw(t - T)] 

nco 
- 

-a3 2?T 1 
= & Re [& d exp [ jo,( t - ~)]f(t - T)]. (10) 

Since 6 has a uniform phase, we can absorb the ejUc7 term in the phase. 
Then 

s,.(t) = & Re [JE, hy(t - r)eiwct 1 I . (10 

The function f(t) is the complex envelope of the transmitted signal. We 
assume that it is normalized: 

s 00 If(t nt = 1. (12) 
-a3 

Thus the transmitted energy is E,. The expected value of the received 
signal energy is 

& A 2E,ob2. (13) 

We next consider a target with constant radial velocity v. The range is 

R(t) = R, - vt. (14) 

The signal returned from this target is 

s?.(t) = J? Re [Jz 6f(t - r(t)) exp [jQt - T(t))]], 

where T(t) is the round-trip delay time. Notice that a signal received at t 
was reflected from the target at [t - (T(t)/2)]. At that time the target 
range was 

By definition, 

Rp) ++y. (16) 

7(t) = 
2R(t - T(t)/2) 

. (17) 
c 
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Substituting (16) into (17) and solving for 7(t), we obtain 

2R,/c (2ulc)t 7(t) = - - - 
1 + v/c 1 + v/c l 

For target velocities of interest, 

Thus, 

V 
- << 1 . (19 
C 

2Ro 2v 2v 
T(t) cz - - - t a 7 - - t. 

C C C 
(20) 

Substituting (20) into (15) gives 

s,(f) = Jz Re [JG Sf( t - T + F t) exp [jw, (t + F t)]]. (21) 

(Once again, we absorbed the c~)~T term in 6.) We see that the target velocity 
has two effects: 

1. A compression or stretching of the time scale of the complex 
envelope. 

2. A shift of the carrier frequency. 

In most cases we can ignore this first effect. To demonstrate this, con- 
sider the error in plotting f(t) instead of f(t - (2vlc)t). The maximum 
difference in the arguments occurs at the end of the pulse (say T) and 
equals 2vT/c. The resulting error in amplitude is a function of the signal 
bandwidth. If the signal bandwidth is W, the signal does not change 
appreciably in a time equal to W-l. Therefore, if 

2vT 1 
<< 

C w 
or, equivalently, 

WT<<;, (2% 

(22) 

we may ignore the time-scale change. For example, if the target velocity 
is 5000 mph, a MIT product of 2000 would satisfy the inequality.? 

The shift in the carrier frequency is called the Doppler shift 

t There are some 
these problems in 

in which (23) is not sonar problems 
Section 10.6. 

20 
wDa cc)c c . ( 1 

satisfied. We shall comment on 

(24) 
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Using (24) in (21), and neglecting the time compression, we obtain 

sr(t) = &Re [& 6f(t - T) exp (jwCt + CO&]. -1 (29 
We shall use this expression for the received signal throughout our dis- 
cussion of slowly fluctuating point targets. We have developed it in 
reasonable detail because it is important to understand the assumptions 
inherent in the mathematical model. 

The next step is to characterize the additive noise process. We assume 
that there is an additive Gaussian noise n(t) that has a bandpass spectrum 
so that we can represent it as 

n(t) = & Re [Z(t)e’“c’]. (26) 
(This representation of the bandpass processes is developed in the 
Appendix.) Thus, the total received waveform is 

r(t) = d%$ Re (6f(t - 7) eXP (@bt -i-&Q)) -I- 6Re {ii(t) exp (jq)} 

or, more compactly, 

where 
r(t) = & Re [F(t)eimcf], 

F(t) A 6JE,f(t - 7)eiWDt + C(t). 

Up to this point we have developed a model for the return from a target 
at a particular point in the range-Doppler plane. We can now formulate 
the detection problem explicitly. We want to examine a particular value 
of range and Doppler and decide whether or not a target is present at that 
point. This is a binary hypothesis-testing problem. The received waveforms 
on the two hypotheses are 

r(t) = JS Re { [&hFJ( t - T)eioBf + fi( t)]eioct }, 

and 
(2W 

r(t) = &Re {ii(t)ejwcf}, 

Since we are considering only a particular value of 7 and CO, we can assume 
that they are zero for algebraic simplicity. The modifications for nonzero 
7 and cc) are obvious and will be pointed out later. Setting 7 and oD equal 
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r(t) = h Re {[k&f(t) + fi(t)]ei”c’), q < t 5 T”:H, (30) 

and 

r(t) = & Re [<(t)ei”““], q 5 t 5 T,:H,. (31) 

In the next three sections, we use the model described by (30) and (31) and 
consider the three cases outlined on page 238. 

Before we begin this development, some further comments on the model 
are worthwhile. All of our discussion in the text will use the Rayleigh 
model for the envelope 161. In practice there are target models that cannot 
be adequately modeled by a Rayleigh variable, and so various other 
densities have been introduced. Marcum’s work [8]-[lo] deals with 
no@uc~ting targets. Swerling [7] uses both the Rayleigh model and a 
probability density assuming one large reflector and a set of small reflectors. 
Specifically, defining 

the density given by the latter model is 

z p,(Z) = -2 e--Z’aa, 
% 

where ~~~ is defined in (6). Swerling [l 1 

W) 

] also uses a chi-square density 

-1 
e-KZ/2aa2 

9 z > 0. - (324 

The interested reader can consult the references cited above as well as 
[12, Chapter VI-51 and [13] for discussions of target models. 

Most of our basic results are applicable to the problem of digital 
communication over slowly fluctuating point channels that exhibit 
Rayleigh fading. Other fading models can be used to accommodate different 
physical channels. The Rician channel [14] was introduced on page I-360. 
A more general fading model, the Nakagami channel [ 151, [ 161, models 
151 as 

P,,,(X) = 
2m"X2m--l e-mx2i20a2 

vf4(2%?" 
9 x 2 0, (3% 

which is a generalization of (32~) to include noninteger XT. Various prob- 
lems using this channel model are discussed in [ 17]-[22]. 

We now proceed with our discussion of the detection of a slowly 
fluctuati .ng point target. 
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9.2 WHITE BANDPASS NOISE 

In this case, the complex envelopes of the received waveform on the 
two hypotheses are 

F(t) = JE,6f(t) + i?(t), 0 < t < 7’: H,, 

r”(t) = i?(t), 0 < t < T:H,, v 0 

where d is a zero-mean complex Gaussian random variable (E{ 1612} = 
20,~) and C(t) is an independent zero-mean white complex Gaussian 
random process, 

E[iqt)G*(u)] = N(-J(t - u). (3% 

The complex envelope f(t) has unit energy. Because the noise is white, 
we can . make the 

The first step i 
0 

.S 

bservati .on interval coinciden 
to find a sufficien t statistic. 

t with the signal duration. 
Since the noise is white, 

we can expand using any complete orthonormal set of functions and 
obtain statistically independent coefficients [see (A. 117)]. Just as in Section 
I-4.2, we can choose the signal as the first orthonormal function and the 
resulting coefficient will be a sufficient statistic. In the complex case we 
correlate r”(t) with $*(t) as shown in Fig. 9.1. The resulting coefficient is 

I s T 

& A i(t>f”(t) dt. 
0 

Using (34) in (36), 

(36) 

where i?, is a zero-mean complex Gaussian random variable (E{l$J2} = 
No). We can easily verify that F1 is a sufficient statistic. The probability 
density of a complex Gaussian random variable is given by (A.81). 

Fig. 9.1 Generation of complex sufficient statistic. 
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?* 0) 

Fig. 9.2 Correlation receiver (complex operations). 

The likelihood ratio test is 

[n(202& + N”)l - exp - [ ] RJ2/(2a,2E, + NJ] Ifi = 

Taking the logarithm and rearranging terms, we have 

- 2 7 &(& + 2a,*4 
IR I 1 

2, 
20& (Iv + ln (1 + F)) A y* (39) 

A complex receiver using a correlation operation is shown in Fig. 9.2. A 
complex receiver using a matched filter is shown in Fig. 9.3. Here 

where 
s T  

Fl = qu)h(T - u) du, (40) 
0 

h(u) = f*(T - u). (41) 

The actual bandpass receiver is shown in Fig. 9.4. We see that it is a band- 
pass matched filter followed by a square-law envelope detector and 
sampler. 

The calculation of the error probabilities is straightforward. We have 
solved this exact problem on page I-355, but we repeat the calculation 
here as a review. The false-alarm probability is 

PF = Pr [IhI2 > Y IHOII 

1 
- e-Z2’NoZ dZ d/T, 
TN0 

Fig. 9.3 Matched filter receiver (complex operations). 
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I  l 

r(t) Bandpass Square-law 
I+ matched t * envelope 1 

1 filter J 1 ,detecior J 

Fig. 9.4 Optimum receiver: detection of bandpass signal in white Gaussian noise. 

where we have defined 

Thus, 

Similarly, we obtain 

R, h Ze? 

--Y INO P,=e . 

(43) 

(44) 

P, = exp y  - 
2~7~~4 + No 

) =exp(-$------. (4% 

where 
ET A 20,2E, (46) 

is the expected value of the received signal energy. Combining (42) and 
(45) gives 

(47) 
As we would expect, the performance is only a function of &IN,, and the 
signal shapef(t) is unimportant. We also observe that the exponent of P, 
is the ratio of the expectation of I&i2 on the two hypotheses: 

(48) 

From our above development, it is clear that this result will be valid for 
the test in (39) whenever R, is a zero-mean complex Gaussian random 
variable on both hypotheses. It is convenient to write the result in (48) in a 
different form. 

A A E[IRd2 1 H,l - 1 E[I&l” 1 &I y- W&l2 1 &I 
- mu2 1 HOI = ~[IR,12 1 H”1 l 

(49 

Now we can write 
P,, = (PJ-J1+A. (50) 

For the white noise case, 

In the next section we evaluate A for the nonwhite-noise case. 
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Fig. 9.5 Optimum receiver for known Doppler shift. 

The modification to include non-zero T and wg is straightforward. The 
desired output is 

l&(7, @I2 = 

This could be obtained by passing the received waveform through a 

(52) 

filter 
whose complex impulse response is 

i;(u) = f*( T + 7 - z~)eiwDzL du, (53) 

then through a square-law envelope detector, and sampling the output at 

t T. = (54) 

Equivalently, we can use a complex impulse response 

h(u) = f*( -u)ejO~u &f (55) 
and sample the detector output at 

t = 7. (56) 
The obvious advantage of this realization is that we can test all ranges with 
the same filter. This operation is shown in Fig. 9.5. The complex envelope 
of the bandpass matched filter is specified by (55). In practice, we normally 
sample the output waveform at the reciprocal of the signal bandwidth. 
To test different Doppler values, we need different filters. We discuss this 
issue in more detail in Chapter 10. 

We now consider the case in which 5(t) is nonwhite. 

9.3 COLORED BANDPASS NOISE 

In this case, the complex envelopes on the two hypotheses are 

r”(t) = dE,6f(t) + t(t), Ti < t < T,:H,, 

r"(t) = ii(t), Ti < t < Tf:Ho. 
(57) 

- m 

The additive noise ii(t) is a sample function from a zero-mean nonwhite 
complex Gaussian process. It contains two statistically independent 
components, 

ii(t) A &(t) + G(t). w9 
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The covariance of A(t) is 

E[Z(t)fi*(u)] A &(t, u> = RJt, u) + N, qt - zl), Ti < t, u < T,. - - 

(5% 

Notice that the observation interval [Ti, TJ may be different from the 
interval over which the signal is nonzero. Any of the three approaches 
that we used in Section 1.4.3 (pages 1-287-I-301) will also work here. We 
use the whitening approach.? Let &,,(t, x) denote the impulse response 
of a complex whitening filter. When the filter input is ii(t), we denote the 
output as n”*(t), 

s Tf n”*(t) = h.&, m(a dx, q < t < Tf. - - 
Ti 

The complex impulse response hwu(t, x) is chosen so that 

E[Z*(t)E~(u)] = E h”,,(t, z)@,(u, Y)fi@)fi*(y> dx dy 
. 

- - W - 49 Ti < t, u < Tfe - - 
We define 

s 

Tfw 

r”*(t) = h.il,(t9 4@) dz, K<t<T, - - 

and 
Ti 

(60) 

(61) 

Ti s t < Tr. - (63) 

We may now use the results of Section 9.2 directly to form the sufficient 
statistic. From (36), 

Tr 
?I = 

s 
r”*( t>fg< t) dt 

Ti 

Tr Tfw T/ 

= 

s s 
dt h&t, x)?(x) dx 

s 

~~&9 Y)f*w &I* 
Ti T  Ti 

As before, we define an inverse kernel, 

(64) 

t The argument is parallel to that on pages 1-290-I-297, and so we shall move quickly. 
We strongly suggest that the reader review the above pages before reading this section. 
$ In Section I-4.3, we associated the dE with the whitened signal. Here it is simpler 
to leave it out of (63) and associate it with the multiplier g. 
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Fig. 9.6 Optimum receiver: bandpass signal in nonwhite Gaussian noise (complex 
operations) . 

Using (65) in (64) gives 

Defining 

we have 

The optimum test is 

The complex receiver is shown in Fig. 9.6, and the actual bandpass 

(66) 

(67) 

s Tr fl = ?(z)g*(z) dx. 
Ti 

(68) 

receiver is shown in Fig. 9.7. 
Proceeding as in Section I-4.3.1, we obtain the following relations : 

and 
s 

Tt 
&(t, x)&z, u) nx = d(t - u), q < t, u< T, (70) 

Ti 

Q-,<t, 21) = j$ [d(t - u) - h,,(t, u)], q < t, u < Tr, (70 
0 

Sample at 

Tf 

r(t) Bandpass Square-law 
> matched * envelope 

filter detector 
A-77 

, A HO 

(Filter is matched 

to aw 

Fig. 9.7 Optimum receiver: bandpass signal in nonwhite Gaussian noise. 
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where &,(t, u) satisfies the integral equation 

The function &,Jt, u) is the impulse response of the optimum unrealizable 
filter for estimating g,(t) in the presence of white noise G(t) of spectral 
height N,. Using (70) in (67), we have 

u 
f(t) = s 

Tf N 

k(4 4gw du, &<t<T, (73) 
Ti 

or 

u)g’(u> du + &g’(t), q < t < Tf. - - (74) 

This equation is just the complex version of (I-4.169b)J In Section I-4.3.6, 
we discussed solution techniques for integral equations of this form. All 
of these techniques carry over to the complex case. A particularly simple 
solution is obtained when i?,(t) is stationary and the observation interval 
is infinite. We can then use Fourier transforms to solve (73), 

For finite observation intervals we can use the techniques of Section I-4.3.6. 
However, when the colored noise has a finite-dimensional complex state 
representation (see Section A.3.3), the techniques developed in the next 
section are computationally more efficient. 

To evaluate the performance, we compute A using (49). The result is 

Tr 

A = Er 
ss 

r’<t)o;(t, u)f*(u) dt du 

Ti 

(76) 

or 

Notice that A is a real quantity. Its functional form is identical with that 
of d2 in the known signal case [see (I-4.198)]. The performance is obtained 

t It is important for the reader to identify the similarities between the complex case and 
the known signal case. One of the advantages of the complex notation is that it empha- 
sizes these similarities and helps us to exploit all of our earlier work. 
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(78) 

From (78) it is clear that increasing A always improves the performance. 
As we would expect, the performance of the system depends on the signal 
shape. We shall discuss some of the issues of signal design in Section 9.5. 

9.4 COLORED NOISE WITH A FINITE STATE REPRESENTATION? 

When the colored noise component has a finite state representation, we 
can derive an alternative configuration for the optimum receiver that is 
easy to implement. The approach is just the complex version of the 
derivation in the appendix in Part II, We use the same noise model as in 
w-9 . 

Z(t) = j&(t) + G(t)* (79) 

We assume that the colored noise can be generated by passing a complex 
white Gaussian noise process, fi( t), through a finite-dimensional linear 
system. The state and observation equations are 

i(t) = P(t)Z(t) + G(t)ii(t), (80) 

n”,(l) = C(t)Z(t) (81) 

The initial conditions are 

and 
E[Si(T,)] = 0 (82) 

E[Z(T$it(Ti)] = P,. (83) 

The covariance matrix of the driving function is 

E[ii(t)i?(a)] = Q&t - a). (84) 

In the preceding section we showed that the optimum receiver computed 
the statistic 

Tf 2 
1 A 

0- 
IS 

@&j*(z) dx 
I 

(8% 
Ti 

t In this section, we use the results of Section A.3.3, Problem I-4.3.4, and Problem 
I-6.6.5. The detailed derivations of the results are included as problems. This section 
can be omitted on the first reading. 
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and compared it with a threshold [see (69)]. The functiong’(t) was specified 
by 

From (81) we have 

&(t, u) = E[fi,(t)gyu)] = E[C(t)qt)z+(u)Ct(u)] 

= C(t)ii;,(t, up+(U). (87) 
Using (87) in (86) gives 

&(t, u)Ct(u)S(u) du + N&t), & 2 t 5 T,. (88) 

The performance was characterized by 

0 Tf 
A = Er 

s 
f(t)g’*(t) dt = Er 

s 
fu’(t)g(t) nt. 

Tt Ti 
(8% 

In this section we want to derive an expression for I, and A in terms of 
differential equations. These expressions will enable us to specify the 
receiver and its performance completely without solving an integral 
equation. We derive two alternative expressions. The first expression is 
obtained by finding a set of differential equations and associated boundary 
conditions that specify g’(t). The second expression is based on the 
realizable MMSE estimate of G,(t). 

9.4,l Differential-equation Representation of the Optimum Receiver 
and Its Performance: I 

We define 

Using (90) in (88) gives 

or 

q < t < Tfe - Y (92) 

$ Notice that e(t) is defined by (90). It should not be confused with &(t), the error 
covariance matrix. 
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Thus, if we can find c(t), we have an explicit relation for g’(t). By modifying 
the derivation in the appendix of Part II, we can show that e(t) is specified 
by the equations 

dm = F(t)&t) + E(tj@+(t);l(t), 
dt 

di(O = 
dt 

+ C+(Oe(t)&) - F+(t);i(t) - + C+(t>fl(t), (94) 
0 

O m = porn, (99 

and 
iv-2 = 0, (96) 

PO = &I. (97) 

This is a set of linear matrix eauations that can be solved numericallv. 
To evaluate A, we substitute 

A - - 51 
-L NO 

(90) into (89) to obtain 

- 
s 

Tj*(t)c(t)&t) dt 1 . Ti 
(Recall that we assume 

Tf N 

s. 
T IfWl” dt = 14 (99) 

The first term is the performance in the presence of white noise only. The 
second term is the degradation due to the colored noise, which we denote 
as 

Later we shall discuss how to designf(t) to minimize Adg. Notice that Adg 
is normalized and does not include the &/N, multiplier. 

We now develop an alternative realization based on the realizable 
estimate. 

9.4.2 Differential-equation Representation of the Optimum Receiver 
and Its Performance: II 

There are several ways to develop the desired structure. We carry out 
the details for two methods. 

The first method is based on a whitening filter approach. In Section 9.3, 
we used an unrealizable whitening filter to derive g(t). Now we use a 
realizable whitening filter. Let &,,(t, x) denote the impulse response of 
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the complex realizable whitening filter. When the filter input is fi(t), the 
output is a sample function from a white noise process. 

By extending the results of Problem I-4.3.4 to the complex case, we can 
show that 

L(t, 4 = -!- 
‘A 

( 1 No [so - x) - h,(t, ct)], (101) 

where &(t, 7: t) is the linear filter whose output is the MMSE estimate of 
j&(t) when the input is Z&) + G(t). The test statistic can be written as t 2 1 0 

= s C(t9 yv*(Y) dY 
Ti II 

(102) 

The receiver is shown in Fig. 9.8. Notice that the operation inside the 
dashed lines does not depend on r”(t). The functionfw,(t) is calculated when 
the receiver is designed. The operation inside the dashed lines indicates 
this calculation. 

A state-variable implementation is obtained by specifying h,(t, 7 : t) in 
terms of differential eauations. Because it can be interpreted as an optimum 
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Fig. 9.8 Optimum receiver realization using realizable whitening filters. 
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estimator of n”,(t), we can use (A. 159)-(A. 162). The estimator equation is 

d?(t) -= 
dt 

F&t) + tp(t)C+(t) ; [T(t) - C&t)], q 5 t, (103) 
0 

and the variance equation is 

d! (0 P -i 

dt 
w~~Pw + ~P(OE‘t(t) - fPw~+(t) 

with initial conditions 
g(q) = E&T,)] = 0 (105) 

and 
l$p(&) = E[%(T$+(TJ]. uw 

The estimate of A,(t) is 
ior = C(t)%(t). (107) 

Notice that this is the MMSE realizable estimate, assuming that Ho is true. 
Using (103), (107), and Fig. 9.8, we obtain the receiver shown in Fig. 9.9. 

The performance expression follows easily. The output of the whitening 
filter in the bottom path is f&t). From (76), E s TI 

A =- ; T IL(0l” dt* 
0 i 

(108) 

From Fig. 9.8 or 9.9 we can write 

wherefr(t) is the output of the optimum realizable filter when its input is 
f(t). Using (109) in (108), we have 

A 

From (100) we see that 

(110) 

We can also derive the optimum receiver directly from (85) and (92). 
Because this technique can also be used for other problems, we carry out 
the details. 
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An Alternative Derivation.7 This method is based on the relationship 

&O = %)6(t) + t,(t), Ti 5 t S Tf, (112) 

where z(t) and ET(t) are matrices that we now specify. Differentiating (112) and using 
(93)-(96), we find that E(t) must satisfy 

dZ(t) l- N 
dt 

= i!(t)E(t) + Z(t)&t) - N, C(t)ct(t)e(t)g(t) + &t)Qifit(t>, (11% 

with 
%(Ti) = PO, (114) 

which is familiar as the variance equation (104). [Thus, g(t) = ep(t).] The function 
t,(t) must satisfy 

&o 1 N 
dt 

= h)i&(t) + jy c(t)Ew)[f(t) - E(t)&(t)], (115) 
0 

with 
&(T& = 0. (116) 

This has the same structure as the estimator equation, except that T(t) is replaced by 
3c 1 t . 

In order to carry out the next step, we introduce a notation for c(t) and t(t) to 
indicate the endpoint of the interval. We write [(t, Tf) and fi(t, Tf). These functions 
satisfy (93)-(96) over the interval Ti 5 t < Tf. 

The test statistic is 

2 I* = ;(t)g#‘(t) dt 

1 
Tf 

= No T 
I s 

+)[$(7) - &)~(r)i&, Tf) - &)&)]* dr 2. (117) 
i 

To obtain the desired result, we use the familiar technique of differentiation and 
integration. 

Differentiating the terms in braces gives 

d 
‘;I; l -  

0 -  wm) -  Zl(&,(r)l” + 

We can show (see Problem 9.4.5) that the second term reduces to 

t This alternative derivation can be omitted on the first reading. 
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where g(t) is the state vector of the optimum realizable linear filter when its input is 
T(t). Using (120) in (119) and the result in (118), we obtain 

1 I,= - I s Tf 

No T  

[F(t) - E(t>i(t)][jlt) - E(t)&)]* dt 2. 

i 

(121) 

The receiver specified by (121) is identical with the receiver shown in Fig. 9.9. 

In this section we have developed two state-variable realizations for 
the optimum receiver to detect a bandpass signal in colored noise. The 
performance degradation was also expressed in terms of a differential 
equation. These results are important because they enable us to specify 
completely the optimum receiver and its performance for a large class 
of colored noise processes. They also express the problem in a format in 
which we can study the question of optimal signal design. We discuss 
this problem briefly in the next section. 

9.5 OPTIMAL SIGNAL DESIGN 

The performance in the presence of colored noise is given by (77). This 
can be rewritten as 

A = ET 
s 

Tfj;(t)g*(t) nt 
Ti 

= Er s [ T)(t) Ti +*(t) - ; j-p;#, u)f*(u) du] dt 
0 0 i 

f(t)h,*,(t, u)f*(u) dt du 1 . 

In the last equality, we used (99). The integral in the second term is just Adg, 
which was defined originally in (100). [An alternative expression for Ado 
is given in (11 l).] 

We want to choosef(t) to minimize Adg. In order to obtain a meaningful 
problem, we must constrain both the energy and bandwidth off(t) (see 
discussion on page T-302). We impose the following constraints. The 
energy constraint is 

s Tf CI 
If(t dt = 1. uw T 

i 
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The mean-square bandwidth constraint is 

3f 
hid Y 

2 
dt = 8’. 

. dt 

In addition, we require 
ma = f(T,) = 0 

to avoid discontinuities at the endpoints. 
The function that we want to minimize is 

J = 
ss 

f(t)&(t, u)f*(u) dt du + AE 
[s 

T’if(t)12 dt - 1 
Ti 1 Ti +a B 

where 2, and & are Lagrange 
we let 

Z( ) t 
and require that 

multipliers. To carry out the mmlmi 

=Jxt) + dw 

dJ 
ii e=*= 

0 

for allfE(t) satisfying (123)-( 125). Substituting (127) into (126) and carrying 
out the indicated steps, we obtain 

Re 
i 

Tt 

+ a, s Tk(sJ;c t) dt = 0. (129) 
Ti 

Integrating the last term by parts, using (125), and collecting terms, we 

Sincefe(t) is arbitrary, the term in the brackets must be identically zero. 
From (92) and (122), we observe that 

s Tf 
ii,*,(t, u)Jb*(u) du = [C(t)%(t)]* 

Ti 
when E = 0. (131) 
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We define 

We now have the following set of differential equations that specify j*,(t): 
.  

N 

PM = -4xLw - W&r), (133) 
. 

70 
1 N 

J =-- 
A 

PrW 9 
B 

(134) 
. 
&t) = P&t) + @t)Qtit(t)$t), (135) 
. 
- w = + Ct(t)C(t)&t) - l?(t)?& - + C+(t)&), 

0 0 

with boundary conditions 

A-(Ti) =.mT,) = 0, 

If the process state vector is II-dimensional, we have 2n + 2 linear 
equations. We must solve these as a function of & and & and then 
evaluate il, and 2, by using the constraint equations (123) and (124). 
Since (128) is only a necessary condition, we get several solutions that 
satisfy (133)-( 139) and (123)-( 125). Therefore, we must choose the solution 
that gives the absolute minimum. Baggeroer [3], [4] originally derived 
(133)-( 139) using Pontryagin’s principle, and carried out the solution for 
some typical real-valued processes. The interested reader should consult 
these two references for further details. 

Frequently we want to impose hard constraints on the signal instead of 
the quadratic constraints in (123) and (124). For example, we can require 

IfWl < A Ti < t < Tf. - - wo 

In this case we can use Pontryagin’s principle (cf. [S] or [6]) to find the 
equations specifying the optimal signal. 

The purpose of this brief discussion is to demonstrate how the state- 
variable formulation can be used to study optimal signal design. Other 
signal design problems will be encountered as we proceed through the text. 

9.6 SUMMARY AND RELATED ISSUES 

In this chapter we have discussed the problem of detecting the return 
from a slowly fluctuating point target in additive noise. The derivations 
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were all straightforward extensions of our earlier work. Several important 
results should be emphasized : 

1. When the additive noise is white, the optimum receiver is as shown 
in Fig. 9.4. The received waveform is passed through a bandpass matched 
filter and a square-law envelope detector. The output of the envelope 
detector is sampled and compared with a threshold. The performance is a 
monotonic function of E&V,, 

2. When the additive noise is nonwhite, the optimum receiver is as 
shown in Fig. 9.7. The only difference is in the impulse response of the 
matched filter. The performance is a function of A, 

Tf 

A = ET 
ss 

f(t)&(t, u)f”*(u> dt &I. (142) 
Ti 

Specific nonwhite noises will be studied later. 

3. When the colored noise has a finite-dimensional state representation, 
the optimum receiver implementation is as shown in Fig. 9.9. The advan- 
tage of this implementation is that it avoids solving an integral equation. 

There are several related issues that should be mentioned. In many 
radar/sonar systems it is necessary to illuminate the target with a number 
of pulses in order to achieve satisfactory performance. A typical trans- 
mitted sequence is shown in Fig. 9.10. Once again we assume that the 
Rayleigh reflection model developed in Section 9.1 is valid. We must now 
specify how the returns from successive pulses are related. There are three 
cases of interest. 

Fig. 9.10 Typical transmitted sequence. 
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In the first case, the target does not fluctuate during the time the 
entire sequence illuminates it. In this case we can write the received signal 
from a zero-velocity target as 

s,( t) = j? Re (8$&t - iTp - r)ej”‘ct}. (143) 

Notice that there is a single complex multiplier, 5. This model might be 
appropriate for a radar with a high pulse rep.etition rate and a target where 
small movements do not affect the return appreciably. Comparing (25) 
and (143), we see that this reduces to the problem that we just solved if we 
define 

N 
f(t) d Cx(t - iT,). (144) 

i=l 

In a white noise environment, the optimum receiver has a bandpass filter 
matched to the subpulse. The sampled outputs are added before envelope 
detection. The performance is determined by 

A ET iv(202&) --c - 
No N, ’ 

(145) 

where Ei is the transmitted energy in each subpulse. 
In the second case we assume that 161 has the same value on all pulses, 

but we model the phase of each pulse as a statistically independent, 
uniformly distributed random variable. This model might be appropriate 
in the same target environment as case 1 when the radar does not have 
pulse-to-pulse coherence. The optimum receiver for the 
in Problem 9.6.1. 

F broblem is derived 

4. the returns from In the third case, the target fluctuates enough so tha 
successive subpulses are statistically independent. Then 

s,.(t) = ,/2 Re (i&&t - iTP - T)eiwc’ . (146) 

The & are zero-mean, statistically independent, complex Gaussian random 
variables with identical statistics. This model is appropriate when small 
changes in the target orientation give rise to significant changes in the 
reflected signal. 

This model corresponds to the separable-kernel Gaussian signal-in- 
noise problem that we discussed in Section 4.2. The optimum receiver 
passes the received waveform through a bandpass filter matched to the 
subpulse and a square-law envelope detector. The detector output is 
sampled every Tp seconds, and the samples are summed. The sum is 
compared with a threshold in order to make a decision. 
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The performance is evaluated just as in Section 4.2 (see Problem 9.6.2). 
The performance for this particular model has been investigated exten- 
sively by Swerling (Case II in [7]). 

A second related issue is that of digital communication over a slowly 
fluctuating Rayleigh channel using a binary or Nary signaling scheme. 
Here the complex envelope of the received signal is 

r”(t) = JE,@,(t) + k(t), Ti < t ,< T,:H,, k = 1, . . . , M. 

(147) 
The optimum receiver follows easily (see Problem 9.6.7). We shall return 
to the performance in a later chapter. 

This completes our initial discussion of the detection problem. In the 
next chapter we consider the parameter estimation problem. Later we 
consider some further topics in detection. 

9.7 PROBLEMS 

P.9.2 Detection in White Noise 

SUBOPTIMUM RECEIVERS 

Problem 9.2.1. The optimum receiver in the presence of white noise is specified by 
(36) and (39). Consider the suboptimum receiver that computes 

7, = 

I 

Tf 

T(t);*(t) dt (W 

Ti 

and compares &I2 with a threshold y. The function c(t) is arbitrary. 
1. Verify that the performance of this receiver is completely characterized by letting 

A = Av in (50), where 

A A E[l;r,12 1 &I - E[lTvl2 1 &,I 
21- 

al’i,lz 1 N,l l 

(P.2) 

2. Calculate Av for the input 

3. The results in parts 1 and 2 give an expression for Au as a functional of z(t). Find 
the function Z(t) that minimizes A,. [This is the structured approach to the optimum 
receiver of (36) and (39).] 

Problem 9.2.2. Assume that 

elsewhere. 
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The complex envelope of the received waveform is 

%) = ~Z.f(t) + G(t), --<<<a. 

1. Plot the output of the matched filter as a function of time. 
2. Assume that instead of using a matched filter, we use a bandpass filter centered 

at cr),, whose complex envelope’s transfer function is 

Denote the output of this filter due to the signal as&t), and the output due to noise as 
Go(t). Define 

max I ibW12 
A,= t 

aI @&)I21 l 

Verify that this quantity corresponds to A, as defined in (P.2) of Problem 9.2.1. Plot 

as a function of UK What is the optimum value of WT? What is Acn in decibels at this 
optimum value? Is A,, sensitive to the value of WT? 

Problem 9.2.3. The complex envelope of the transmitted signal is 

N 

3c 1 t = a 2 E(t - iT,), 
i=l 

where 

elsewhere, 
and 

1. Plot the Fourier transform off(t). 
2. The matched filter for f(t) is sometimes referred to as a “comb filter.” Consider 

the filter response 

R{f] = 5 F{f- iW,}, 
. 

s=- M 

r 
l9 

S 

i$f} = IfI<; s 

and 
! 0, elsewhere. 

wp >> w,. 
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Assume that 

WP 
1, =- 
TP 

2 
W”=j+ 

P 

and that M is the smallest integer greater than T,/T,. 

(i) Sketch H( f  >. 
(ii) Find the degradation in A due to this suboptimum filter. 
(iii) Why might one use fl{ f } instead of the optimum filter? 

Problem 9.2.4. An on-off signal ing scheme operates over 
channels. The received waveforms on the two hypotheses are 

COMMUNICATION SYSTEMS 

two frequency-diversity 

r(t) = 1/E, Re {&,f(t)ejwlt + h,f(t)ejw2t> + n(t), 0 5 t 5 T:Hp 
r(t) = n(t), 0 5 t 5 T:H,, 

The multipliers bl and 8, are statistically 
random variables 

independent, zero-mean complex Gaussian 

E[h,bT] = E[b,g;] = 2ab2. 

The frequencies co1 and co2 are such that the signals are essentially disjoint. The total 
energy transmitted is E,. (There is E,/2 in each channel.) The additive noise n(t) is a 
sample function from a zero-mean, white Gaussian process with spectral height 
&12. 

1. Find the optimum receiver. 
2. Find Pn and Pp as a function of the threshold. 

3. Assume a minimum probability-of-error criterion and equal a priori probabilities. 
Find the threshold setting and the resulting Pr (E). 

Problem 9.2.5. Consider the model in Problem 9.2.4. Assume that the two channels have 
unequal strengths and that we use unequal energies in the two channels. Thus, 

r(t) = d?Re {h&f(t) ej~lt + 1/F2 b2fl(t)ejQ} + n(t), 0 55 t 5 T:H,, 

where 
El + E2 = E,. (P.0 

The received waveform on HO is the same as in Problem 9.2.4. The mean-square values 
of the channel variables are 

E[@] = 2o12 
and 

E[B,@ = 20~~. 
1. Find the optimum receiver. 
2. Find pD and P’ as functions of the threshold. 

3. Assume a minimum probability-of-error criterion. Find the threshold setting and 
the resulting Pr (E). 
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Problem 9.2.6. Consider the model in Problem 9.2.5. Now assume that the channel 
gains are correlated. BA 6”1 [I b”, 
Repeat parts 1-3 of Problem 9.2.5. 

Problem 9.2.7. In an on-off signaling system a signal is transmitted over N Rayleigh 
channels when HI is true. The received waveforms on the two hypotheses are 

r(t)=~~Re{~6iRI).‘“,“) +n(t), 0 5 t 2 T:H,, 

r(t) = n(t), 0 5 t 5 T:H,,, 

The channel multipliers are statistically independent, zero-mean, complex Gaussian 
random variables 

E rS,ggl = 2a,2Sii. 

The frequencies are such that the signal components are disjoint. The total energy 
transmitted is E,. The additive noise n(t) is a zero-mean Gaussian process with spectral 
height N0/2. 

1. Find the optimum receiver. 
2. Find p(s). 
3. Assume that the criterion has a minimum probability of error. Find an approxi- 

mate Pr (E). (Hint: Review Section I-2.7.) 

Problem 9.2.8. Consider the model in Problem 9.2.7. Assume that the transmitted 
energy in the ith channel is Ei, where 

N 

c Ei = E,. 
i=l 

Assume that the channel multipliers are correlated : 

E[“bb”t] = ihi. 
1. Find the optimum receiver. 
2. Find p(s). 

ALTERNATIVE TARGET MODELS 

Problem 9.2.9. Consider the target model given in (32a) and (326). Assume that the 
phase is a uniform random variable. 

1. Derive the optimum receiver. 
2. Calculate PO and PF. 
3. Assume that we require the same PF in this system and the system corresponding 

to the Rayleigh model. Find an expression for the ratio of the values of PO in the two 
systems. 
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Problem 9.2.10. Consider the target model in (32~). Repeat parts 1 and 2 of Problem 
9.2.9. 

P.9.3 Detection in Colored Noise 

Problem 9.3.1. Consider the receiver specified in (P.1) of Problem 9.2.1. The inputs on 
the two hypotheses are specified by (57)-(59). 

1. Verify that the results in part 1 of Problem 9.2.1 are still valid. 
2. Calculate Au for the model in (57)-(59). 

3. Find the function i(t) that minimizes As. 

Problem 9.3.2. Consider the model in (57)-(59). Assume that 

and that 

1 
-9 

1/l-- 
0 s t s Ts, 

II 1 t = S 

0, elsewhere, 

s&4 
2kP, =- 

a2 + k2 ’ 
--oo<cc,<m 

The observation interval is infinite. 

1. Find g, (7). 
2. Evaluate A0 as a function of E,, k, T,, P,, and NO. 
3. What value of T, maximizes A,? Explain this result intuitively. 

Problem 9.3.3. Assume that 

ii,(t) = n#) - jn2W, -m<t<a 

The function nl(t) is generated by passing ul(t) through the filter 

and the function n2(t) is generated by passing u2(t) through an identical filter. The 
inputs u](t) and u2(t) are sample functions of real, white Gaussian processes with unity 
spectral height and 

1. Find S&B). 
EbJt&,(t2)l = a&t1 - t2 - 4. 

2. Consider the model in (57)-(59) and assume that the observation interval is infinite. 
Find an expression for a realizable whitening filter whose inverse is also realizable. 

Problem 9.3.4. Assume that 

where the &(t) are known functions with unit energy and the a”, are statistically inde- 
pendent, complex Gaussian random variables with 

E[lai12] = 24 
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The observation interval is infinite. The model in (57)-(59) is assumed. 

1. Find g(t). Introduce suitable matrix notation to keep the problem simple. 
2. Consider the special case in which 

Ri(t) = f(t - ri)eioit, 

where ri and wi are known constants. Draw a block diagram of the optimum receiver. 

Problem 9.3.5. Assume that 

f(t) = f&i (t - iT,), (W 
i=l 

where 

and 
elsewhere, 

N 

Z’VI i = . 2 1 
i=l 

(P-3) 

Assume that we use the receiver in Problem 92.1 and that 

where 

G(t) = f  “u$(t - iT,), (P.4) 
i=l 

N 

Cl 1 vi2= 1. (P-5) 
i=l 

The model in (57)-(59) is valid and the observation is infinite. Define a filter-weighting 
vector as 

V = . (P.6) 

1. Find an expression for A, in terms of L i, Et, NO, and &(t, u). Introduce suitable 
matrices. 

2. Choose 7 subject to the constraint in (P.5) in order to maximize A,. 

Problem 9.3.6. The complex envelopes on the two hypotheses are 

r(t) = 1/E, bf(t) + &(t) + GCt)9 -m < t < mHl, 

r(t) = fi&) + w, --co < t < oo:H,. 

The signal has unit energy 

s 

00 
If( d? = 1. 

-a2 
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The colored noise is a sample 
spectrum S,(m), where 

function of a zero-mean complex Gaussian process with - s 00 dcc, 

-a3 
S,(o) 2n = 205 

The white noise is a zero-mean complex Gaussian process with spectral 
multiplier b is a zero-mean complex Gaussian random variable, 

The various random processes and random variables are all statistically independent. 

height No. The 

(W 

E[@j*] = 2ab2. (Jw 

1. Find the colored 
minimizes A as defined 

noi 
in 

se spectrum S,(o) that satisfies the constraint 
(76). Observe that A can also be written as 

in (P.3) and 

(Hint: Recall the technique in Chapter 11-5. Denote the minimum A as A,.) 
2. Evaluate Am for the signal 

3c t 
t 
) uemat, 2 0, = 

0, t < 0. 
3. Evaluate Am for the signal 

1 
1 

F{f} = e’ 
Ifl I w 

0, Ifl > w* 

Problem 9.3.7. Consider the same model as Problem 9.3.6. We want to design the 
optimum signal subject to an energy and bandwidth constraint. Assume that $(o) is 
symmetric around zero and that we require 

s 
co 

oF(j0) = 0, W) 
-ccl 

1. Verify that A depends only on the signal shape through 

2. Find the S?(U) subject to the constraints in (P.l) and (P.2) of this probiem and in 
(P.2) of Problem 9.3.6, such that A is maximized. 

3. Is your answer to part 2 intuitively correct? 
4. What is the effect of removing the symmetry requirement on s,(o) and the require- 

ment on p( jo) in (P.l)? Discuss the implications in the context of some particular 
spectra. 

Problem 9.3.8. Consider 
of the desired signal is 

the model in Problem 9.3.5. Assume that the complex envelope 

U 

f&t) = f(t)ei*dt 
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and that ? is chosen to maximize Au for this desired signal. Assume that I&@, U) is a 
stationary process whose spectrum is 

1. Assume that N = 2. Find & and u2. 
2. Assume that 

fi = 1 
and N = 3. Find cl, c2, and &. 

P.9.4 Finite-state Noise Processes 

Problem 9.4.1. Consider the model in (79)-(92). Derive the results in (93)-(96). Hint.- 
Read Sections A.4-A.6 of the Appendix to Part Il. 

Problem 9.4.2. Assume that ii,(t) has the state representation in (A.137)-(A.140). Write 
out (93)-(96) in detail. 

Problem 9.4.3. Assume 
out (93)-(96) in detail. 

that e,(t) has the state representation in (A.1 W-(A .153). Write 

Problem 9.4.4. Consider the model in Section 9.4.2. Assume that k,(t) is a complex 
Gaussian process whose real and imaginary parts are statistically independent Wiener 
processes. Find the necessary functions for the receiver in Fig. 9.9. 

Problem 9.4.5. Verify the result in (120). 

Problem 9.4.6. Consider the model in Section 9.4.2. Assume that 

n”,(t) = 2 i&(t)f(t - -ri)eiait, 
i=l 

where the b,(t) are statistically independent, complex Gaussian processes with the state 
representation in (A.1 37)-(A.140). Draw a block diagram of the optimum receiver 
in Fig. 9.9. Write out the necessary equations in detail. 

P.9.5 Optimum Signal Design 

Problem 9.5.1. Consider the optimum signal design problem in Section 9.5. Assume that 

s&4 
2a 

=- 
co2 + a2 ’ 

--oo<CO<oO. 

Write the equations specifying the optimum signal in detail. 

Problem 9.5.2. The optimal signal-design problem is appreciably simpler if we constrain 
the form of the signal and receiver. Assume that S<t) is characterized by (P.l-P.3) in 
Problem 9.3.5, and that we require 

20 = m 
[see (P.4)-(P.5) in Problem 9.351. 

1. Express A,, in terms of the & Et, N,, and l&(t, u). 
2. Maximize AZ, by choosing the & optimally. 
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3. Assume that 
j&(t, u) = e--“lt-u 1 

and N = 2. Solve the equations in part 2 to find the optimum value of A and A. 

4. Consider the covariance in part 3 and assume that N = 3. Find the optimum 
values of fl, 3s, and 3s. 

Problem 9.5.3. Consider the generalization of Problem 9.5.2, in which we let 

3 i- - & ejqt, 

where the & are complex numbers such that 

and the coi may take on values 

The remainder of the model in Problem 9.5.2 is still valid. 

1. Express A,, in terms of f f  , mi, Et, NO, and K,(t, I(). 
2. Explain how the cc)$ should be chosen in order to maximize A,,. 
3. Carry out the procedure in part 2 for the covariance function in part 3 of 

Problem 9.5.2 for N = 2. Is your result intuitively obvious? 

Problem 9.5.4. Consider the models in Problems 9.3.5 and 9.5.2. Assume that v”is 
chosen to maximize AV. Call the maximum value Au,. 

1. Express AVO as a function of?, Et, NO, and &(t, u). 

2. Find that value of? that maximizes AVO. 
3. Consider the special case in part 3 of Problem 9.5.2. Find the optimum f  and 

compare it with the optimum fin part 3 of Problem 9.5.2. 
4. Repeat part 3 for N = 3. 

P.9.6 Related Issues 

MULTIPLE OBSERVATIONS 

Problem 9.6.1. The complex envelopes on the received waveforms on the two hypotheses 
are 

i(t) = 

J 
${ll( Kit - iT,)ejei + G(t), --oo<t<m, 

i = 

‘Z(t) = l?(t), --<<<moo, 

1 

ii(t) = 1/T,’ 
0 I t I: T,, 

0, elsewhere. 



272 9.7 Problems 

The multiplier @I is a Rayleigh random variable with mean-square 
are statistically independent, uniform random variables. 

value 2ab2. The & 

1. Find the optimum receiver. 
2. Evaluate PF. 
3. Set up the expressions to evaluate PD. Extensive performance results for this 

model are given by Swerling [7], [lo]. 

Problem 9.6.2. Consider the target model in (146). Review the discussion in Section 
4.2.2. 

1. Draw a block diagram of the optimum receiver. 
2. Review the performance results in Section 4.2.2. Observe that fixing s in the 

~BP,SK(S) expression fixes the threshold and, therefore, PF. Fix s and assume that 

is fixed. Find the value of K that minimizes PBS&S) as a function of s. Discuss the 
implications of this result in the context of an actual radar system. 

Problem 9.6.3. Consider the model in Problem 9.6.1. Define 

and assume that z has the probability density given in (32b). 

1. Derive the optimum receiver. 
2. Evaluate PF. 
3. Set up the expressions to evaluate PD. Results for this model are given in [7] 

and [lo] (Case III in those references). 

Problem 9.6.4. Consider the model in (146). Write 

Assume that the Oi are statistically independent random variables with a uniform prob- 
ability density, Assume that each 

Xi ~ ldi12 

has the probability density in (326) and the xi are statistically independent. 

1. Derive the optimum receiver. 
2. Evaluate PF. 
3. Set up the expressions to evaluate PD. See [7] and [lo] for performance results 

(Case IV in those references). Chapter 11 of [23] has extensive performance results 
based on Swerling’s work. 

COMMUNICATION SYSTEMS 

Problem 9.65 The complex 
communication system are 

received waveforms on the two hypotheses in a binary 

T(t) = dii$~(t)ejwAt + i?(t), 0 < t 5 T:H,, 

T(t) = z/E, bf(t) + G(t), O<t<T:H,, 
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where WA is large enough for the two si gnal components to be orthogonal. 
eses are equally likely, and the criterion is minimum probabili ty of error. 

The hYP” th- 

1. Draw a block diagram of the optimum receiver. 
2. Calculate the probability of error. 

Problem 9.6.6. The complex received waveforms on the two hypotheses in a binary 
communication system are 

F(t) = z/E, bfl(t) + i?(t), 0 < t < T:H,, 

F(t) = 1/E, 63()(t) + C(t), Ojt<T:H,, 

1. Draw a block diagram of the optimum receiver. 
2. Calculate the probability of error. 

Problem 9.6.7. Consider the model in (147) and assume that 

The hypotheses are equally likely, and the criterion is minimum probability of error. 

1. Draw a block diagram of the optimum receiver. 

2. Use the union bound on pages 1-263-I-264 to approximate Pr (E). 

(Comment: The reader who is interested in other communications problems should 
look at Sections P.4.4 and P.4.5 in Part I (Pages 1-394-I-416). Most of those problems 
could also be included at this point.) 
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10 

Parameter Estimation: 
Slowly Fluctuating Point Targets 

At the beginning of Chapter 9, we developed a model for the return 
from a slowly fluctuating point target that was located at a particular 
range and was moving at a particular velocity. The received signal in the 
absence of noise was 

s(t) = & Re [JE, 6f(t - r)eiwDt]. (0 
In the detection problem we assumed that 7 and ~r)~ were known, and made 
a decision on the presence or absence of a target. We now consider the 
problem in which 7 and wD are ~~k~~~~, ~~~r~~d~rn parameters that we 
want to estimate. 

Since the chapter is long, we briefly describe its organization. In Section 
10.1 we derive the optimum receiver and discuss signal design qualitatively. 
In Section 10.2 we analyze the performance of the optimum receiver. We 
find that a function called the ambiguity function plays a central role in the 
performance discussion. In Section 10.3 we develop a number of properties 
of this function, which serve as a foundation for the signal design problem. 
In Section 10.4 we investigate the performance of coded pulse sequences. 
In Section 10.5 we consider the situation in which there are interfering 
targets in addition to the desired target whose parameters we want to 
estimate. Finally, in Section 10.6, we summarize our results and discuss 
several related topics. 

10.1 RECEIVER DERIVATION AND SIGNAL DESIGN 

The target reflection model was discussed in Section 9.1, and the 
received signal in the absence of noise is given in (1). We assume that the 
additive noise is white bandpass Gaussian noise with spectral height 
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276 10. I Receiver Derivation and Signal Design 

N,/2. We shall assume that the observation interval is infinite. For nota- 
tional simplicity we drop the subscript D from the frequency shift. Thus, 
the complex envelope of the received waveform is 

The multiplier, 6, is a zero-mean complex Gaussian random variable, 

The complex signal envelope is normalized as in (A. X5), so that E, is the 
transmitted energy, The average received signal energy is 

& = 2ob2E,. (4) 

The complex white noise has a covariance function 

&(r, u) = No s(t - u), -oo<t,u<co. (9 

The parameters 7 and cc) are unknown 
values we shall estimate. 

nonrandom parameters whose 

The first step is to find the likelihood function. Recalling from Chapter 
I-4 the one-to-one correspondence between the likelihood function and the 
likelihood ratio, we may use (9.36), (9.38), and (9.39) to obtain the 
answer directly. The result is 

where 

L(7, 0) = s a F(t)f*(t - r)e"-+ dt. (7) 
--CO 

The coefficient in (6) is of importance only when we compute the 
Cramer-Rao bound, and we can suppress it in most of our discussion. 
Then we want to compute 

In A(7, m) = IZ(7, c0)j2 (8) 

as a function of T and ct). The values of 7 and ct) where this function has its 
maximum are +ml and &ml. Because we are considering only maximum 
likelihood estimates, we eliminate the subscript in subsequent expressions. 

We now must generate In A.(,, m) for the values of T and CO in the 
region of interest. For any particular TV), say col, we can generate In A(T, ct>%) 
as a function of time by using a bandpass matched filter and square-law 
envelope detector (recall Fig. 9.5). For different values of cr) we must use 
different filters. By choosing a set of coi that span the frequency range of 
interest, we can obtain a discrete approximation to In A(T, cu>. For the 
moment we shall not worry about how fine the frequency grid must be in 
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order to obtain a satisfactory approximation. The processing system is a 
bank of matched filters and square-law envelope detectors as shown in 
Fig. 10.1. We now want to investigate the properties of the output of the 
processor. For simplicity, we view it as a continuous function of 7 and cc). 

Let us assume that the actual delay and Doppler shift are 7, and w,, 
respectively. (Recall that 7 and cc) are the variables in the likelihood 
function.) Then we may write 

s Go 
2(7, co) = f(t)f*( t - 7)e-io’f dt 

-al 

- - 1 O” [JE, 5f(t - 7Jeiwaf + iC(t)][f*(t - 7)e-jO'] dt, (9) 
r-m 

or 

s 00 + qt)f*(t - 7) -jot dt. (10) 
-a 

To simplify this expression we define 

7’ = 7 - 7,, (11) 

and 
co’ = cc) - w,, 

s 

co 
ii(7> co) = Gft)f*(t - 7)e-jof dt. 

-co 

(12) 

(13) 

The effect of (11) and (12) is to shift the origin to the point in the 7, ct) 
plane where the target is located. This is shown in Fig. 10.2. Using (1 l)-(13) 
in (lo), we have 

(Is 

a3 
In 47, ~0) = E, 161” 

? 
JO - 7)f*( t - 7 + 7’)eio’t dt 

-a3 

- 7)f(t - 7 + 7’ 

2 

II 
)e-io’t dt ii”(7, a) 

The first term in (14) is due entirely to the signal and is the only term that 
would be present in the absence of noise. By making the substitution 

7? 
z t = -7+-, 

2 
(1% 
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w 
A 0’ 

’ Actual 
target 

location 

A --+e f 

@a ?a -+ 

Fig. 10.2 Coordinate systems in the T, o plane. 

we see that it is not a function of 7 and (0. We denote the term in braces 
as et+, m’), 

e(7), d) h (16) 

It corresponds to a scaled (by E, lh12) version of the output of the receiver 
in the absence of noise. 

We define the function inside the magnitude signs as the timeaf~eq~e~cy 
u~t~currel~ti~~ f~~ctiu~ off(t) and denote it by +(T’, col),t 

(17) 

It is a measure of the degree of similarity between a complex envelope and 
a replica of it that is shifted in time and frequency. Clearly, 

I et7f, d) = I&‘, d)p. (18) 

The function 0( 7’, co’) was introduced originally by Ville [I] and is referred 
to as the ~rnb~g~~ty f~~ct~u~. Later we shall see why this is an appropriate 
name. It is sometimes referred to as Woodward’s ambiguity function 
because of his pioneering work with it [S], [60]. 

Because f(t) is normalized it follows that 

#O, 0) = 1. 

From the Schwarz inequality, 

ld(C w’)l L; de4 0) = 1 

(19) 

(20) 
t There is a certain degree of choice in defining the time-frequency autocorrelation 
function, and various definitions are used in the literature. 



and 
e(7’~ co’) < e(0, 0) = 1. (21) 

Thus, the output of the receiver is a surface in the 7, cr) plane that 
contains three components. The first is tf(7’, w’)~ which is a positive 
function whose maximum value is at that point in the plane where the 
target is located. The second and third terms are due to the additive noise. 
In a moment, we shall consider the effect of these two terms, but first we 
look at O(T’, CL)‘) in more detail. 

To get some feeling for the behavior of O(7, co) and #+, O) for some 
typical signals, we consider several examples, 

Example 1. Single R~tangu~ar Pulse. Let f(t) be k real rectangular pulse, 

The magnitude of the time-frequency autocorrelation function is shown in Fig. 10.3. 
(Actually we show some cuts through the surface along constant ?= and constant cc) lines.) 
Notice that the function is symmetric about both axes. 

Fig. 10.3 Magnitude of the time-frequency correlation function for a rectangular puke. 
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0.8 
0.7 

f 
0.6 
0.5 

0 .l .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 

Fig. 10.4 E~ua~gheight contours of ambiguity function of rectangular pulse, 

A convenient method of representing the ambiguity function is shown in Fig. 10.4. 
The curves are equal-height contours of 8(~, w). Notice that the T-axis and co-axis 
are scaled by factors of T-l and T, respectively. Notice also that the ambiguity function 
has a single peak whose width along the r-axis is directZy proportional to T and whose 
width along the m-axis is inversely proportional to T. 

Before considering a second example it is worthwhile discussing qua& 
tatiuely how the other two terms in (14) affect the estimate of 7 and cc) in a 
typical realization of the experiment. In order to see this, we first consider 
a vertical cut along the T-axis of In A(7, LC)) as shown in Fig. 10.5~~ From 
(14) we see that the function consists of E, 1812 0(7,0) plus the contribu- 
tions due to noise indicated by the second and third terms. In Fig. lOSb, 
we show a top view of In A@, w). The shaded surface is the E, lbi2 0(~, m) 
from Fig. 10.4. The contour lines are the equal-height loci of In A(7, co). 
The values of 7 and cc) where the surface has its maximum are ernl and hmz. 
We see that in the absence of noise we always choose the correct values. 
There wil 1 be an error if the noi se con tributi ons at some T’ # 0 and m’ #O 
are large en0 ugh to move the peak of the total function away from the 
origin. Therefore, in order to minimize 
an 3w whose ambiguity function is one 

the errors, we should 
at the origin and zero 

try to find 
elsewhere. 

An ideal 0(~, w) function might be the one shown in Fig. 10.6a. We 
expect that it will be difficult to find anJr(t) that has such a discontinuous 
ambiguity function. However, a close approximation such as is shown in 
Fig. 10.6b fight be practical. 

Thus, it appears that we want to choosef(t) so that 0(7, U) is a narrow 
spike. From (24) or Fig. 10.3, it is clear that, with a rectangular pulse, 
we can make the peak arbitrarily narrow in either direction (but not both) 
by varying T. 

Since the rectangular pulse does not lead to the ambiguity function in 
Fig. 10.6b, we shall try some other signals. 



T 

I 



t 
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0.9 
0.8 
0.7 
0.6 
0.5 
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0 
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 

Fig. lK7 Gaussian pulse. 

Example 2. Simple Gaussian Pulse. A pulse that frequently serves as a useful analytic 
idealization is the Gaussian pulse of Fig. 10.7. 

The effective duration is proportional to I: The ti~ufrequency a~tocorre~ation function 
is 

(fib, 4 = 
(t - 7/2)2 (d + 7/2)2 

=P --II- 
2T2 2T2 +jot . 1 (26) 

completing the square and inte~ating, we obtain 

NT, 4 = exp [ -$t2 + T2~2)]. 

The ambiguity function is 

O(7,w) = exp -t($ + T2~2)]* (28) 

The equal-height contours of @(T, a) are ellipses, as shown in Fig. 10.8, Just as in 
Example I, a single parameter, the pulse duration, controls both the range and Doppler 
accuracy. 

These two examples suggest that if we are going to improve our range 
and Doppler estimates ~~~~l~~~eu~~zy, we must try a more complicated 
signal. Apparently, we need a signal that contains several parameters 
which we can vary to optimize the performance. We shall consider two 
broad classes of signals. 

Cuded P~f~e ~e~~e~ce~. This class of signals is constructed by operations 
on single subpulse, ~(~). A commonly used subpulse is the rectangular 



W 

1 

f 

(a) T = fi 

Fig. 10.8 Equal-height contours for the ambiguity function of a Gaussian pulse with 
T -: = 1/2 

0.6 0.8 1.6 1.8 

Fig, 10.8 Equal-height contours for ambiguity function of Gaussian pulse (normakd 
axes). 
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pulse in Example 1, 
1 

c(t) = 

t 

J T ’ 
-%t<T, 

2- -2 

0, elsewhere. 

(29) 

The subpulses are delayed, amplitude-weighted, frequency-shifted, phase- 
shifted, and then summed. Thus, 

!V ? 
f(t) = c 2 n”,ii(t - nT) exp [j(q.J + Q]. (30) 

The constant c normalizesf(t). We discuss a simple example of this class 
of signal in Example 3. In Section 10.4, we study the class in detail. 

Modulated Analog Waveforms. This class is obtained by modulating 
the signal in amplitude and/or frequency to achieve the desired properties. 
A simple example of this class of signals is given in Examples 4 and 5. 

We now derive the ambiguity function for several useful signals. These 
examples give us some feeling for the general properties that we might 
expect. 

Example 3. Pulse Train with Constant Repetition Rate. Consider the sequence of rec- 
tangular pulses shown in Fig. 10.9. It is characterized by the pulse duration T, the 
interpulse spacing TV, and the total number of pulses (2n + 1). This sequence is fre- 
quently used in radar and sonar systems for the following reasons: 

1. It is easy to generate. 
2. The optimum receiver is easy to implement. 
3. The parameters can be varied to match different operating conditions. 

We assume that T << Tp. The interpulse spacing is not necessarily a multiple of T. The 
duration of the entire sequence is Td, 

Denoting the pulse as i(t) [see (29)1, we can write the complex envelope of the trans- 
mitted signal as 

1 
‘@’ = (2n + 1)TN,=-, 

‘En u”(t - kT,). (32) 

Notice that our model assumes that the target does not fluctuate in the Tci seconds 
during which the signal illuminates it. 

We now derive (6(~, m) and &, w). First, we consider values of 1~1 < T. Using (32) 
in (17) gives 

dh Qo = (hT),zn “T’+‘~-‘r”~((t - kTP - I) ii*(t - kT,, + ;) 

kT,--)i(T---ITI) 

x ej*t dt 171 L; ITI* (33) 
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Fig. 10.9 Sequence of pulses. 

Letting 
z = t - kT,, (34) 

The term in the braces is +&, co). The sum is a finite geometric series. Thus, (35) reduces 
to 

1 
5&T, N = - 

sin [off2 + ii-)*J 

(28 + 1) sin [mT,f2] 
&CT, 4, 171 s =r, (36) 

We see that the subpulse characteristics only enter into the fast term, The bracketed 
term is a function of cr) only and is determined by Tp, the pulse repetition rate, and n, 
the number of pulses. The bracketed term is shown in Fig. 10,lOa. We see that the 
first zero is at 

2rr 27r 

and the subsidiary peaks occur at 
27T 

w i- 
*P * 

VW 

In Fig. lO.lOb we show +&O, w) for a rectangular pulse. The two plots indicate the effect 
of the parameters T, rP, and rd. Recalling that 

we see that the shape of +(O, CD) is controlled by the term in Fig. lO.lOa. Thus, the 
width of the main peak decreases as the over-all duration Td increases. Subsidary peaks 
occur at intervals of l/T, on the frequency axis. When cc) = 0, the bracketed term equals 
(2~2 + l), so that 

Next we consider values of 7 > T. There is no overlap until 7 = Tp - T. At this 
point, the situation is similar to that at 7 = -T, except that there is one less pulse 



Width of fundamental range -jf 
I 

Drawn for n = 5 

Fig. lO.lOa Bracketed term in (36), (After [45].) 

t 
sin 2 t 1 

OT 

WT 
2 

0.27r 0.4n 0.67r 0.8~ 1.07r 1.2n 1.41 1,671. 1.8~ 2.07T 
wT 

YAP---+ 

Fig. 10.106 Plot of 1+&O, w)I for rectangular pulse. 

overlap. Then, for a rectangular pulse, 

On the ~-axis we have the same expression as in (38) except for a scale factor and a 
shift, 

A similar resuft follows for larger 7. Every Tp seconds there is a peak, but the magnitude 
is reduced. A different representation of the ambiguity function 0(~, W) is shown in 
Fig. 10.11. This type of plot was introduced by Siebert [9]. The dark shaded areas 
indicate regions where the height of &-, co) is significant (usually, the border corresponds 
to 0(~, cu) = +). In the light shaded areas O(T, U) is small, but nonzero. In the unshaded 
areas @(T, ~0) is zero. 

Several new features of the signal design problem are indicated by 
Example 3 : 

1. We can decrease the width of the major peak in the frequency 
(Doppler) direction by increasing Td (or yt). 
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_I 
1 

‘;, 

t 

Fig. 10.11 An approximate contour plot of e(r, o) for pulse train 
[from [9] and [9.12]]. 

2, We can decrease the width of the major peak in the time (range) 
direction by decreasing 2”. (This corresponds to an increased bandwidth.) 
Thus, by allowing more parameters in our signal design, we can obtain an 
ambiguity function whose major peak is narrow in both the range and 
Doppler direction. 

3. This particular signal accomplishes this at the cost of including 
subsidiary peaks. It is easy to see the effects of these subsidiary peaks. A 
small noise contribution can cause the total value at a subsidiary peak to 
exceed the value at the correct peak. The importance of these subsidiary 
peaks depends on our a-priori knowledge of the area in the 7,~ plane in 
which the target may be located. Two cases are shown in Fig. 10.12. In the 
first case, the set of subsidiary peaks lies outside the area of interest for all 
possible 7, m. Thus, they will not cause any trouble. In the second case, 
they are inside the area of interest, and even in the presence of weak noise 
we may choose the wrong peak. 

This discussion illustrates two of the issues that we encounter in a 
performance discussion, The first is local accuracy (i.e., given that we are 
on the correct peak, how small will the error be?). The second is global 
accuracy (i.e., how often will there be large errors?). This is, of course, the 
same phenomenon that we encountered in the PFM and PPM problems of 
Chapter I-4 and in the angle-modulation problems of Chapter 11-2. 



\ Region of r, w plane 
in which target is 

located 

I x Region of 7, w plane 

Fig. 10.12 

in which target 
located 

Regions in which target can be located. 

Before studying these two issues quantitatively, it is interesting to look 
at the ambiguity function for several other signals. 

We next consider an example of a modulated analog waveform. All of our 
signals up to this point were obtained by amplitude~modulating a constant 
carrier. In order to introduce more freedom into the signal design, we now 
consider the possibility of frequency-modulating the carrier. Specifically, 
we consider a linear frequency sweep, i.e., 

q+(t) = bt2. (41) 

[Recall that c&(t) is the phase off(t).] 
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Instead of computing the ambiguity function for a particular pulse 
directly, we use an interesting property for arbitrary ~(?). 

Property 1” If 

then 

This result follows directly from the de~nitions in (17) and (18). 

=~~~(1--S)~~(~+~)exp[jf[w--2bi]ldt 

==: cb( 1 7, co - 267). (43) 

Thus, a linear frequency sweep ~he~~~ the ambiguity diagram parallel to 
the m-axis. We now apply this property to the Gaussian pulse in Example 2, 

Example 4. Gaussian Pulse with Linear ~r~~e~~y M~u~atjo~. Now 

ww 

Then, from (28) and (42b), we obtain 

WW 
The Edgar-height contour lines are the ellipses 

1 
i T2Cu2 

[ 
-4bPw7+ (4,.,..~),2] =c? 

For convenience in ptotting, we introduce 7, wt, and t? which are defined in the 
Appendix. For the signal in (43), 

F 
T2 

~---=. 
2 * (46) 

cut = bT2, (47) 

t The symbol - means “corresponds to.” 



Fig. X0.13 Contour of WC, o) for Gaussian pulse with linear FM* 

and 

Then (45) reduces to 

cu2 
1 

= E2 + 2b2T2. (48) 

i-G2 - zzr + 0272 = c2 * (4% 

In Fig. 10.13 we have plotted (49) for the case when c = 1. The major axis is at an 
angle cx, defined by 

dl = * tan-l 
( 1 4: 2 2)=~tan-l(~-~~~~2), - (1/4T + b )/rr I4 <n* (50) 

Along the r-axis, 

Similarly, 

6(0, T) = exp [-PP] - - exp [-(~ + 268TB)~2]. 

f&f4 0) = exp [-tZo2] = exp 
T2C02 [ 1 --• 

2 

(5W 

(SW 

We see that the width on the r-axis is inversely proportional to the root-mean-square 
signal bandwidth and the width on the o-axis is inversely proportional to the root-mean- 
square signal duration. Thus, by increasing both b and T, we decrease the width on both 
the T- and w-axes simultaneously. Therefore, we can accurately measure the range of 
a target with known velocity, or we can accurately measure the velocity of a target with 
known range. However, if both parameters are unknown there is an ambiguous region 
in the 7, w plane. For positive values of b, the ambiguous region lies in the first and third 
quadrants, as shown in Fig 10.13. Whether or not this ambiguity is important depends 



Fig. 10.14. Plot of I+@, O)j: rectangular pulse with linear 832 (IiT = 100). 

on the physical situation (Le., can targets occur along this line inthe 7, tr) plane?). One 
way to resolve the ambiguity is to transmit a second puke with the opposite frequency 
sweep. 

A similar result follows for the rectangular pulse with a linear frequency 
modulation. 

Example 5. Rectangular Pulse, Linear Frequency Modulation. 

(52) 

\ 0, elsewhere. 

Using (23) and (42b), we have 

- 2~T)/2)(T - 17/N 

- 2~T)/2)(T - 17-f) 7 < T, 
l$k 41 = (53) 

t 0, 
Along the T-axis, 

I+(? WI = 

Along the co-axis, 

sin [h(T - I$] 
h(T - 1~1) ’ 

elsewhere. 

14 < T;r; 
(54) 

elsewhere. 

(5% 

Ln Fig. 10.14, we have plotted I#+, O)l for the case when bT2 = 100. We see that the 
first zero is near the point 

where 
27~ W. .& 2bT 
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is the range of the frequency sweep. Thus, as we would expect from our discussion of the 
Gaussian pulse, the range estimation accuracy for a known velocity target is proportional 
to the signal bandwidth. Once again there is a region of ambiguity in the first and third 
quadrants for positive 6. 

The performance of the receiver for Example 5 has an interesting 
interpretation. The input is the “long” pulse shown in Fig. lOMa. Its 
instantaneous frequency increases with time, as shown in Fig. 10.15b. 
Now, the transfer function of the matched filter has a phase characteristic 
that is quadratic with respect to frequency. The delay of the envelope of a 
bandpass signal through any filter is proportional to the derivative of the 

(a) Input pulse 

Instantaneous 

(b) Frequency c~aracteristjc 

61 to 61 

(c) Compressed output pulse 

Fig, 10.15 Pulse compression. 
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phase characteristic of the filter with respect to frequency (e.g., [2]. For 
the linear &Y?V pulse, the derivative of the phase of the matched filter 
decreases linearly with increasing frequency. Thus, the low-frequency 
components, which occur at the beginning, are delayed more than the 
high-frequency-components at the end of the pulse. The result is the 
“short” pulse shown in Fig. 10.15~. The effect of the receiver is to compress 
the long pulse at the input to the receiver into a short pulse at the output 
of the processor, with an accompanying increase in range measurement 
accuracy. This type of system is commonly referred to as a ~‘p~lse~ 
compression” radar. Its obvious advantage is that if the system is peak- 
power-limited, one can increase the transmitted energy by transmitting a 
longer pulse without losing range accuracy. The idea of pulse compression 
through the use of frequency modulation was derived independently in the 
United States (Dicke [3] and Darlington [4]) and in Germany (Huttman 
[5] and Cauer [6]). A n interesting discussion is given by Cook [7]. 

This series of examples illustrates the fundamental role that the ambiguity 
function plays in the range-Doppler estimation problem. We now return 
to the general case and derive some quantitative performance results. 
In Section 10.2, we derive expressions for the estimation accuracies in 
terms of the ambiguity function. In Section 10.3, we develop some general 
properties of the ambiguity function. Then, in Section 10.4, we return to 
signal design problems. 

10.2 PERFORMANCE OF THE OPTrM~ ESTIMATOR 

In this section, we discuss the accuracy of our estimates of T and cc). 
We first consider the case in which the energy-to-noise ratio is high and the 
errors are small. We refer to this as the Zocal accuracy problem. 

The accuracy problem for range measurement was studied by Wood- 
ward [60]. The accuracy problem for range and velocity measurement has 
been studied by Manasse [76] and by Kelly, Reed, and Root [77]. 

10.2.1 Local Accufacy 

We approach the local accuracy problem in two steps. First, we derive 
the Cramer-Rao bound on the accuracy of any unbiased estimates. We 
then argue that the errors using maximum likelihood estimates approach 
these bounds under certain conditions. We discuss these conditions in 
detail in Section 10.2.2. 

The derivation of the Cramer-Rao bound is a straightforward applica- 
tion of the techniques in Sections I-4.2.3 and I-4.6. We recall that the first 



step was to derive an ~~f~rrn~t~~~ ~~~tr~~ J whose elements are 

(see page I-372). In this case the parameters of interest, 7 and CI), are 
nonrandom, so that the expectation is over r(t) [or n(t)]. Here the informa- 
tion matrix is two-dimensional : 

We identify the subscript I with T and the subscript 2 with CO. From (6), 
(5Q and (59), 

J 11 = 
-E a2 In M-9 4 

C is2 1 9 
J -E 

E 
a2 fn M, 4 

22 = 
ad 

1 ? 
(60) 

J J,,=-E a2 In A& CO) 
12 = 1 . a7 am (62) 

The evaluation of these three quantities is a straightforward manipufa- 
tion. We shall state the results first and then carry out the derivation. The 
elements of the information matrix are 

where 

and 

J 11 = CC 7 - (iq"] = ccrw2, 

and J12 = C[z - LUf] = Cpmt, 

J =C[F 22 - (i)"] = CQ, 

j tz =/;/2 If( du. 

We assume that the quantities in (67)-(69) are finite. 

(63) 

(64) 

(6% 



We now carry out the derivation for a typical term and then return to 
discuss the implications. 

Derivation of the terms in J. We consider J,, first. From (6), 

a In Rl(T, co) = CR 
[ 

aL*(T, 0) 
ar Z(T, CD) - a7 

+ QT, 4 - iI*(T, to) 
a7 1 

Differentiating again, we obtain 

Similarly, 

and 

d2 In R,(7, 0) _ 3-7 Re 

[ 

&T, co) ie(T, w) PP 
aco2 &!I au + Z(T, 4 

Now recall from (7) that 

s 

00 
E(T, lo) = F(t)f*(t - T) e-jut dt. 

-cx) 

Differentiating (75) twice with respect to T and using the results in (70) and (72), we have 

J ( a2 In A1(7, m) 
11 = -E 

aT2 1 

@J 

+ 
ss 

3( “t--T) 

~23(~ - 7) 

ar2 
ejw(t-u)E[~(t)^r*(u)] dt du . ml 

-co 

The correlation function of F(t) is 

E[F(t);*(u)] = 2ob2Etf(t - T)3*(ti - T)ejw(t-u) + N, 6(t - u). (77) 



Substituting (77) into (76); we obtain 

(Recall that I?,. h 2ab2Et.) We now simplify this expression by demonstrating that the 
first term is (~;i)~ and that the sum of the second and fourth terms is zero. To do this, 
we first observe that 

for all T. lcn other words, the energy does not depend on the delay. ~i~erentiating both 
sides of (79) with respect to T, we have 

~i~erentiating again gives 

Thus, 

Re (82) 

Thus, the second term in (78) cancels the fourth term in (78). 
Comparing the first term in (78) and the definition of c;ii in the Appendix (A.16), and 

using Parseval’s theorem, we see that the first term is &(Q)~. 
To simplify the third term, we use (79) and then observe that 

Using the above results in (78) gives 

Jr1 = 2C’E*[w2 - (fip], (84) 

which is (63). As pointed out in the Appendix, we usually choose the carrier so that 

co= - 0. (85) 

The derivation of J12 and J22 is similar. (See Problem 10.2.1 J 

The information matrix is specified by (63)-(66) as 

wt 
-i * t 1 @6) 



298 10.2 Performance of the Optimum Estimator 

The information matrix is useful in two ways. If we denote the error 
covariance matrix for some pair of unbiased estimates as R,, 

is non-negative definite. 
J - A;’ (87) 

We now interpret this statement in relation to the maximumalikelihood~ 
estimation procedure. When the joint probability density of the errors 
using ML estimation is Gaussian, this result has a simple interpretation. 
Denote the errors by the vector 

If aE has a Gaussian density, then 

AeTA,‘A, 

’ 2 
(89) 

The equal-height contours are ellipses that are given by the equation 

A,R;lA, = ki2, i = 1,2, . . . (90) 

and are shown in Fig. 10.16. The result in (87) says that if we construct 
the bound ellipses, 

A,JA, = k:, (91) 

they will lie wholly inside the actual ellipses. Since the probability of lying 
in the region outside an ellipse is e-k2 (see page I-77), we can bound the 
actual probabilities. 

In general, the errors do not have a Gaussian density. However, we 
shall show that under certain conditions, the ML estimates are unbiased 
and the probability density of the errors approaches a joint Gaussian 
density. (As we would expect, the Gaussian approximation is best near the 
mean of the density.) 

The second way in which the information matrix is useful is to bound the 
variance of the individual errors. The variance of any unbiased estimate is 
bounded by the diagonal elements in J-l. Thus 

and 

Var [a - ~01 2 [~(~)]-l[~~ “,a)2 ’ 
I/ 

(93) 
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Fig. 10.16 Error ellipses. 

Looking at (68), we see that a sufficient condition for the bounds on the 
estimation errors to be uncoupled is that the complex envelope be real. In 
this case, 

Var[i!-r]> [~(~)]-l[~] 

and 

Var [cG - WI 2 [~(~)]-l[~] (95) 

for all mbiased estimates with z = 0. [Notice that (94) and (95) are 
bounds even with z # 0, but they are not as tight as (92) and (93).] 

The first terms in (92)-(95) are functions of the ratio of the average 
received signal energy to the white noise level. The second terms indicate 
the effect of the signal shape. Looking at (94), we see that the bound on the 
delay estimation accuracy is determined by effective bandwidth. This is 
logical because, as we increase the signal bandwidth, we can design a 
signal with a faster rise time. From (95), we see that the bound on the 
Doppler estimation accuracy is determined by the effective pulse length. 

Recalling the definition of the elements in the information matrix 
(60)-(62) and that of the ambiguity function, we would expect that the 
elements of J could be expressed directly in terms of the ambiguity function. 
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Property 2-T The elements in the matrix in (86) can be expressed as A 

(96) 

(97) 

(98) 

These results follow from (17), (18) and (67)-(69) (see Problem 10.2.2). 
Thus the information matrix can be expressed in terms of the behavior 

of the ambiguity function at the origin. Property 2 substantiates our 
intuitive obse~ation on page 28 1 regarding desirable ambiguity functions. 

The final step in our local accuracy discussion is to investigate when the 
actual estimation error variances approach the bounds given in (92) and 
(93). To motivate our discussion, we recall some results from our earlier 
work. 

In our discussion of classical estimation theory on page X-71, we quoted 
some asymptotic properties of maximum likelihood estimates. They can 
be restated in the context of the present problem. Assume that we have N 
independent observations of the target. In other words, we receive 

F$) = l&E&t - +?jwt + l&(t), -m<t<m, (99) 
i=1,2 ,..., N, 

where the & and ~~(~) are characterized as in (3)-(5) and are statistically~ 
independent. Physically this could be obtained by transmitting pulses at 
different times (the time-shift is suppressed inf(t - T)). Then, as W-+ 00, 

1. The solution to the likelihood equation, 

i? In R&T, 0) 

aT r=img = 0 9 
Ul=iB?Y&2 

ww 

(100b) 

where 

(1OOd) 

t We shall derive a number of properties of the ambiguity function in this chapter, 
and so we use a common numbering system for ease in reference. 
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s 
co &(T, ai) A ?Y(t)f”*(t - T)emiot dt, (1OOe) 
--co 

converges in probability to the correct value ra, ct), as N-+ a3. Thus the 
ML estimates are consistent. 

2. The ML estimates are efficient; that is 

. 
ltm 

Var [Gml - 7J 
- = I, (101) 

and a similar relation for Var @ml - CC)J 
3. The ML estimates are asymptotically jointly Gaussian with co- 

variance matrix J-l. 

These results relate to error behavior as the number of observations 
increase. 

In Chapter I-4 (pages I-273 to I-287), we saw that the error variances 
approached the Cramer-Rao bound for large ~/~*. This is a different type 
of “asymptotic” behavior (asymptotic as ~/~~ --+ CK), not as N-+ a.) In 
the present problem we would like to demonstrate that, using only one 
pulse, the error variance approaches the Cramer-Rae bound as ~~/~* 
approaches infinity. Unfortunately, this does not seem to be true (see 
Problem 10.2.3). Thus the ML estimates are asymptotically efficient in the 
classical sense (N -+ a) instead of in the high ~/~~ sense we encountered 
in Chapter 4. 

There are two other issues concerning asymptotic behavior that should 
be mentioned : 

1, Suppose that we use a fixed number of pulses, N (where N > 1) and 
let ~~/~~ increase. Do the error variances approach the bound? We have 
not been able to resolve this question to our satisfaction. 

2. An alternative model that is sometimes used is 

F(t) = ~~~~(~ - 7)eiot + ~(~), . -m<t<m, (102a) 

where 161 is either a known amplitude or an unknown ~~~~~nd~rn ampli- 
tude. The local accuracy results [(58) to (69)] are valid for this model if 
we let 

(102b) 

instead of using the value in (66). In this case we can show that the actual 
error variances approach the bounds as C + co (e.g., [77]). 
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All of our discussion in this section assumes that the errors are small. 
The next important question is the behavior of the errors when they are 
not small. We refer to this as the global accuracy (or ambiguity) problem. 

10.2.2 Global Accuracy (or Ambiguity) 

In this section we study the performance of the system when the errors 
are not necessarily small. 

We can perform an approximate performance analysis by using the same 
technique as as in the F1M threshold analysis on pages I-278-I-286$ The 
basic idea is straightforward. We assume that the region of the 7, ct) plane 
that we must consider is a rectangle with dimensions Q, and T,. We divide 
this region into rectangular cells, as shown in Fig. 10.17. The dimensions 
of the cell are proportional to the dimensions of the central peak of the 
signal ambiguity function We shall use a grid with dimensions 

and 

A 
1 - r--- 

%I 
(103a) 

where 

and 

A 
1 -- o- Y 
G 

q2 = t - 2 -2 (0 

o2 L 0 3- 6” ( ) . 

0 

(103b) 

(1034 

(103d) 

’ Fig. 10,117 Region in T, o plane in which targets may be present. 

t We suggest that the reader review these pages, because our analysis in this 
follows it closely. 
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Fig. 10.18 Range-Doppler cell. 

The cell is shown in Fig. 10.18. Notice that if z is significant (e.g., in a 
linear F‘. signal) a parallelogram cell would be logical. We assume z 
equals zero for simplicity. 

We process the received signal in two steps. We first decide which of the 
cells the signal is in. We next perform a localization within the chosen cell. 
Thus, there are two kinds of errors: decision errors, because of picking the 
wrong cell, and local errors within the cell. The local errors were discussed 
in the last section. We now analyze the decision errors. 

To analyze the errors we assume that the signal lies at the center of one 
of the cells. We denote the center point of the ith cell as (+J-+ tr)$). We 
assume that the a-priori probability that a signal will lie in any cell is equal. 
Thus we have an M-hypothesis problem where 

AI= Sl,a,T,%* (104a) 

The LRT consists of computing &12, 

(104b) 

and choosing the largest. To analyze the performance, we must consider 
two cases. 

Case 1. The signal ambiguity function has a central peak and no sub- 
sidiary peaks. The signal output in all incorrect cells is negligible. 

Case 2. The signal ambiguity function has subsidiary peaks whose 
amplitudes are non-negligible. 

We now analyze the first of these cases. The analysis for the second 
case is outlined briefly. The first case corresponds to transmitting one of 
M-orthogonal signals over a Rayleigh channel. The Pr (E) for this case was 
derived in Problem I-4.4.24 (see also [I-80]). 

For our purposes the approximate expression derived in Problem 



1-4.4.25 (see also [I-~01) is most useful. The result is 

As in Example 2 on page I-282, we can compute a meanasquare error, 
given an interval error 

E[$I interval error] < 2~~: T2, =- - 
6 ) 

i-2 2 

E@oe2 1 interval error] < 2GQ2 * * X---- - * 6 

(106a) 

(l06b) 

In (106a) we have ignored the set of decision errors that cause no range 
error (i.e., choosing a cell at the correct range, but the wrong Doppler). 

We now restrict our attention to the range 
combine th e various results to obtai n an overa 

estimation 
1 variance. 

error, We can 

E(r,2) = E(T,2 1 no decision error) Pr (no decision error) 

+ E(7,2 1 decision error) Pr (deGision error). (107a) 

The only term that we have not evaluated is A+,2 1 no decision error). We 
can obtain a good approximation to this term, but it is too complicated 
for our present purposes. It is adequate to observe that the first term is 
nonnegative, so that the normalized error can be bounded by using only 
the second term. The result is 

~(~~) w3 > 12 -=- 
Var IT*1 

- E(T~~ 1 decision error) Pr (decision error) 
T312 - l-2, 

2N 
O 

1 -- - 
4 

In [Q,a,T,b,l - + 0.577 l 

2Q*o,T,%l 
(107b) 

From Section 10,2.1, we know that we also can bound the variance by 
using the Cramer-Rao bound. For large ~~~~o, the normalized Cramer- 
Rao bound is approximately 

(107c) 

Comparing (107b) and (107c), we see that the right sides of both ex- 
pressions have the same dependence on ~~/~o. However, for the parameter 
values of interest, the right side of (107b) is always appreciably larger than 
the right side of (107~). Thus, we conclude that, for a single transmitted 
pulse and a Rayleigh target model, the probability of a decision error 
dominates the error behavior, and we never achieve the variance indicated 
by the Cram~rmRao bound. The reason for this behavior is that in the 
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Rayleigh model we encounter targets with small 161” regardless of how 
large &/N, is. The large estimation errors associated with these small 
amplitude targets keep the average error from approaching the bound. 

In Section 10.2.1, we indicated that the ML estimates were asymptotically 
efficient as the number of observations (that is, the number of pulses 
transmitted) approached infinity. We can now discuss the behavior as a 
function of N. For N pulses the Pr (E) is approximately 

[use (I-2.5 16) and (~-4.64)]. If we assume that E(+T@~ 1 no derision error) 
can be approximated by the right side of (92) then 

E(T3 1 6 - w 
- - ’ ’ NE”No(l - Pr (E)) + 2 Pr (E), 

~=(T,(r,)2N&IN, Ni?JlV, 
(108b) 

In Fig. IO. 19, we have plotted the reciprocal of the normalized mean-square 
error as a function of N for various &./No, Q*cr,, and T,ao values. As we 
would expect, there is a definite threshold effect. Below threshold the 
variance increases as (~~*~*)(~~~ J is increased. Increasing (~~~*)(~~~*) 
also moves the threshold point to a larger value of N. Notice that even 
when -&/No equals 10, it takes about 10 pulses to get above threshold. 

In our discussion at the end of Section 10.2.1 we mentioned an alternative 
target model in which 181 was modeled as a fixed quantity. It is interesting 
to discuss the global accuracy for this model. By a power series approach 
one can show that 

No 1 E(T,~ 1 no decision error) = - -2 , 
2E,cr, 

(109a) 

where 
ET = E, PI23 (109b) 

(see for example [77]). Using Problem 4.4.7 and (I-4.64), 

pr (4 < Q*%T*% Er exp - - . 2 ( 1 2NO 

uw 

Using (107a), (109), and (1 lo), we obtain an expression for the normalized 
mean-square error. The reciprocal of the normalized mean~square error 
is plotted in Fig. 10.20 as a function of E~/2~o for various values of Q*a, 
and T,cr,, Once again, we observe the threshold effect. Notice that if 
(o,T,)(o,Q,) equals 104, then we need an E,./No of about 40 to get above 
threshold. 
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~h?2~ - [ 1 Var fT*l 

10 100 
N (buffer of pulses) --+ 

Fig. 10.19 Reciprocal of notarize mean-square error versus number of pulses: 
Rayleigh target model. 

We should point out that in both Figs. 10.19 and 10.20, the location of 
the threshold is a function of the grid size that we selected. An analysis 
of the effect of grid size on the local and global errors could be carried out, 
but we have not done so. 

All of our discussion up to this point has considered a signal whose 
ambiguity function had no subsidiary peaks. If the ambiguity function 
has subsidiary peaks, then the decision problem corresponds to the Mary 
decision problem with nonorthogonal signals, For a particular signal 



lo5 

lo4 

SL 1 10 100 

Er 
2% - Fig. 10.20 Reciprocal of normalized mean- 

square error versus ~~/2~~ t nonfluctuating 
target model. 

ambiguity function an approximate answer can be obtained, but the exact 
numerical results add little insight into the general case. 

We should point out that there are other techniques available for 
studying the global accuracy problem. The Barankin bound discussed on 
pages I-71, I-147, and I-286 is quite useful (see for example [78]-[81]). 
Other references dealing with the global accuracy problem include 
[82]-[83]. 

10.2.3 Summary 

In this section we have studied the performance of the optimum receiver. 
We have found that the local accuracy depends on the shape of the 
ambiguity function, 0( T, cu), near the origin. We also studied the global 
accuracy (or ambiguity) problem. Here the performance depends on the 
behavior of 0(~, cc)) in the entire 7, cr) plane. 
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Thus, we have established that in both the accuracy and an~biguity 
issues the functions +(T, cu) and 0( 7, w) play a fundamental role. In the 
next section, we derive some useful properties of these functions. 

10.3 PROPERTIES OF TIMEaFREQ~ENCY AUTOCORRELATION 
FUNCTIONS AND AMBIGUXTY FUNCTIONS 

The autocorrelation and ambiguity functions were first introduced by 
Ville [I]. Their properties have been studied in detail by Woodward [8], 
Siebert [9], [lo], Lerner [ll], and Price [12]. 

The first property that we shall derive in this section concerns the volume 
under the ambiguity function. One implication of this property is that the 
ideal ambiguity function of Fig. 10.6 cannot exist. 

Property 3 (Volume Invariance). The total volume under the ambiguity 
function is invariant to the choice of signal. Specifically, 

Proof. The proof follows directly from the de~nitions in (17) and (18). We have 

integrating with respect to co gives 2A(r - u). Then 
changes u to t. This gives 

integrating with respect to u 

co 

JJ 

O(T, co) d?- (113) 

--Co -a0 -CKI 

Let 2 = I - (42). Then 

The inner integral equals unity for all x, since the energy is invariant to a time shift, 
The remaining integral equals unity, which is the desired result. 
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The implication of this result, which is frequently called the radar 
~~z~e~~~~~~~ ~~~~c~~~e, is clear. If we change the signal in order to narrow 
the main peak and improve the accuracy, we then must check to see where 
the displaced volume reappears in the 7, cc) plane and check the effect on 
system performance. The radar uncertainty principle is probably the most 
important property of the ambiguity function. There are a number of 
other properties that are less fundamental but are useful in signal analysis 
and design. 

The first group of properties deals principally with the time-frequency 
auto~orrelation function (most of these were indicated in [lol). The proofs 
are all straightforward and many are left as exercises. 

Property 4 (Symmetry). 

+(7, Q-4 = +*e--7, -4 (115) 
and 

q7, w) = e+, -co). (116) 

Property 5 (Alternative representations). An alternative representation 
of the time-frequency autocorrelation function is 

At this point it is convenient to introduce a time-frequency autocorrela- 
tion function whose second argument is in cycles per second. We denote 
it by 

The braces {a} indicate the definitions in (I 18) and (1 S9), while the 
parentheses () indicate the original de~nition.~ 

Property 6 (Duality). The res?llt in Property 5 points out an interesting 
duality that we shall exploit in detail later. Consider two signals, &(t) 
and &(t), such that 

fz(f} L/m &(t)e-j2rft dt, wo) 
-co 

t We apologize for this diabolical notation. In most cases, the de~n~t~on being used is 
obvious from the context and one can be careless. In duality problems one must be 
careful, because the definition cannot be inferred from the argument. 
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that is, &{*) is the Fourier transform of &(*)* The result in (117) implies 
that 

42{fY -4 = 4s,(~,f)* (120 

Thus the effect of transmitting the Fourier transform of a signal is to 
rotate the time-frequency diagram 90” in a c~~c~~~~e direction, 

Similarly, 

e {f 2 9 -7) = h-+9 f 1. (122) 

Property 7 (Scaling). If 

.&> - t6(7,4, (123) 
then 

~~~(~~) - +(m-, ;), a > 0. VW 
II 

The ambiguity function is scaled in an identical manner. 

Property 8. If 

then 
(125) 

(126) 

This is the frequency domain dual of Property 1 (page 290). The ambiguity 
function is changed in an identical manner. 

Property 9 (Rotation). A generalization of the duality relation in Property 
6 is the rotation property. Assume that 

If we desire a new time-frequency function that is obtained by rotating 
the given +,(*, ), that is, 

#&, W) = ~~(~ sin a + 7 cos a, cI) cos a - 7 sin cx), o<a<~ 2 9 wf9 

we can obtain this by transmitting 

(129) 
The ambiguity function is also rotated by a radians. 
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Property 10. A question of interest is: Given some function of two 
variables, +{~,f}, is it a time-frequency correlation function of some 
signal? We can answer this by taking the inverse transform of (118). Since ${T,f} =S_mmf(f - ;$*(t + $e’l”“df, (130) 

s O” +{7, f}e--i2Ut -a2 df=+$*(t+;). (131) 

Thus, if the transform of 4{7,f} can be written in the form shown in 
(131), it is a legitimate time-frequency correlation function andf(t) is the 
corresponding signal. By a change of variables (x = t - r/2 and y = 
t + 7/2), the relation in (131) can be rewritten as 

PWf*W =Ia +{w - X,f } ev (-jbf (y)) df. (132) 
-m 

By duality (Property 6), this-can be written as 

F{x}F*{y} =Ja ${f, x - y} exp (-j2nf (y)) df. (133) 
-cn 

The relations in (132) and (133) enable us to determine the signal directly. 
Notice that the signal is unique except for a constant phase angle. Thus, 

also satisfies (132). 
jl,( x) A f(x)eia (W 

A similar relation has not been derived for the ambiguity function. Thus, 
if we are 
necessary 
we do no t have any direct 

.esired ambiguity functi ad 

given a function 0{7,f}, we do not have a test that is both 
and sufficient for O{*, l } to be an ambiguity fu nction. In addition, 

procedure for finding any(t) that will produce 
on. 

Property 11 (Multiplication). If 

and 

then 

m&o - 
s 

m A{? Xhb2hf - x> dx (137) 
-co 

(i.e., convolution with respect to the frequency-variable), and 

(i.e., convolution with respect to the time variable). 
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Property 12 (Axis-intercept Functions). The time-frequency correlation 
function evaluated at ~1) = 0 is just the time-correlation function of the 
complex envelope, 

The time-frequency correlation evaluated at 7 = 0 has two interesting 
interpretations. It is the Fourier transform of the squared magnitude of 
the complex envelope, 

From (117), it is the correlation function of the Fourier transform of the 
complex envelope $ 

uw 

The final property of interest applies only to the ambiguity function. 

Property 13 (Serf-transform), An ambiguity function is its own two- 
dimensional Fourier transform, 

W) 

Observe the sign convention in the definition of the double transform 
[minus on the time (first) variable and plus on the frequency (second) 
variable]. This choice is arbitrary and is made to agree with current 
radar/sonar literature. It is worth noting that the converse statement is 
not true; the self-transform property does not guarantee that a particular 
function is an ambiguity function. 

In this section we have derived a number of useful properties of the 
time~frequen~y auto~orrelation function and the ambiguity function. 
Several other properties are derived in the problems. In addition, the prop: 
erties are applied to some typical examples. 

Notice that we have not been able to find a necessary and sufficient 
condition for a function to be an ambiguity function. Even if we know 
(or assume) that some two-variable function is an ambiguity function, we 
do not have an algorithm for finding the corresponding complex envelope. 
Thus, we can not simply choose a desired ambiguity function and then 
solve for the required signal. An alternative approach to the signal design 
problem is to look at certain classes of waveforms, develop the resulting 



ambiguity function, and then choose the best waveform in the class. This 
is the approach that we shall use. 

In Section 10.2, we examined modulated analog waveforms. We now 
look at a class of waveforms that we call coded pulse sequences. 

10.4 CODED PULSE SEQUENCES 

In this section we study complex envelopes consisting of a sequence of 
pulses that are amplitude-, phase-, and frequency-modulated. Each pulse 
in the sequence can be expressed as a delayed version of an elementary 
signal, G(t), where 

i 

1 
ii(t) d J T,) 

o<t<r,, 
(143) 

0, elsewhere. 

We denote the delayed version as ii,(t), 

The complex envelope of interest is 

N-3 
fl) t = c ~~~~(t) exp (jo,t + ~~~). 

5 
(145) 

c =.l t4 = 0 
We see that a, is a constant amplitude modulation on the nth pulse, a, 
is a constant frequency modulation of the nth pulse, and 8, is the phase 
modulation on the nth pulse. The constant c is used to normalize the 
envelope. The signal in (145) has 3N parameters that can be adjusted. We 
shall investigate the effect of various parameters. 

Our discussion is divided into three parts: 

1. A brief investigation of on-off sequences. 
2. A development of a class of signals whose ambiguity functions are 

similar to the ideal ambiguity function of Fig. 10.6. 
3. A brief commentary on other classes of signals that may be useful 

for particular applications. 

10.4.1 On-off Sequences 

The simplest example of an on-off sequence is the periodic pulse sequence 
in Example 3. Clearly, it can be written in the form of (145). To illustrate 
this, we assume that we have a periodic pulse sequence with interpulse 
spacing Tp = 10Ts and a total of 10 pulses, as shown in Fig. 10.21. In the 
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t 
lOT, 20Ts 3OT, 

Fig. 10.21 Periodic puke train. 

notation of (149, 

a, = alI = a,, = 9 l l a,, = 1, uw 

and all other ara = 0. Both ct), and 8, = 0 for all n. 
The disadvantage of the periodic sequence was the presence of large 

subsidiary peaks in the ambiguity function. Since the peaks are caused 
by the periodic structure, we can try to eliminate them by using a non- 
uniform pulse-repetition rate. One way to construct such a sequence 
would be to have 100 possible pulse positions and insert 10 pulses randomly. 
This type of procedure has been investigated in detail (e.g., Rihaczek [ 131, 
Cook and Bernfeld f 14, pages 232-2401, Kaiteris and Rubin [15], and 
Resnick [16]). It can be shown (the easiest way is experimentally) that 
staggering the PRF causes a significant reduction in the sidelobe level. 
(A sidelobe is a subsidiary peak in the T, ct) plane.) The interested 
can consult the above references for a detailed discussion. 

reader 

10.4.2 Constant Power, Amplitude-modulated Waveforms 

In this section, we consider the special case of (145) in which the 
waveforms can be written as 

where 

To motivate the use of this class of waveforms, let us recall the properties 
that an “ideal” ambiguity function should have: 

1. The central peak should be narrow al .ong the -r-axis. The minim urn 
width of the central peak is go verned by the signal bandwid th IV. Here the 
bandwidth is the reciprocal of the length of the elemental pulse, T,. 
Outside the region of the central peak, the ambiguity function should be 



reasonably flat. From Property 12, 

(14% 

Thus, we want a signal whose correlation function has the behavior shown 
in Fig. 10.22. 

2. The central peak should be narrow along the m-axis. From Property 
12, 

By making If”(t)1 constant over the entire signal sequence, we make 
#(O, w) a narrow function of cc). This suggests choosing 

Then 
an= &l, n=1,2 ,..., N. uw 

IJ;c )I 
1 

t=--, - 
J 

O<t<NT,=T, (152) 
N 

and the width on the f-axis is approximately 2/T. 
3. The ambiguity function should be reasonably flat except for the 

central peak. This requirement is harder to interpret in terms of a require- 
ment on the signal. Therefore, we design signals using the first two require- 
ments and check their behavior in the 7, u plane to see if it is satisfactory. 

4. The volume-invariance property indicates that if the ambiguity 
function is approximately flat away from the origin, its height must be 
such that the total volume integrates to unity. To compute this height, we 
observe that the total length of the ambiguity function is 2Tif the duration 
of the complex envelope is T (recall T = NT,). The ambiguity function 
does not have a finite width on the f-axis for a finite duration signal. 
However, we can approximate it by a width of 2w cycles per second, 
where JV is the effective signal bandwidth. (In this case, UI’ = T;?) With 
these approximations we have the desired ambiguity function shown in 

Fig. 10.22 A desirable signal correlation function. 
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Fig. 10.23. We can approximate the volume of the central peak by I/UK 
Thus, the height of the flat region must satisfy the equation 

h*4WT+-Ll 
WT 

(153) 
or 

For large Z”W products, 

h-s- 
1 P-d- 

4WT’ 
iW 

This result gives us a general indication of the type of behavior we may 
be able to obtain. From the radar uncertainty principle, we know that this 
is the lowest ~~if~~rn height we can obtain. Depressing certain areas 
further would require peaks in other areas. 

With these four observations as background, we now try to find a 
waveform that leads to the ambiguity function in Fig. 10.23. In the absence 
of any obvious design procedure, a logical approach is to use the intuition 
we have gained from the few examples we have studied and the properties 
we have derived. 

Bwker Codes. A plausible first approach is to let IV equal a small 
number and investigate all possible sequences of a,. For example, if 

Fig. 10.23 A desirable ambiguity function. 
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N = 3, there are 23 arrangements. We can indicate the sequence by the 
amplitudes. Thus, 

++- (156) 
denotes 

A ) t = -J= [Q(t) + Qt) - U&)1* 
J 3 

W) 

We can compute the correlation function #(T, 0) easily. Since we are 
shifting rectangular pulses, we just compute 

$(nT,, 0, n = L2, 3 (158) 

and connect these values with straight lines. The resulting correlation 
function is shown in Fig. 10.24. We see that the correlation function has 
the property that 

Notice that the complement of this sequence, - - +, the reverse, 
- + +, and the complement of the reverse, + - -, all have the same 
property. We can verify that none of the other sequences of length 3 has 
this property. Barker [ 171 developed sequences that satisfy the condition 
in (159) for various IV < 13. These sequences, which are referred to as 
Barker codes, are tabulated in Table 10.1. Unfortunately, Barker codes 
with lengths greater than 13 have not been found. It can be proved that no 
odd sequences greater than 13 exist and no even seauences with N between I 

0) 

1 

Fig. 10.24 Correlation function of three-element Barker code. 
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Table 10.1 Barker Sequences 

N Sequences 

2 ++,-+ 
3 ++- 
4 ++- +,+++- 
5 +++-+ 
7 +++--+- 

11 +++---+--+- 
13 +++++--++-+-+ 

4 and 6084 have been found [18]. The magnitude of the time-frequency 
correlation function for a Barker code of length 13 is shown in Fig. 10.25. 
We see that there are two ridges of non-negligible height. 

Shift-Register Sequences. A second approach to signal design is suggested 
by an example that is usually encountered in random-process courses. 
Consider the experiment of flipping a fair coin. If the outcome is a head, 
we let a, = 1. If the outcome is a tail, we let a, = - 1. The nth toss 
determines the value of a,. The result is a sample function, the familiar 
Bernoulli process. As N -+ 00, we have the property that 

+wIs, 0) = 0, I2 # 0. (160) 

Thus, for large N, we would expect that the waveform would have a 
satisfactory correlation function. One possible disadvantage of this 
procedure is the storage requirement. From our results in Section 10.1, 
we know that the receiver must have available a replica of the signal in 
order to construct the matched filter. Thus, if N = 1000, we would need to 
store a sequence of 1000 amplitudes. 



Fig. 10.26 Feedback shift register. 

Fortunately~ there exists a class of deterministic sequences that have 
many of the characteristics of Bernoulli sequences and can be generated 
easily. The device used to generate the sequence is called a feedback 
dift register. A typical three-stage configuration is shown in Fig. 10.26. 
Each stage has a binary digit stored in it. Every T, seconds a clock pulse 
excites the system. Two operations then take place: 

1. The contents shift one stage to the right. The digit in the last stage 
becomes the system output. 

2. The output of various stages are combined using mod 2 addition. 
The output of these mod 2 additions is the new content of the first stage. 
In the system shown, the contents of sta es 2 and 3 are added to form the 
input. 

3. Since all of the operations are linear, we refer to this as a ~i~e~~ s~z~ 
register. 

The operation of this shift register is shown in detail in Table 10.2. 
We see that after the seventh clock pulse the contents are identical with 

Table 10.2 

Contents Output sequence 

Initial 1 1 1 
1 011 1 
2 001 11 
3 1 0 0 1 1 1 
4 0 1 n\Q 0 1 1 1 
5 1 0 1 00111 
6 1 1 0 100111 
7 1 1 1 0100111 
8 
9 i !I 

10 Repeats Repeats 
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the initial contents. Since the output is determined completely from the 
contents, the sequence will repeat itself. The period of this sequence is 

It is clear that we cannot obtain a sequence with a longer period, because 
there are only 2* = 8 possible states, and we must exclude the state 000. 
(If the shift register is in the 000 state, it continues to generate zeros.) 
Notice that we have chosen a parti~u~ar feedback connection to obtain the 
period of 7. Other feedback conn~t~ons can result in a shorter period. 

TO obtain the desired waveform, we map 

l- +L (162) 
o- -1. 

If we assume that the periodic sequence is ~~~~~~e in extent, the correla- 
tion function can be computed easily. For convenience we normalize the 
energy per period to unity instead of normalizing the total energy. The 
correlation function of the resulting waveform is shown in Fig. 10.27. 
We see that 

&)(raT,, 0) = lT 
-3, 

(163) , * t * . 

All our comments up to this point pertain to the three-stage shift 
register in Fig. 10.26. In the general case we have an N-stage shift register 

Fig. 10.27 ~orr~lati~n function of a perio~i~ ps~u~oran~~m sequence. 
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states, we cannot generate a sequence whose period is 
1. However, it is not clear that there exists a feedback 
will generate a sequence of this period. To prove the 
sequence and find the configuration that produces one 

requires mathematical background that we have not developed. The 
properties of shift-register sequences have been studied extensively by 
Golomb, [20], Huffman 1211, Zierler [22], Peterson [23], and Elspas [24]. 
Very readable tutorial discussions are given by Ristenblatt [25], [26] and 
Golomb [27, Chapters 1 and 21. The result of interest to us is that for all 
IV there exists at least one feedback connection such that the output 
sequence will have a period 

L = 2” - 1. (164) 

These sequences are called maximal-length shift-register sequences. 
Notice that the length is an exponential function of the number of stages. 
A list of connections for N < 31 is given by Peterson [23]. A partial list 
for IV < 6 is given in Problems 10.4.5 and 10.4.6. These sequences are also - 
referred to as p~e~d~-r~~d~rn (PR) sequences. The “random” comes from 
the fact that they have many of the characteristics of a Bernoulli sequence, 
speci~cally the following : 

1. Xn a Bernoulli sequence, the number of ones and zeros is approxi- 
mately equal. In a PR sequence, the number of ones per period is one 
more than the number of zeros per period. 

2. A run of a length yt means that we have n consecutive outputs of the 
same type. Tn a Bernoulli sequence, approximately half the runs are of 
length 1, one-fourth of length 2, one-eighth of length 3, and so forth. 
The PR sequences have the same run characteristics. 

3. The autocorrelation functions are similar. 

The “pseudo” comes from the fact that the sequences are perfectly 
deterministic. The correlation function shown in Fig. 10.27 assumes that 
the sequence is periodic. This assumption would be valid in a continuous- 
wave (CW) radar. Applications of this type are discussed in [28] and [29]. 
Continuous PR sequences are also used extensively in digital communica- 
tions In many radar systems we transmit one period of the sequence. 
Since the above properties assumed a periodic waveform, we must evaluate 
the behavior for the truncated waveform. For small IV, the correlation 
function can be computed directly (e.g., Problem 10.4.3). We can show that 
for large Iv the sidelobe levels on the T-axis approaches fi (or J-). 
The time-frequency correlation function can be obtained experimentally. 



Fig. 10.28 I+{l;,f>/ for ~seud~ra~dom sequence of leugt~ N = 35 (From f353). 

A plot for N = 15 is shown in Fig. 10.28. In many applications, the 
detailed structure of +(~,f) is not critical. Therefore, in most of our discus- 
sion we shalt use the approximate function shown in Fig. 10.29. This func- 
tion has the characteristics hypothesized on page 316. Thus, it appears that 
the shiftaregister sequences provide a good solution to the combined ambi- 
guity and accuracy problem. 

Fjg. l&29 A~~roxjmatjon to the arn~~gujty fun~tjon of a ~seud~random s~uen~e. 
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10.4.3 Other Coded Sequences 

Before leaving our discussion of coded pulse sequences, we should point 
out that there are several alternatives that we have not discussed. The 
interested reader can consult [14, Chapter 81 and [30] for a tutorial 
discussion, or the original papers by Huffman [3 11, Golomb and Scholtz 
[32], Heimiller [33], and Frank [34]. 

We should emphasize that pulse sequences are frequently used in 
practice because they are relatively easy to generate, the optimum receiver 
is relatively easy to implement, and they offer a great deal of flexibility. 
Readers who are specializing in radar signal design should spend much 
more time on the study of these waveforms than our general development 
has permitted. 

Up to this point we have assumed that only a single target is present. 
In many cases, additional targets interfere with our observation of the 
desired target. This problem is commonly called the resolution problem. 
We discuss it in the next section. 

10.5 RESOLUTION 

The resolution problem in radar or sonar is the problem of detecting 
or estimating the parameters of a desired target in the presence of other 
targets or objects that act as reflectors. These reflectors may be part of 
the environment (e.g., other airplanes, missiles, ships, rain) or may be 
deliberately placed by an enemy to cause confusion (e.g., decoys, electronic 
countermeasures, or chaff). It is convenient to divide the resolution 

~nterferjng 
targets f Desired target 

-l 

Fig. 10.30 Target geometry for discrete resolution problem. 
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Distributed Desired 

Fig. 10.31 Geometry for contjnuo~~ resolution problem. 

problem into two categories: 

1. Resolution in a discrete environment. 
2. Resolution in a continuous (or dense) environment. 

We now discuss our model for these two categories. 
In Figure 10.30, we show the region of the r, cr) plane that we must 

investigate. The desired target is at coordinates Q, or),. A set of Kinterfering 
targets are at various points in the T, ct) plane. The desired and interfering 
targets are assumed to be slowly fluctuating Rayleigh targets. In general, 
the strengths of the various targets may be unequal. (Unfortunately, we 
occasionally encounter the problem in which the interfering target strengths 
are appreciably larger than the desired target strength.) We shall give a 
detailed model for the discrete resolution problem in the next section. 

In the continuous resolution problem, the interference is modeled as a 
continuum of small reflectors distributed over some area in the 7, cc) 
plane, as shown in Fig. 10.31. This model is appropriate to the reverbera- 
tion problem in sonar and the clutter problem in radar. We whall discuss 
it in more detail in Chapter 13 as part of our discussion of distributed 
targets. 

We now consider the discrete resolution problem in detail. 

1051 Resolution In a Discrete Environment: Model 

In this section, we consider a typical resolution problem. The particular 
example that we shall discuss i s a detection problem, but similar results 
can be obtained for estimation problems. 
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We want to decide whether or not a target is present at a particular point 
( Q, 60~) in the 7, RI plane. For algebraic simplicity, we let 

and 
7-d = 0 (~65) 

OJd = 0. (166) 

There are two sources of interference: 

1. Bandpass white noise with spectral height I&,/2. 
2. A set of K interfering targets located at &, cui), i = 1, 2, . . . , K. 

We model these targets as slowly fluctuating point targets whose location 
and average strength are known. The fact that exactly K interfering targets 
are present is also assumed to be known. 

The transmitted signal is 

m = J2E, Re [f(t)ej”ct], (167) 

where .f?( t) i s the normalized complex envelope. 
The corn plex envelope of the received signal on HO is 

F(t) = JE, [ 2 &f( t - -r,)e’“i;i + G(t), ---co < t < m:H,. (168) 
i=l 

When the desired target is present, the complex envelope is 

The multipliers sd and 6, are zero-mean c 
are statistically independent with unequal 

E[c;,f$] = 2od2, 

omplex G aussian variables that 
variances 

E&&J = E[&] = E[b,b)] = E[~~~~] = 0, i = 1, . . . , K. (172) 

There are several 
two concern the 

issues of interes 
receiver design, 

t with respect 
and the next 

to this model. The first 
two concern the signal 

1. We might assume that the receiver is designed ~~~~~~~ knowledge of 
the interfering signals. The resulting receiver will be the bandpass matched 
filter that we derived previously. We can then compute the effect of the 



interfering targets on the receiver performance. We refer to this as the 
~~~~~~~~~~~~1 receiver problem. 

2. We can design the receiver using the assumed statistical properties 
of the interference* We shall see that this is a special case of the problem of 
detection in colored bandpass noise that we discussed in Section 9.3. We 
refer to this as the optimum receiver problem. 

3. We can require the receiver to be a matched filter (as in part 1) 
and then chooses to minimize the interference effects. 

4. We can use the optimum receiver (as in part 2) and choose the signal 
to minimize the interference effects. 

We now discuss these four issues. 

10.5.2 C~~v~nti~~a~ Receivers 

The performance of the eonve~tional receiver can be obtained in 
straightforward manner. If we use a bandpass filter matched tom, the 
optimum receiver performs the test 

is 

co 
s I 

2 A 
wo - (173) 

“-a 

[see (9.36) and (9.39).] We use the subscript wo to indicate that the test 
would be ~p~~~~~~ if the noise were chide. Now, since I,, is a complex 
Gaussian variable under both hypotheses, the performance is completely 
determined by 

[see (9.49).] To evaluate the two expectations in (174), we substitute 
(168) and (169) into the definition in (173). The denominator in (174) is 

Using the independence of the 6, and the definition in (18), this reduces to 

where 

(l-9 
i--l. 

Jci h 2E~~~2 WV 



is the average energy received from the ith interfering target. Similarly, 

E[fL,l” 1 %I - ~V2ml” 1 &I = Jq.g (178) 
where 

4, h 2Epd2 w9 
is the average received energy from the desired target. Then 

The numerator corresponds 
present. The second term in 

to the performance when only white noise is 
the denominator represents the degradation 

in the performance due to the interfering targets. We see that the per- 
formance using the conventional matched filter is completely characterized 
by t~he average strength of the return from the interfering targets and the 
value of the ambiguity function at their delay and Doppler location. 

Conceptually, at least, this result provides the answer to the third issue. 
We design a signal whose ambiguity function equals zero at the K points 
in the 7, ~1) plane where the interfering signals lie. Even if we could carry 
out the design, several practical difficulties remain with the solution: 

1. The resulting waveform will undoubtedly be complicated. 
2. Each time the environment changes, the transmitted signal will have 

to change. 
3. The performance may be sensitive to the detailed assumptions of the 

model (i.e., the values of 7i and CL)~). 

On the other hand, there are a number of physical situations in which our 
solution gives a great deal of insight into how to design good signals. A 
simple example illustrates the application of the above results. 

Example. Consider the multiple-target environment shown in Fig. 10.32. We are 
interested in detecting zero-velocity targets. The interfering targets are moving at a 
velocity such that there is a ~i~i~~~ Doppler shift of mo. We want to design a signal 
such that 

O(r, 0) = 0, I4 > woe ww 

We could accomplish this exactly by transmitting 

(182) 

This result can be verified by looking at the ambiguity function of the r~tangular pulse 

in Exampie 1 (page 280) and using the duality result in Property 6 (pages 309-310). 
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I 

Fig. 10.32 Multip~e~ta~get geometry. 

Fig. 10.33 ~~~t~ur of ambiguity fu~~ti~~ of rectangular puke, 

1, 
* 

interfering targets 0 

Fig. 10.34 ~ig~a~mi~terfere~ce relation. 
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On the other hand, we can make 

$(T, w) N 0, I4 > 0 (183) 

by transmitting 

O<t<T, 

elsewhere, 
27T 

T>>--• 
“0 

This solution is more practical. A typical contour of the resulting ambiguity function is 
given in Fig. 10.33, and is shown superimposed on the interference plot in Fig. 10.34. 
The reason for this simple solution is that the interference and desired targets have some 
separation in the delay-Doppler plane. If we had ignored the resolution problem, we 
might have used some other signal, such as a short pulse or a PR waveform. In the 
target environment shown in Fig. 10.32, the interfering targets can cause an appreciable 
degradation in performance. 

The result of this example suggests the conclusion that we shall probably 
reach with respect to signal design. No single signal is optimum from the 
standpoints of accuracy, ambiguity, and resolution under all operating 
conditions. The choice of a suitable signal will depend on the anticipated 
target environment. 

Now we turn to the second issue. Assuming that we know the statistics 
of the interference, how do we design the optimum receiver? 

10.5.3 Optimum Receiver: Discrete Resolution Problem 

Looking at (168) and (169), we see that the sum of the returns from the 
interfering targets can be viewed as a sample function from complex 
Gaussian noise processes. If we denote the first term in (168) as n”,(r), then 

and we have the familiar problem of detection in nonwhite complex 
Gaussian noise (see Section 9.3). The covariance function of am is 

We have used an infinite observation for algebraic simplicity. Usually f ( t )  

has a finite duration, so that &(t, zf) will be zero outside some region in the 
(t, u) plane. From (9.69), the optimum receiver performs the operation F(t)g*(t) dt 2z y, WV 



Fig. 10.35 Optimum receiver. 

where g(t) satisfies (9.74). To finds, we substitute (188) into (9.74). The 
result is 

We see that this is an integral equation with a separable kernel (see pages 
1-322-I-325). It can be rewritten as 

f(t) = 2 I?,+& - ~~)e~~~~ 
i=l (s 

O” f*(u - ~~)e-~~~~~(~) du) + Nap, 
-Go 

-co<t< 00. (189) 
The solution to (189) is 

g(t) = &J(f) + 2 &f(t - TJeiwit, ---<r<cq (190) 
i=l 

where g’d and &, i= I,...) K, are constants that we must find. The 
optimum receiver is shown in Fig. 10.35. The calculation of the constants 
is a straightforward but tedious exercise in matrix manipulation. Since 
this type of manipulation arises in other situations, we shall carry out the 
details. The results are given in (201) and (202). 

Calculation of Filter Coefiicients, We first define four matrices. The coefficient 
matrix E is 

(191) 
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The interference matrix f+(t) is 

~ 

- 
f( t- rl)ejw t 

IT t- r2)eja2t 

Qt) Li ’ . 
s 

3c t- 7&?jmKt 

In addition, we define 
%2 

02 
2 

A ii E,[E@i;t]] = 2E, * . 

0 
. 

(192) 

(193) 
(194) 

Looking at (192) and (194), we see that all the elements in i can be written in terms of 
time-frequency correlation functions of the signal. The covariance function of the 
colored noise is 

Rewriting (190) in matrix notation gives 

where 

Substituting (195) and (196) into (188), we have 

(196) 

(197) 

3c 1 t = s * { p(t)iG**(*) + N($(t - u))(gJ(u) + f”Iqu)g} du. (198) -CXI 



This reduces to 

where 

SoIving (199), we have 

i;d = 
s 

co 
&*(u)f(u) du. 

-00 
mu 

This completely specifies the optimum receiver. 
Using (196), (201), and (202) in (9.771, we find that the performance is determined by 

(203) 

To illustrate these results, we consider a simple example. 

Example. Single Interfering Target. In this particular case, the complex envelope of the 
return from the desired signal is dq6df(t> and the complex envelope of the return from 
the single interfering target is 

i;(t) = 4% h&t - r&j@. (204) 

Thus, f;(t), g, A, FJ, and pa are scakm. Using (202), we obtain 

(205) 

observing that 

and 

;d = 
s 

m i; (u)~(u) du = 
s 

O” ~~u~3~~u - T&-& du (206) 
-a9 -co 

El = 2E&, (207) 

we can write the ~rforman~e expression in (203) as 

(20% 

The ratio of A, to J!$./N, is plotted in Fig. 10.36. This indicates the degradation in 
performance due to the interfering target. 
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Fig. 10.36 ~erf~rmau~e of ~~~irnurn receiver with single inte~eriu~ target. 

The improvement obtained by using optimum filtering instead of conventional entering 
can be found by comparing (208) and (180). The ratio of A, to A,, (the performance 
using a conventional matched filter) is 

This reduces to 

The ratio is piotted in Fig. 10.37 for various values of ~~/N~ and I?(Q, q). We see that 
the function is symmetric about I?(,,, ~01) 
explained as follows. 

= 0.5. The behavior at the endpoints can be 



1. As O(rl, w,) -+ 1, the interference becomes hi~hIy correlated with the signal. This 
means that 

so that 
(210 

f(t) = cm 

Thus, the optimum and conventional receivers only differ by a gain. Notice that the 
performance of both receivers become worse as 6(q,, ox) approaches unity. 

2. As @(,,, q) - 0, the interference becomes essentiaiIy uncorre~ated with the 
signal, so that the optimum and conventional receivers are the same. Thus, if we have 
complete freedom to choose the signal, we design it to make 6(Tl, q) small and the 
conventional matched filter will be essentia~Iy optimum. 
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Fig. 10.37 Relative performance of optimum and conventional receivers: single inter- 
fering target. 
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The conclusions of this simple example carry over to the general 
problem. If possible, we would like to make O(,,, ~0~) zero for all other 
interfering targets. If we can accomplish this, the optimum and conven- 
tional receiver will be the same. When O(T+ COG) and E&V0 are large for 
some values of i, appreciable improvement can be obtained by using the 
optimum receiver. Notice that our design of the optimum receiver assumes 
that we know the range and velocity of the interfering targets. In many 
physical situations this is not a realistic assumption. In these cases we 
would first have to estimate the parameters of the interfering targets and 
use these estimates to design the optimum receiver. This procedure is 
complex, but would be feasible when the interference environment is 
constant over several target encounters. 

This completes our discussion of the discrete resolution problem, and 
we may now s~~mmarize our results. 

10.54 Summery of Resolution Results 

In our study of the discrete resolution problem, we have found that there 
are two important issues. The first issue is the effect of signal design. 
Signals that may be very good from the standpoint of accuracy and 
ambiguity may be very poor in a particular interference environment. 
Thus, one must match the signal to the expected environment whenever 
possible. 

The second issue is the effect of optimum receiver design. Simple ex- 
amples indicate that this is fruitful only when the correlation between the 
interference and the desired signal is moderate. For either small or large 
correlations, the improvement over conventional matched filtering 
becomes small. If one can design the signal so that the target return is 
uncorrelated ‘with the interference, the optimum receiver reduces to the 
conventional matched filter. In cases when this is not practical, the optimum 
receiver should be used to improve performances. 

We have chosen a particular model of the resolution problem in order 
to illustrate some of the important issues. Various modifications in the 
model can be made to accommodate particular physical situations. Two 
typical problems are the following: 

1. The location and number of the interfering targets are not known. 
We design a receiver that estimates the environment and uses this estimate 
to detect the target. 

2. The targets are known to be located in a certain region (say Q1) 
of the 7, CL) plane. The signal is fixed. We design a receiver that reduces the 
subsidiary peaks (sidelobes) in Sz, without reducing the value at the correct 
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target location too 

and Related Topics 

much. This problem is usually referred to as the “mis- 
matched filter” or “sidelobe reduction” problem. 

A great deal of research has been done on the reso 11 ution problem, because 
it is the critical issue in many radar/sonar systems. There are a number of 
good referenees that the interested reader can consult (e.g., [47]-f593). 
There is also a great deal of literature on the intersymbol interference 
problem in digital communication which is of interest (e.g., [61]-[64]). 

We have confined our discussion in this section to the discrete resolution 
problem. After we have developed a model for singly~spread and doubly- 
spread targets, we shall return to the continuous resolution problem.? 

We 
some 

SUMMARY AND RELATED TOPICS 

first su 
related 

mmarize 
topics. 

the results that we have obtained, and then discuss 

10.6.1 Summary 

In this section we have studied the problem of estimating the range and 
velocity of a slowly fluctuating point target. The model of interest is 
characterized by several features : 

1. The signals and random proGesses of interest are bandlimited around 
some carrier frequency. This property enabled us to represent the signals 
and processes either by two real low-pass waveforms or by one complex 
waveform. Choosing the latter, we reformulated our earlier results in 
terms of complex quantities. Other than factors of 2 and conjugates in 
various -places, the resulting equations and structures are familiar. 

2. The effect of the slowly fluctuating target is to multiply the signal by a 
complex Gaussian variable. physically, this corresponds to a random 
amplitude and phase being introduced into the reflected signal. By 
assuming that the signal is narrow-band, we can model the effect of the 
target velocity as a Doppler shift. Thus, the received signal is 

s(t) = Jzt Re [ 6f( t - ~)e~(“~-~*) t]. (213) 

Using this model, we looked at the problem of estimating range and 
velocity. The likelihood function led us directly to the optimum 
receiver. 

t The reader who is only interested in the resolution can read pages 459-482 at this point. 



In evaIuating the performance of the receiver, we encountered the 
ambiguity function of the signal. Three separate problems were found to 
be important: 

Accuracy. If we can be certain that the error is small (i.e., we are looking 
at the correct region of the 7, cr) plane), the shape of the ambiguity function 
near the origin completely determines the accuracy. The quantitative 
accuracy results are obtained by use of the Cramer-Rao inequality. 

A?~~~g~~~~. The volume-invariance property of the ambiguity function 
shows that as the volume in the central peak is reduced to improve accur- 
acy, the function has to increase somewhere else in the 7, tt) plane. Periodic 
pulse trains, linear FM signals, and pseudo-random sequences were 
investigated from the standpoint of accuracy and ambiguity. 

&-solution. The possible presence of additional interfering targets gives 
rise to the discrete resolution problem. The principal result of our discus- 
sion is the conclusion that the signal should, if possible, be matched to the 
environment. Tf we can make the value of the ambiguity function, O(T, CO), 
small at those points in the 7, cc) plane where interfering targets are 
expected, a conventional matched filter receiver is close to optimum. 

We now mention some related topics. 

MM.2 Related Topics 

Generalized Parameter Sets. We have emphasized the problems of 
range and Doppler estimation. In many systems, there are other param- 
eters of interest. Typical quantities might be azimuth angle or elevation 
angle. Because the extension of the results to an arbitrary parameter set is 
straightforward, we can merely state the results. 

We assume that the received signal is r(t), where 

Here A is a nonrandom vector parameter that we 
G(t) is a complex white Gaussian process. We also 

want to estimate, and 
assume 

s 
co 

If’ct, A)\’ & = 1 for all A E xa. (214b) 
--ccl 

The complex function generated by the optimum receiver is 

c;o u W - - s ,l(t)f*(r, A) c/t, (21% 
- m 



and the log likelihood function is 

[by analogy with (6)]. The function in (216) is calculated as a function of 
M parameters; A1, Az, . . . . , A,. The value of A where In A(A) has its 
maximum is Gmz. Just as on page 277, we investigate the characteristics of 
In A(A) by assuming that the actual signal is f(t, A,). This procedure 
leads us to a generalized correlation function, 

and a generalized ambiguity function, 

VA, A,) .h M.A, A,)T. (218) 

We should also observe that the specific properties derived in Section IO.3 
apply only to the time~frequen~y functions. The problems of accuracy, 
ambiguity, and resolution in a general parameter space can all be studied 
in terms of this generalized ambiguity function. 

The accuracy formulas follow easily. Specifically, one can show that 
the elements in the information matrix are 

J (219) 
Some interesting examples to illustrate these relations are contained in the 
problems and in Array ~~~c~~~~~g (see [36] also). 

~~~~~e~e~ ~~~~e~~* There are several cases in which the filters in the 
receivers are not matched to the signal. One example is estimation in the 
presence of colored noise. Here the optimum filter is the solution to an 
integral equation whose kernel is the noise covariance function (e.g., 
pages 247-251, 329-334). A second example arises when we deliberately 
mismatch the filter to reduce the sidelobes. The local accuracy performance 
is no longer optimum, but it may still be satisfactory. 

If the filter is matched to g*(t), the receiver output is 

Is 
CR 2 

qt)g*( t )  nt l 

-  KJ 

v-?-l 

By analogy with (17) and (18), we define a time-frequency cross-correlation 
function, 

(221) 
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and a cross-ambiguity function, 

e,,(T Lo) a I+&9 412* (222) 

The properties of these functions have been studied by Stutt [37], [44] 
and Root [38]. (See also Problems 10.6.2-10.6.5 and [68], [74], and [75].) 

Detection of a Target with Unknown Parameters, A problem of frequent 
interest is the detection of targets whose range and velocity are unknown.. 
The model is 

i’(t) = ~2~~~(t - f)eiot + 17(t), -00 < t < m:H1, (223) 

r”(t) = G(t), -clo<t< m:H,,, (224) 

where 7 and co are unknown nonrandom parameters. Two approaches 
come to mind. 

The first approach is to use a generalized likelihood ratio test (see 
Section I-2.5). The test is 

max 
T*O (is 

O” 
2 Hl 

f(t)f*(t - 7)e-jot & 
--oo II 

2 7. (225) 
0 

The threshold y is adjusted to give the desired P,. The performance of this 
test is discussed in detail by Helstrom 2391. 

The second approach is to divide the region of the 7, tr) plane where 
targets are expected into M rectangular segments (see discussion on 
pages 302-303 on how to choose the segments).. We denote the T, QJ 
coordinates at the center of the ith cell as T$:, cl)<. We then consider the 
binary hypothesis problem 

1 
with probability pi = - $ 

M 
i = 1,2, e l . ) M: HI (226) 

and 

f(t) = I, -cm < t < co:H,. (227) 

This is just the problem of detecting one of M signals that we discussed on 
page I-405. As we would expect, the performances of the two systems are 
similar. 

Large Tirne-~a~~wi~t~ Signals. In some sonar systems the bandwidth 
of the signal is large enough that the condition 

WT<<C 
20 

(228) 



given in (9.23) is not a valid assumption. In these cases we cannot model the 
time compression as a Doppler shift. Several references [69]-[73] treat this 
problem, and the interested reader should consult them. 

This completes our discussion of slowly fluctuating targets and channels. 
We now consider the next level of target in our hierarchy. 

10.7 PROBLEMS 

P.lO.1 Receiver Derivation and Signal Design 

Problem 10.1.1, The random variable fi(~, CO) is defined in (13). Prove that the probability 
density of I?( T, co) is not a function of T and do. 
Problem 10,1,2. Consider the Gaussian pulse with linear FM in (44a). 

1. Verify the results in (46)-(48) directly from the de~nitions in the Appendix. 
2. Verify the results in (46)-(4~) by using (96)-(98). 

Problem 10.1.3. Let 

f(t) 
27rf 

= c sin2 - , 
( ) T 

U<t<T, 

where c is a n~rnlalizin~ constant. Find O(7, to). 
Problem 10.1.4. Let 

Ill0 = i; (0 + &o, 

where 

and 

Assume that 

1. Find O(T, co). 
2. Plot for the case 



MO.2 Performance Analysis 
Probiem 10.2.1. Derive the expressions for J,, and Jzz that are given in (64) and (65). 

Problem 10.2.2. Derive the expressions in (96)-(98). 
Problem 10.2.3. Consider the expression in (6). Expand L(T, CO) in a power series in 
7 and CO around the point 

Assuming that the errors are small, find an expression for their variance. 

P.lO.3 Properties of +(T, w) and e(7, co) 

Problem 10.3.1. In Property 5 we derived an ahernative representation of +(T, w). 
Prove that another alternative representation is 

Problem 10.3.2. The transmitted waveform, f(t), has a Fourier transform, 

Problem 10.3.3. The transmitted waveform, f(t), has a Fourier transform which can 
be written as 

F{f} = c kz fi{f - kWJ, 
k Z---%1 

and c is a normalizing factor. 

1. Find +(T, f}. 
2. How would you synthesizer(t)? 

Problem 10.3.4. Partial Volume Invariances. Prove 



Notice that this is a partial volume invariance property. The total volume in a strip of 
width A7 at some value of T cannot be aftered by phase modulation of the waveform. 
Problem 10.3.5. 

I. Prove 

directly from the definition. 
2. Prove the relationship in (P.1) by inspection by using the result of Problem X0.3.4 

and the duality principle. 
Note: This is another partial volume invariance property. 
Problem 10.3.6. 

1. Expand the ambiguity function, o{~,f>, in a Taylor series around the origin. 

2. Express the coefficients of the quadratic terms as functions of ‘tz, z, and >* 

Problem 10.3.7 [40]. Derive the following generalization of Property 9. Assume 

then 

l&(T,f>l = (#+I17 + C12fi -+217 - c22f% 

Problem 10.3.8 [ 12). Derive the following “vofume” invariance property: 

wherep is an integer greater than or equal to 1. 
Problem 10.3.9 [41]-[43]. Assume that we expand f(t) using a CON set, 

Let 

denote the time-frequency cross-correlation function of &(I) and &(t). 



1. Prove 

2, Compare this result with Property 3. 
3. Prove 

and 

Probkm 10.3.10. The Hermite waveforms are 

fo 
2’/h 

?2t ~----e 
Y’n 

-“t2H,(247Tt), --co <t<cn>, ?2=1,2,..., (P*l) 

where HJt) is the nth-order Hermite polynomial, 

H%(f) = (-- l)net2/2 ;a e--t2/2, -a<t<m* P.2) 

1. Find p{f}. 
2. Prove that 

where L,(x) is the nth-order Laguerre poIynomia1 

1 x dn 

&.&(x) = 

i 

z e 
- (xneex), 
dxn 

x 2 0, 

0, x < 0. 

3, Verify that your answer reduces to Fig. 10,8 for n = 1, 
~~~~e~~~ Plots of these waveforms are given in [46]. 

4. Notice that the time-frequency autocorrelation function is rotationaliy symmetric. 
a. Use this fact to derive F( f } by inspection (except for a phase factor). 
b. What does Property 9 imply with respect to the Hermite waveforms? 

ProMem 10.3.11 [14]. Let 

S(t) _ ~~~exp [jAOsinT], Iti < 4, 

9 elsewhere. 
1. Find p(f). 

2. Find 1+{7=,f}[. 



Problem 10.3.12 [14]. Let 

A 1 2j34 ‘A t =- 
( 1 

e--(k2--jet)@, --cx,<t<m 
7T 

This is a pulse with a Gaussian envelope and parabolic frequency modulation. 
Find l+{?r)l* 

Problem 10.3.13. A waveform that is useful for analytic purposes is obtained from the 
r(t) in (32) by letting 

T-+0 
and 

n - a. 

whiie holding nT constant. 
We denote the resulting signal as r’&). 

1. Plot f${~,f)l for this limiting case. Discuss suitable normalizations. 
2. Define 

Express +r(~,f} in terms of &,(7, f). 
Problem 10.3.14. Consider the problem in which we transmit two disjoint pulses, 
j;(t) and&O. Th e complex envelope of received waveform on HI is 

T(t) = 4% b&t - T)ejot + 4% ~2~~(~ - T)ejwt + i+(t), - 00 < t C 00: HI 

The multipliers 6, and i;, are statistically independent, zero-mean complex Gaussian 
random variables, 

E[pq2] = 2cg. 

Qn Ho, only G(t) is present, 

1. Find the likelihood function and the optimum receiver. 

2. How is the signal component at the output of the optimum receiver related to 
+,Wl and #2(-f >? 

Problem 10.3.15. Consider a special. case of Problem 
rectangular pulse and f2(t) is a long rectangular pulse. 

10.3.14 in which Jf(t) is a short 

1. Sketch the signal component at the output of the optimum receiver, 

2. Discuss other receiver realizations that might improve the global accuracy. For 
example, consider a receiver whose signal output consists of 0,(7, f > times 0,(7-, f}. 

P. 10.4 Coded Pulse Sequences 

Problem 10.4.1. Consider the periodic pulse sequence in Fig. 10.21, Assume that 

where 
co, = (n - Km,, 

*A 1 
=-* 

2n Ts 



1. Find I+(T, @>I. 
2, Plot the result in part 1. 

Problem 10.4.2. Consider the signal in (145). Assume that 

a, = 1, 

a, = 1, with probabiI~ty +, for IZ = 2, . . S ,7, 

a, = 0, with probability 8, for n = 2, , . . ,7, 

a8 = 1. 

1. Find E{~#(T, w>l}. 
2. Discuss the sidelobe behavior in comparison with a periodic pulse train. 
3. How would you use these results to design a practical signal? 

Problem 10.4.3. Consider the three-stage shift register in Fig. 10.26. Compute +(T, w> 
for various initiaf states of the shift register. Assume that the output consists of one 
period. 

Problem 10.4.4. Consider the shift register system is Fig. P.10.1. 

Fig. P.lO.1 

1. Verify that this feedback connection gives a maximum length sequence. We use the 
notation [4,3] to indicate that the outputs of stages 3 and 4 are fedback. 

2. Does the shift register with connections [4, 21 generate a maximum length 
sequence ? 

Problem 10.4.5 

1. Consider a shift register with connections [S, 31. Verify that it generates a maximal 
length sequence. 

2. Does the shift register with connections [S, 4, 3, 21 generate a maxima1 length 
sequence ? 

3. Does the shift register with connections [S, 4, 3, l] generate a maxima] length 
sequence ? 

Problem 10.4.6, Verify that shift registers with connections [6,5], [6,5,4, I 1, and [6,5,3,2] 
generate maximal length sequences. 



P.lO.5 Resolution 

Problem 10.5.1. Consider the following three hypothesis problem. 

Y (t) = 1/E, b,Jl<t - Qei*it + d$ B,f(t - r2)ejwgt + i;(t), -- <t<aH2, 

T(t) = G$J(t =71)ejalf -j- i?(t), --<<twHl, 

a0 = G(t), --<<<axHo. 

The mu~tipIiers 6, and & are zero~mean complex Gaussian random variables with 
mean-square values 2cr,2 and 20~~. The parameters rl, T 2, @I, and 4~0~ are assumed known. 
The additive noise is a complex white Gaussian process with spectral height N,. 

Find the optimum Bayes test. Leave the costs as parameters. 

Problem 10.5.2. Consider the same model as in Problem 10.5.1. We design a test using 
the MAP estimates of id,1 and lh2j. 

1. Find 1~~1, given that HI is true. Find 1~1 and 1~1, given that H, is true, 
2. Design a test based on the above estimates. Compare it with the Bayes test in 

Problem 10.5.1. 
3. Define PF as 

pj? = Pr [say HI or H2 1 Ho]. 
Find p0, and pn . 

2 

Problem 10.5.3. Assume that a rectangle in the T, ~1) plane with dimension T* x Sz, is of 
interest. We use a grid so that there are M cells of interest (see discussion on pages 302- 
303). In each cell there is at most one target. We want to estimate the number of targets 
that are present and the cells which they occupy. 

Discuss various procedures for implementing this test. Consider both performance 
and complexity. 

Problem 10.5.4. An alternative way to approach the optimum receiver problem in 
Section 10.5.3 is to find the eigenfun~tions and eigenvalues of the interfering noise 
process. From (195), 

We want to write 

1, Find & and t&(t). How many eigenvalues are nonzero? 
2. Use the resuh in part 1 to find the optimum 
3. Find A@. 

receiver. 

Problem 10.5.5, We want to communicate over the resolvable multipath channel shown 
in Fig. P.10.2, To investigate the channel structure, we transn~it a ~~u~~ sounding 
signal with complex envelope f(t). The complex envelope of the received waveform is 



Transmitter Receiver 

Fig. P.10.2 

where the & are independent zero-mean complex Gaussian variables with variances 
2cri2 and c(t) is a zero-mean complex Gaussian process with spectral height IV& The 
signal outputs of the three channels are disjoint in time. The 7i are modeled as inde- 
pendent, uniformly distributed, random variables, U[-T, T], where T is large. 

Derive the optimum receiver for estimating 9i,may. 
Problem 10.5.6. Consider the following detection problem: 

‘F(t) = i?(t), Ti 5 t I; Tf:Ho, 

The deterministic signal f(t) has unit energy and is zero outside the interval (0, T). 
[This interval is included in (Ti, Tf).] The multiplier 6 is a zero-mean complex Gaussian 
random variable, 

E{lg/2) = 2Q. 

The additive noise, G(t), is a complex zero-mean Gaussian process with spectral height 
%* 

1. Find the optimum detector. Compute Ao, PO, and P,. 
2. Now assume that the received signal on HI is actually 

C(t) = d2xbf(t - 7)eimt + ii;(t), Ti 5 t 5 Tf:&, 

where T and o are small. We process ‘;ct) using the detector in part 1. Compute the 
change in A as a function of T and o. Express your answer in terms of @, CD), the 
ambiguity function of f(t). 

3. Design several signals that are insensitive to small changes in 7 and w. Explain 
your design procedure. 
Problem 10.5.7. Consider the resolution problem described in (173)~( 180). A conventional 
receiver is used. The degradation in performance is given by 
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Assume that the interfering targets all have zero Doppler relative to the desired target 
and that E,.$ = &. Then 

A, = # $ qq, 0). 
0 i=l 

Now assume that the targets are uniformly spaced 
targe t in each successive AT interval. Defining 

on th 3 T-axis such that there is a 

and letting K -+ 00 and AT --+ 0, we obtain the integral 

A, A _I..“-- s co 
No -cx, 

et,, 0) dr = N AAJp 
0 

Comment: The resoiution constant Alz was first introduced by Woodward [60]. 

Prove that 

AR = 
s 

00 IF{fN4 4: 
-co 

Notice that the signal f(t) is always normalized. 
Problem 1025.8. Extend the ideas of Problem 10.5.7 to find a Doppler resolution constant 

Prove that 

AD a - s O” e(o, f} dJ 
-al 

Problem 10.59. Compute A,, A,, and A,A, for the following: 

1. A simple Gaussian pulse (25). 
2. A rectangular pulse. 

Problem 10.5.10 f39, Chapter X]. Consider the following resolution problem. The 
received waveforms on the four hypotheses are 

r(t) = w(t), Ost<T:H,, 

r(t) = Af (0 + w(t), O<tgT:H,, 

r(t) = J&(t) + w(t), O<t<T:H,, 

r(t) = Af (0 + Bg(‘) -I- w(t), Ost<T:H,. 

The multipliers A and B are unknown nonrandom variables. The signals f(t) and g(t ) 
are known waveforms with unit energy, and 

f 
T  

f (t)g(t) dt = p- 
Jo 

The additive noise w(t) is a sample function of a white Gaussian random process with 
spectral height No/2. (Notice that the waveforms are not bandpass.) We want to derive 
a generalized likelihood ratio test (see Section I-2.5). 



Resolution 

1. Assume that H, is true. Prove that 
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2. Find A,,. 
3. Calculate 

hypotheses. 
Var 16, J, and Cov 16, 1, i, J under the four 

4. Assume that we use the test 

Calculate PJQ, PD@, PJQ, and Pnb. Verify that both pDLE and PDb decrease mono- 
tonically as p increases. 
Problem 10.5.11 f39, Chapter X]. Consider the bandpass version of the model in Problem 
10.5.10. Assume that the complex envelopes on the four hypotheses are 

Go = G(t), Of;tsT:N,, 

T(t) = Aejpaf(t) + i+(t), O~t<T:N,, 

7(t) = Bej~&~(t) + ii;(t), Ozft<T:H,, 

w = Aej~&~(t) + B&‘@+(t) -I- G(t), O<t<T:H,. 

The multipliers A and B are unknown nonrandom variables. The phases ~3~ and Q)~ are 
statistically independent, uniformly distributed random variables on (0,271). The 
complex envelopes f(t) and g(t) are known unit energy signals with 

s cQ ~(t)~*(t)~t = p,,. -a3 
The additive noise i?(t) is a sample function of a complex white Gaussian process with 
spectral height No. 

1. Find a”,, and ~~~ under the assumption that H, is true. 

2. Calculate E[&,], E&J, Var [h,,], Var [$,J, and Cov [;l,,, i,,] under the 
four hypotheses. 

3. The test in part 4 of Problem 10.5.10 is used. Calculate the performance. 
Problem 10.5.12 [39, Chapter X]. The model in Problem 10.5.11 can be extended to 
include an unknown arrival time. The complex envelope of the received waveform on 
H, is 

F(t) = Aej~~~(t - T) + Bej%g(t - T) + i?(t), 

The other hypotheses are modified accordingly. 

--CD <t < WH,. 

1. Find a receiver that generates 8,,, 6,,, and 9,,. 
2. Find the corresponding likelihood ratio test. 



10.7 Problems 

Problem 10.5.13. Consider the following model of the resolution 
envelopes of the received waveforms on the two hypotheses are 

problem. complex 

hT 
F(t) = &J(t) + 2 ~~ejQi~(t - 7i)ej%t + I; -- < t < WHl, 

i=1 
lv 

F(t) = 2 B,ejQiir(t - Ti)dmit + G(t), 
i=l 

The model is the same as that in Section 10.5.3 (page 329) except that the Bi are assumed 
to be unknown, nonrandom variables. The ~7~ are statistically independent, uniformly 
distributed random variables. The Q and oi are assumed known. 

1. Find the generalized likelihood ratio test for this model. (Hint: Review Section 
I-2.5.) 

2. Evaluate PF and PD. 
Comment: This problem is similar to that solved in [59]. 

P.lO.6 Summary and Related Topics 
Problem 10.6.1. Generalized Likelihood Ratio Tests. Consider the following composite 
hypothesis problem 

F(t) = d2E, hf(t - 7)ejmt + G(t), -- < t < wHIt 

w = G(t), -- < t < wHo. 

The multiplier 6 is a zero-mean complex Gaussian variable, 

E{lbl”} = 2q, 

and G(t) is a complex zero-mean Gaussian white noise process with spectra I height 
The quantities 7 and o are ~n~nu~n n~n~un~urn variables whose ranges are known: 

Find the generalized likelihood ratio test and draw a block diagram of the optimum 
receiver. 
Problem 10.6.2. The time-frequency cross-correlation function is defined by (221) as 

In addition, 

Assume that 

1. Prove 
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2. Does 8,,{0,0> always equal unity? Justify your answer. 
3. Is the equality 

true? Justify your answer. 
Probiem 
as 

10.6.3 [44]. As in (2213, we define the tome-frequency cross-correlation function 

Verify the following properties. 
1. 

2. 

3. 

4. 

Problem 10.6.4 [44]. Prove a, 
ss hhf ]#${r, f}ej2n[fx-rYJ dr df = &{x, Y}&{x, 

-03 

Problem 10.6.5 [44]. Prove 

ccl 
J &{T, f )ej2n(fz--ry) d7 df = &(x1 y)~~(~, y). 

--CL) 

Problem 10.6.6. Consider the following estimation problem. The comnlex envelope of 
the received signal is 

F(t) = d.g(t - 7)ejat + ii,(t) + G(t), 

The colored Gaussian noise has a spectrum 

s,p!> 
2aP, 

=- 
w2+a2’ 

--<t<m 

The complex white noise has spectral height IV& 
1. Find the optimum filter for estimating 7 and o. Express it as a set of paths con- 

sisting of a cascade of a realizable whitening filter, a matched filter, and a square-law 
envelope detector. 

2. Write an expression for the appropriate ambiguity function at the output of the 
square-law envelope detector. Denote this function as of&, cu). 

3, Denote the impulse response of the whitening filter as ~~*(~). Express the ambi~ity 
function of&, w) in terms of <pf(~, m), 0& co), and ~~~(~). (Recall Property 11 on 
page 311.) 
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Problem 10.6.7 (continuation). 
1. Derive an expression for the elements in the information matrix J [see (63)~(65)f. 

Tliese formulas give us a bound on the accuracy in estimating T and co. 
2. Is your answer a function of the actual value of T or the actual value of czl? 

Is your result intuitively logical ? 
Problem X0.6.8. Consider the special case of Problem 10.6.6 in which 

etsewhere. 

Evaluate Of&, co). 

Problem 10.6.9. generalize the results of Problem 10.6.6 so that they jncIude a colored 
noise with an arbitrary rational spectrum. 
Problem 10.6.10, Consider the model in (214a), but do not impose the constraint in 
(2146). 

1. Find the log livelihood function” 
2. Evaluate the Cramer-Rao bound. 

Problem 10.6.11. In this problem we consider the simultaneous estimation of range, 
velocity, and acceleration. 

Assume that the complex envelope of the received waveform is 

where 

The parameter T, u, and a are unknown nonrandom parameters. 

2. Compute the Cramer-Rao bound. 
See [65] or [66] for a comptete discussion of this probfem. 
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11 

Doppler-Spread Targets and Channels 

In Chapters 9 and 10 we confined our attention to slowly fluctuating 
point targets. They were characterized by a “perfect” reflection of the 
envelope of the incident signal. The returned signal differed from the 
transmitted signal in four ways: 

1. Random amplitude. 
2. Random phase angle. 
3. Doppler shift. 
4. Delay. 

The amplitude and phase were due to the reflective characteristics of the 
target and could be modeled as random variables. The Doppler shift and 
delay were due to the velocity and range of the target and were modeled 
as unknown nonrandom variables. 

In this chapter we consider point targets that cannot be modeled as 
slowly fluctuating targets. We begin our development with a qualitative 
discussion of the target model. 

A simple example is shown in Fig. 11.1. The geometry could represent 
the reflective structure of an airplane, a satellite, or a submarine. The 
direction of signal propagation is along the x-axis. The target orientation 
changes as a function of time. Three positions are shown in Fig. 11 .lu-c. 
As the orientation changes, the reflective characteristics change. 

NOW assume that we illuminate the target with a long pulse whose 
complex envelope is shown in Fig. 11.2~. A typical returned signal envelope 
is shown in Fig. 11.2b. We see that the effect of the changing orientation 
of the target is a time-varying attenuation of the envelope, which is 
usually referred to as time-selective fading. 

Notice that if we transmit a short pulse as shown in Fig. 11.2c, the 
received signal envelope is undistorted (Fig. 11.2d) and the target can be 
modeled as a slowly fluctuating target. Later we shall see that all of our 
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Fig. 11.2 Signals illustrating time-selective fading. 
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results in Chapters 9 and 10 can be viewed as limiting cases of the results 
from the more general model in this chapter. 

The energy spectrum of the long transmitted pulse is shown in Fig. 
11.3~2. Since the time-varying attenuation is an amplitude modulation, 
the spectrum of the returned signal is spread in frequency, as shown in 
Fig. 11.3b. The amount of spreading depends on the rate at which the 
target’s reflective characteristics are changing. We refer to this type of 
target as a frequency-spread or Doppler-spread target. (Notice that fre- 
quency spreading and time-selective fading are just two different ways of 
describing the same phenomenon.) 

Our simple example dealt with a radar problem. We have exactly the 
same mathematical problem when we communicate over a channel whose 
reflective characteristics change during the signaling interval. We refer 
to such channels as Doppler-spread channels, and most of our basic 
results will be applicable to both the radar/sonar and communications 
problems. 

At this point we have an intuitive understanding of how a fluctuating 
target causes Doppler spreading. In Section 11.1 we develop a mathematical 
model for a fluctuating target. In Section 11.2 we derive the optimum 
receiver to detect a Doppler-spread target and evaluate its performance. 
In Section 11.3 we study the problem of digital communication systems 

b’. 
(a) Transmitted energy spectrum 

(b) Energy spectrum of Doppler-spread return 

Fig. 11.3 Energy spectra of transmitted and returned signals. 
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operating over Doppler-spread channels. In Section 11.4 we consider the 
problem of estimating the parameters of a Doppler-spread target. Finally, 
in Section 11 S, we summarize our results. 

11.1 MODEL FOR DOPPLER-SPREAD TARGET (OR CHANNEL) 

The model for the point target with arbitrary fluctuations is a straight- 
forward generalization of the slow-fluctuation model.? Tnitially we shall 
discuss the model in the context of an active radar or sonar system. If a 
sinusoidal signal 

J 2 cos co,t = Jz Re [ej”C’] (1) 

is transmitted, the return from a target located at a point A (measured in 
units of round-trip travel time) is 

b(t) = $2 [b, (t - i) COS [w,(t - A)] + b,( t - i) sin [~,(t - A)]]. (2) 

The A/2 arises because the signal arriving at the receiver at time t left the 
transmitter at t - A and was reflected from the target at t - A/2. We 
assume that b,(t) and b,(t) are sample functions from low-pass, zero-mean, 
stationary, Gaussian random processes and that b(t) is a stationary 
bandpass process. 

Defining 

(4) 

where 6,(t) is a sample function from a complex Gaussian process. (The 
subscript D denotes Doppler.) We assume that ho(t) varies slowly com- 
pared to the carrier frequency CO,. Because d,(t) has a uniform phase at 
any time, this assumption allows us to write (4) as 

b(t) = &Re [p,(, - i)eiact]. (5) 

t This model has been used by a number of researchers (e.g., Price and Green [l] 
and Bello [2]). 
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The random process &(I) is completely characterized by its complex 
covariance function, 

E[d,(t)B&)] A &(t - 24) = &T). (6) 

From our development in the Appendix, 

Ehw6,(41 = 0 for all t and u. 

In all of our discussion we assume that &,(7) is known. In Section 11.4 
we discuss the problem of measuring the parameters of &-JT). 

Notice that if we assume 

for all 7, (8) 

we would have the slowly fluctuating model of Chapter 9 (see page 242). 
,To be consistent with that model, we assume 

Because the target reflection process is assumed to be stationary, we 
can equally well characterize it by its spectrum:? 

We refer to &{f} as the Doppler scattering function. From (A.56) we 
know that gn{f} is a real function and that the spectrum of the actual 
bandpass signal is 

Some typical spectra are shown in Fig. 11.4. We assume that the 
transmitted signal is a long pulse with a rectangular envelope. It has a 
narrow energy spectrum, as shown in Fig. 11.4~2. In Fig. 11.4b, we show 
the energy spectrum of the returned signal when the target is fluctuating 
and has a zero average velocity. In Fig. 11.4c, we show the spectrum 
corresponding to a target that has a nonzero average velocity but is not 

-i- In most of the discussion in the next three chapters it is convenient to use f  as an 
argument in the spectrum and Fourier transform. The braces { } around the argument 
imply the f notation. The J‘notation is used throughout Chapters 11-13, so that the 
reader does not need to watch the {m}. Notice that for deterministic signals, 



(a) Transmitted energy spectrum 

(b) Returned energy spectrum: Doppler-spread target with zero average velocity 

I\ I I 
-fc - mu -fc fC fC + mD ,f 

(c) Returned energy spectrum: target with nonzero average velocity and no Doppler spread 

I I 
-fc - mD -fc fc fc+mD 

, f  

(d) Returned energy spectrum: Doppler-spread target with nonzero average velocity 

Fig. 11.4 Typical energy spectra. 
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fluctuating. This is the model of Chapter 9. In Fig. 11.4d, we show the 
spectrum for a fluctuating target with a nonzero average velocity. 

We introduce two quantities to describe the gross behavior of the 
target. The first is the mean DoppIer shift, which is defined as 

-7 A 
f 

1 O” 
D- 

s 2Gb2 -4 f2sDif) df* 

Combining (12) and (13) gives a quantity that we refer to as a mean- 
square Doppler spread, 

oD 
2A2 

- f D - mD2 = b2 Imf2%{f > df - mD2* 
b --a0 

We see that mD and CD2 are identical with the mean and variance of a 
random variable. 

Our discussion up to this point has a sinusoidal transmitted signal. 
However, because we assume that the reflection process is linear and 
frequency-independent, (2) characterizes the target behavior. Therefore, 
if we assume that the transmitted waveform is a known narrow-band 
signal, 

f(t) = & Re [&&)ejWCt], -m<t<q (1% 
the returned signal in the absence of noise is 

s(t) = & Re [&& - gg(, - $eimct]. (16) 

The complex envelope is 

IIo)a~~~(l-i)b(i-~), 1 
and the actual signal can be written as 

(17) 

s(t) = & Re [JE, ,(,)eiw”t]. (18) 
The complex covariance function of the signal process is 

or 
&(t, u) = E[qt)tf*(u)], (1% 
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Now (20) completely specifies the characteristics of the received signal. 
The total received waveform is s(t) plus an additive noise. Thus, 

r(t) = & Re [i(t)e’““‘] + J% Re [6( t)eioc’], c < t 5 T’, (21) 

or 
($t) = & Re [F(t) ejwct], (22) 

where 

r”(t) = s’(t) + C(t). (23) 

The complete model is shown in Fig. 11 S. 
We assume that the additive noise is a sample function from a zero- 

mean, stationary Gaussian process that is statistically independent of the 
reflection process and has a flat spectrum of height I&,/2 over a band wide 
compared to the signals of interest. Then 

E[iqt)M;*(u)] = N, d(t - u), (24) 

and the covariance function of r”(t) is 

&(t, u) = E&t - A)&-,(t - u)f*(u - I) 

+ x) d(t - u), 
(25) 

Ti < t, u < Tf. - - 

The covariance function in (25) completely characterizes the received 
waveform that we have available for processing. 

Whenever the reflection process &(t) has a rational spectrum, we may 
also characterize it using complex state variab1es.T The state equation is 

where 
&(t) = F%(t) + G(t), t > Ti, _ (26) 

and 
E[G(t)ii(~)] = Q s(t - 7) (27) 

E[%(T,)ji;+(T,)] = i?,. (28) 

6, * 
)A Delay : X/2 z Delay: X/2 l 

w 

\ 

Fig. 11.5 Model for Doppler-spread target problem. 

t Complex state variables are discussed in Section A.3.3. 
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J 

Generation of channel process 
_--------- --m--w- .- 

Transmitter 

Fig. 11.6 State-variable model for Doppler-spread target (or channel). 

The process &#) is obtained by the relation 

5 (9 D = C%(t), t > Ti. (29 

We shall find this representation useful in many problems of interest. This 
model is shown in Fig. 11.6 for the special case in which 1 = 0. 

This completes our formulation of the model for a Doppler-spread 
target. All of our work in the text deals with this model. There are two 
simple generalizations of the model that we should mention: 

1. Let 6,(t) be a non-zero-mean process. This corresponds to a fluctuat- 
ing Rician channel. 

2. Let 6,(t) be a nonstationary complex Gaussian process. 

Both these generalizations can be included in a straightforward manner 
and are discussed in the problems. There are targets and channels that do 
not fit the Rayleigh or Rician model (recall the discussion on page 243). 
The reader should consult the references cited earlier for a discussion of 
these models. We now turn our attention to the optimum detection 
problem. 

11.2 DETECTION OF DOPPLER-SPREAD TARGETS 

In this section we consider the problem of detecting a Doppler-spread 
target. The complex envelope of the received waveform on the two 
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hypotheses is 

f(t) = ,/E,.j-(t - n)6, Ti 5 t < T,:H,, (30) 

and 

F(t) = C(t), Ti < t < Tf:Ho. - - (31) 

The signal process is a sample function from a zero-mean complex 
Gaussian process whose covariance function is 

&t, u) = E,f(t - l)&(t - u)f”*(u - A), Ti < t, u < Tf. - - (32) 

The additive noise G(t) is a sample function of a statistically independent, 
zero-mean complex white Gaussian process with spectral height NO. 
The range parameter 1 is known. 

We see that this problem is just the complex version of the Gaussian 
signal in Gaussian noise problem that we discussed in detail in Chapter 
2.t Because of this strong similarity, we state many of our results without 
proof. The four issues of interest are: 

1. The likelihood ratio test. 
2. The canonical receiver realizations to implement the likelihood 

ratio test. 
3. The performance of the optimum receiver. 
4. The classes of spectra for which complete solutions can be obtained. 

We discuss all of these issues briefly. 

11.2.1 Likelihood Ratio Test 

The likelihood ratio test can be derived by using series expansion as 
in (A. 1 M), or by starting with (2.31) and exploiting the bandpass character 
of the processes (e.g., Problems 11.2.1 and 11.2.2, respectively). The 
result is 

1 
1 HI 

-- - 
No ss 

r”*(t)h(t, u)qu) dt du i y, 
Ho 

Ti 

t As we pointed out in Chapter 2, the problem of detecting Gaussian signals in 
Gaussian noise has been studied extensively. References that deal with problems 
similar to that of current interest include Price [8]-[lo], Kailath [ll], [12], Turin [13], 
[ 141, and Bello [15]. The fundamental Gaussian signal detection problem is discussed 
by Middleton [ 16]-[ 181. Book references include Helstrom [19, Chapter 111 and 
Middleton [20, Part 41. 
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where h(t, U) satisfies the integral equation 

No&, u) + s Tf rc, 

h(t, z)&, u) dx = &t, u), 
Ti 

Ti < t, u < Tf - - (34) 

and 

&(t, u) = E,f(t - n)M - u)!T*(u - a, Ti < t, u < Tf. _ _ (3% 

The threshold y is determined by the costs and a-priori probabilities in a 
Bayes test and by the desired P, in a Neyman-Pearson test. In the next 
section we discuss various receiver realizations to generate 1. 

11.2.2 Canonical Receiver Realizations 

The four realizations of interest were developed for real processes in 
Chapter 2 (see pages 15-32). The extension to the complex case is straight- 
forward. We indicate the resulting structures for reference. 

Estimator-cowelator Receiuer. Realization No. 1 is shown in complex 
notation in Fig. 11.7~. The filter h(t, U) is the optimum unrealizable 
filter for estimating s’(t) and satisfies (34). The actual bandpass realization 
is shown in Fig. 11.7b. Notice that the integrator eliminates the high- 
frequency component of the multiplier output. 

Filter-~4ua~ev-integrator (F5’Z) Receiver. To obtain this realization, we 
factor h(t, U) as 

Then 
s Tr 

g’*(z, t)g’(x, u) dx = fi(t, u), Ti < t, u < Tf. - 
Ti 

1 Tr 

s Is 

Tf 2 

1 -- - dx 
No Ti 

f(x, t)?(t) dt l 

Ti 

(36) 

(37) 

The complex operations are indicated in Fig. 11.8a, and the actual 
receiver is shown in Fig. 11.8b. 

Optimum Realizable Filter Receiver. For this realization, we rewrite the 
LRT as 

WI 
1 = + sTTf{2 Re [r"*(t)&(t)] - &(t>l”} dt >< y, (38) 

0 i HO 



Conjugate 

, 
;-“cu 

’ 64 4 . 
%A t) 

(a) Complex operations 

Bandpass 
* filter 

h(t, U) = Re [2x@, u) eiwcct-‘~] 

(b) Actual operations 

Fig. 11.7 Estimator-correlator receiver (Canonical Realization No. 1). 

w 
az, 

w 
41 . 2 ,I 

,1 ‘f Hl 
I- 0 . dt 

1 

1 
’ 7; 4 y 

b HO 

(a) Complex operations 

. 

r(t) Hl 

* Rk t) ’ 
Square-law T f  z 

) envelope detector 4 
dt 

* 1; w 
HO 

g(z, t) = 2Reig(z, t)ej”@ - t J ] 

(b) Actual operations 

Fig. 11.8 Filter-squarer-integrator receiver (Canonical Realization No. 3). 
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where S:(t) is the realizable MMSE estimate of i(t) when HI is true (e.g., 
Problem 11.2.3). It is obtained by passing F(t) through a filter h,,(t) u), 
whose impulse response is specified by 

N,R,,( t, 24) + 
s 

t 
A,,( t, z)..&(z, Zf) dx = R&t, Zf), Ti < u < t (39) 

and 
Ti 

s 
t 5,(t) a i;,,(t) u)?(u) du. 

Ti 
(40) 

The complex receiver is shown in Fig. 11.9. 

State- Variable Realizatkmt When 6,(t) has a finite-dimensional 
complex state representation, it is usually more convenient to obtain 
$(t) through the use of state-variable techniques. Recall that we are 
considering a point target and 1 is assumed known. Therefore, for algebraic 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 

simplicity, we can let 1 = 0 with no loss of generality. 
If we denote the state vector of 6D(t) as Z(t), then 

6 0) n = C%(t) 

and 
s(t) = f(t)&(t) A C,(t)qt). 

The state vector Z(t) satisfies the differential equation 

where 
i(t) = i?(t)Z(r) + G(t)ii(r), t > Ti, 

and 
E[ii(t)i?*(a)] = & d(t - 0) 

E[Z(Ti)] = 0, 

(see page 590). 

E[Z(Ti)gt(Ti)] = PO 

I I 

Fig. 11.9 Optimum receiver: optimum realizable filter realization (Canonical Realization 
No. 4). 

j- This section assumes familiarity with Section A.3.3. 
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The opti 
equations 

mum estimate is specified as a solution of the differential 

- C,(t)i(t)], t > Ti (474 i(t) = F(t)?(t) + &3(t)c,t(t) ; [F(t) 
0 

&t) = j@&(l) = C&t). W) 
The variance equation is 

and 
&(t, i(t), No) 2 E[lj(t) - ir(f)12] = Cs(t)&t)Csqt). we) 

Notice that the covariance matrix &(l) is a Hermitian matrix. Substituting 
(42) into (48a) gives 

. 
[,(r) = F( t)&>( t> + &a( t)F’(t) - &a( t>i5+ Ir’<t>l’ [ 1 N, C&t) + c(t)&+(t), 

t > T. (49) 

We see that the mean-square error is only affected by the enveZope of the 
transmitted signal. When we discuss performance we shall find that it can 
be expressed in terms of the mean-square error. Thus, performance is not 
affected by phase-modulating the signal. If the target has a mean Doppler 
shift, this is mathematically equivalent to a phase modulation of the 
signal. Thus, a mean Doppler shift does not affect the performance. 

It is important to observe that, even though the reflection process is 
stationary, the returned signal process will be nonstationary unless_fl(t) is 
a real pulse with constant height. This nonstationarity makes the state- 
variable realization quite important, because we can actually find the 
necessary functions to implement the optimum receiver. 

This completes our initial discussion of receiver configurations. We 
now consider the performance of the receiver. 

11.2.3 Performance of the Optimum Receiver 

To evaluate the performance, we follow the same procedure as in 
Chapter 2 (pages 32-42). The key function is p(s). First assume that 
there are K complex observables, which we denote by the vector Z. Then 
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Using (A. 116) and (A. 117), we have 

where Ai is the eigenvalue 

P+f&~ 

of the signal process i(t), and 

(52) 

Substituting (51) and (52) into (50), evaluating the integral (or comparing 
with 2. I3 I), and letting K --+ 00, we obtain 

F(S) =iz[(l - s)ln (1 + k) - ln (1-Y (~--L$J (53) 

O<s<l. - - 

Notice that p(s) is a real function and is identical with (2.134), except for 
factors of 2. This can be expressed in a closed form in several ways. As in 
(2.138), it is the integral of two mean-square realizable filtering errors. 

It can also be expressed by a formula like that in (2.195) if the signal process 
has a finite-dimensional state equation. For complex state-variable proces- 
ses the appropriate formulas are 

In D&z) = 5 In (1 + z&) = In det ?,<r,) + Re 
s 

T’Tr [F(t)3 dt, (.55) 
i=l Ti 

where ?z(t) is specified by 

; zc(t)@(t) &t) 
: ____________------_--- , I[ I . - - - - - - - _ 

&t)C(t) i -lqt) 2 “r (9 
W 

with initial conditions 

Notice that B,(z) is a real function. 
To evaluate the performance, we use (53) in (2.166) and (2.174) to 

obtain 
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As a final topic we discuss the classes of returned signal processes for 
which complete solutions for the optimum receiver and its performance 
can be obtained. 

11.2.4 Classes of Processes 

There are four cases in which complete results can be obtained. 

Case 1. Reflection Process with Finite State Representation. In this case 
&t) can be described by differential equations, as in (41)-(46). Because we 
have limited ourselves to stationary processes, this is equivalent to the 
requirement that the spectrum &(f} be rational. In this case, (38) and 
(47)-(49) apply directly, and the receiver can be realized with a feedback 
structure. The performance follows easily by using (54) in (59) and (60). 

Case 2. Stationary Signal Process: Long Observation Time. This case is 
the bandpass analog of the problem discussed in Section 4.1. Physically 
it could arise in several ways. Two of particular interest are the following: 

1. The complex envelope of the 
pulse whose length is apprecia blY 

transmitted signal is a real recta 
longer than the correlation time 

ngular 
of the 

reflection process. 
2. In the passive detection problem the signal is generated by the target, 

and if this process is stationary, the received envelope is a stationary 
process. 

For this case, we can use asymptotic formulas and 
expression .s. We solve (34) using transforms. The res 

obtain much simpler 
ult is 

A common realization in this case is the filter-squarer realization [see 
(36) and (37)]. We can find a solution to (36) that is a realizable filter: 

afl 
&if 1 + - - 

[ Sg{f} + N, 1 ’ (62) 

Recall that the superscript “+” denotes the term containing the left- 
half-plane poles and zeros. 
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Case 3. Separable Kernels. In this case, the reflection process has a 
finite number of eigenvalues (say K). Looking at (20), we see that this 
means that the received signal process must also have K eigenvalues. In 
this case the problem is mathematically identical with a reflection from K 
slowly fluctuating targets. 

Case 4. Low-Energy-Coherence Case. In this case, the largest eigenvalue 
is much smaller than the white noise level. Then, as on pages 13 l-137, 
we can obtain a series solution to the integral equation specifying &t, u>. 
By an identical argument, the likelihood ratio test becomes 

Using (35), 

(634 

1 1 = sj-jb*(t)f(t - 1)&t - u)f*(u - ;l)F(u)dtdu. 

I Ti 

We can write RD(t - u) in a factored form as 

s Tf &(t - u) = g*(z, t)k(z, u) dx, 
Ti 

Ti < t, 11 < Tf. - - (644 

Using (64a) in (63b) gives 

w 

W) 

This realization is shown in Fig. 11 .lO. (The reader should verify that 
the receiver in Fig. 1 l.lOb generates the desired output. The bandpass 
filter at WA is assumed to be ideal.) 

For an arbitrary time interval, the factoring indicated in (64a) may be 
difficult to carry out. However, in many cases of interest the time interval 
is large and we can obtain an approximate solution to (64a) by using 
Fourier transforms. 

In this case we obtain the receiver structure shown in Fig. 11 .ll. Notice 
that we do not require f(t) to be a constant, and so the result is more 
general than the SPLOT condition in Case 2. 
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)&,t)r )1*1*- 
Et 
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dz 1 

HI 
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Ho 

(a) Complex operations 

Bandpass 
fi,ter at we > Re [2z(z, t) @‘A(~-~)] 

Filter 

square-law Et T f  Hl 
* envelope * 2 

detector S NO Tl 
dz. ’ >& 

HO 

(b) Actual implementation 

Fig. 11.10 Optimum LEC receiver. 

The performance in the LEC case is obtained. from (53). Expanding the 
logarithm in a series and neglecting the higher-order terms, we have 

s(1 - s) (X M 

liiw = - 2N 02 c (4) 
2 

i=l 
co s(1 - s) - --- 

2N,’ 
I&t, ujl’ dt du. (65) 

-a3 
Using (20) in (65) gives 

CL 
P(S) - -- lf(t - aj1” IiQt - u)12 lf(w - aj1” dt dtr, (664 

which may also be written as 

Thus the performance can be obtained by performing a double integration. 
We use p(s) in (59) and (60) to find ,PF and Pnl. 

,I I . 2, Et I, 
2-z s lfdt, 1 > 

NO Ti 

HI 
27 

HO 

Fig. 11.11 Optimum LEC receiver: long observation time. 
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11.2.5 Summary 

In this section we have discussed the detection of Doppler-spread 
targets. The four important issues were the derivation of the likelihood 
ratio test, canonical realizations of the optimum receiver, performance 
of the optimum receiver, and the classes of spectra that permit complete 
solutions. All the results are the complex versions of the results in Chapters 
2-4. 

Throughout our discussion we have tried to emphasize the similarities 
between the current problem and our earlier work. The reader should 
realize that these similarities arise because we have introduced complex 
notation. It is difficult to solve the bandpass problem without complex 
notation unless the quadrature components of the signal process are 
statistically independent (recall Problem 3.4.9). Using (20) in (A.67), 
we see that 

Tm [E#, 24)] = Im [fl(&(t - @*($I = 0 . (67) 

must be satisfied in order for the quadrature components to be statistically 
independent. The restriction in (67) would severely limit the class of 
targets and signals that we could study [e.g., a linear FM signal would 
violate (67)]. 

A second observation is that we are almost always dealing with non- 
stationary signal processes in the current problem. This means that the 
complex state-variable approach will prove most effective in many 
problems. 

The problem that we have studied is a simple binary problem. All of the 
results can be extended to the bandpass version of the general binary 
problem of Chapter 3. Some of these extensions are carried out in the 
problems at the end of this chapter. 

We next consider the problem of digital com_rl?unication over Doppler- 
spread channels. This application illustrates the use of the formulas in 
this section in the context of an important problem. 

11.3 COMMUNICATION OVER DOPPLER-SPREAD CHANNELS 

In this section we consider the problem of digital communication over a 
Doppler-spread channel. 1 In the first three subsections, we consider binary 
systems. In Section 11.3.1 we derive the optimum receiver for a binary 
system and evaluate its performance. In Section 11.3.2 we derive a bound 
on the performance of any binary system, and in Section 11.3.3 we study 
suboptimum receivers. In Section 11.3.4 we consider M-ary systems, and 
in Section 11.3.5 we summarize our results. 
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11.3.1 Binary Communications Systems: Optimum Receiver and 
Performance 

We consider a binary system in which the transmitted signals on the 
two hypotheses are 

&, Re [.r( t)ejwot] : Ho 

J%, Re [f( t)ej”“] : HI. 
(68) 

We assume that o1 - CC)~ is large enough so that the output signal proces- 
ses on the two hypotheses are in disjoint frequency bands. The received 
waveforms are 

r(t) = 
&&Re [&t)f’(t)ei”o”] + w(t), Ti < t < T,:H,, - _ 

d%, Re [6(t)f(t)ei”1t] + w(t), 
(69 

Ti < t < T’.:H,. - _ 

The hypotheses are equally likely, and the criterion is minimum proba- 
bility of error. The optimum receiver consists of two parallel 
centered at CI)~ and coo. The first branch computes 

branches 

Tf 

1 
1 

1=- 
NO ss 

r‘*(t)& t, t@(u) dt du, (70) 

Ti 

where the complex envelopes are referenced to ml. The second branch 
computes 

Tr 

1 
1 

0=- 
NO 

Y”*(t)h(t, u)?(u) dt du, 

where the complex envelopes are referenced to CC)~. In both cases h(t, U) 
is specified by 

NJ@, 10 + s Tfw 
lz(t, z)&(z, u) dx = i?&t, u), Ti < t, u < Tf _ _ (72) 

Ti 
where 

&(t, u) = E&t - A)&(t - u)f*(u - A), Ti < t, u < Tf. - - (73) 

The receiver performs the test 

11 z1 lo. (74) 
11, 

The receiver configuration is shown in Fig. 11.12. Notice that each 
branch is just the simple binary receiver of Fig. 11.7. This simple structure 
arises because the signal processes on the two hypotheses are in disjoint 

bands. 
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h(t, u) = Re [2z(t, u)&(~‘~)] 

1 T f  
=-7q Tdt s 

l 

i ZO 

h(t, U) = Re [2?E’(t, u)&o(~-~~)] 

Fig. 11.12 Optimum receiver: binary FSK system operating over a Doppler-spread 
channel (Canonical Realization No. 1). 

An alternative configuration is obtained by factoring @t, IX) as indicated 
in (36). This configuration is shown in Fig. 11.13. 

Because this is a binary symmetric bandpass problem,S; we may use 
the bounds on the probability of error that we derived in (3.111). 

@BS%) #BS(‘%) 

< 
s Pr @) s 211 + ((&)j&))I/f;] - 

ePBS(l%) 

2 ’ 
(7% 

where 
Pus(s) = Psrlm + liisrdl - 4 

==$[ln (I + k) - ln (I + :) - ln (1 +(y)] (‘76) 

and 

The Ii are the eigenvalues of the output signal process S(t), whose co- 
variance is given by (73). We can also write ,i&&) in various closed-form 
expressions such as (54) and (55). 

t Notice that “binary symmetric” refers to the hypotheses. The processes are not 
necessarily symmetric about their respective carriers. 
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gl(z, t) = 2 Re [&, t),~“l(z’t~] . 

. \ 

b g1WI ' 
1 T f  

r Square-law - 
envelope detector ’ s NO Ti 

dt 
4 

. 

n I 
I  

’ go(z, t) 
* Square-law 

envelope detector 
t 

Fig. 11.13 Optimum receiver for binary communication over a Doppler-spread channel: 

filter squarer-integrator realization. 

There are three questions of interest with respect to the binary commun- 
ication problem : 

1. What is the performance of the optimum system when the signal 
&f(l), the channel covariance function RD(7), and the noise level N,, 
are fixed? 

2. If we use a suboptimum receiver, how does its performance compare 
with that of the optimum receiver for a particular&), E,, &(T), and NO? 

3. If the channel covariance function j&(7), the noise level NO, and the 
transmitted energy E, are fixed, how can we choose&) to minimize the 
probability of error? 

We can answer the first question for a large class of problems by 
evaluating ,&&) and using (75). Specific solution techniques were dis- 
cussed on pages 35-44. We can answer the second question by using the 
techniques of Section 5.1.2. We shall discuss this question in Section 11.3.3. 
We now consider the third question. 

11.3.2 Performance Bounds for Optimized Binary Systems 

We assume that the channel covariance function i&&r), the noise level 
NO, and the transmitted energy E, are fixed. We would like to choose&t) 
to minimize the probability of error. In practice it is much simpler to 
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minimize ,&&). This minimizes the exponent in the bound in (75). 
Our procedure consists of two steps: 

1. We consider the covariance function of the output signal process 
&t, U) and its associated eigenvalues xi. We find the set of & that will 
minimize ,L&&). In this step we do not consider whether a transmitted 
signal exists that would generate the optimum set of xi through the relation 
in (73). The result of this step is a bound on the performance of any 
binary system. 

2. We discuss how to choose f(l) to obtain performance that is close to 
the bound derived in the first step. 

We first observe that a constraint on the input energy implies a constraint 
on the expected value of the output energy. From (73), the expected value 
of the total received signal energy is 

E[li(t)l”] = s Tf Y 

K&t, t) dt = 2E,ob2 = E,. (784 
Ti 

(Recall that 

s 

Tf 

If(t)l” dt = 1.) VW 
Ti 

Notice that this constraint is independent of the signal shape. In terms of 
eigenvalues of the output process, the constraint is 

(79) 

We now choose the xi, subject to the constraint in (79), to minimize 
,C&). Notice that it is not clear that we can find an f(t) that can 
generate a particular set of Xi. 

We first define normalized eigenvalues, 

We rewrite (77) asy 

where 
2 
- 

[ 
-&ln(l + 

YX 
and 

t This derivation is due to Kennedy [3]. 
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We refer to the term in braces in (81) as the eficiency factor. (Recall the 
discussion on page 118.) The function f(x) is plotted in Fig. 11.14. We see 
that g(2) is a positive function whose unique maximum occurs at x = 2, 
which is the solution to 

y%/4 -1 
(1 + $)(l + $/2) - 2 [ 

-*In (1 + yg) + In 1 + 
( 31 

. (84) 

The solution is yZ = 3.07. For all positive y, 

3.07 g=-----. (89 
Y 

We can use the result in (84) and (85) to bound ,Z&). From (81), 

Using (79) and (80), (86) reduces to 

(87) 

Thus we have a bound on how negative we can make ,&&). We can 
achieve this bound exactly by letting 

- i 

3 07 
a 

$=--, - i = 1,2,. . . , D,, 
in - Y 

where 

ww= 

This result says that we should choose the first D, normalized eigenvalues 
to be equal to 3.07/y and choose the others to be zero. Using (88) in (82) 
and the result in (87) gives 

j&(+) 2 -0.1488 (90) 

Substituting (90) into (75) gives an upper bound of the probability of 
error as 

Pr (E) < 9 exp 
E 

-0.1488 T 
NO 

(91) 

t This result assumes that &./No is a integer multiplier of 3.07. If  this is not true, (86) 
is still a bound and the actual performance is slightly worse. 
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Fig. 11.14 Plot of g(x) versus yx (from[3]). 

We have encountered this type of result in some of earlier examples. 
In Section 4.2.3, we studied a frequency diversity system in which the 
received energies in all channels were required to be equal. We found that 
we could minimize ,u BS,BP,sK(+) 
among the channels so that 

by dividing the available energy 

&I - = 3.07 
No 

(92) 

(see 4.116). In that case we achieved the optimum performance by an 
explicit diversity system. 

In the present case there is only one channel. In order to achieve the 
optimum performance, we must transmit a signal so that the covariance 
function 

has D, equal eigenvalues. We can think of this as an implicit diversity 
system. 

The result in (91) is quite important, because it gives us a performance 
bound that is independent of the shape of the Doppler scattering functions. 
It provides a standard against which we can compare any particular 
signaling scheme. Once again we should emphasize that there is no 
guarantee that we can achieve this bound for all channel-scattering 
functions. 

The next step in our development is to consider some specific Doppler 
scattering functions and see whether we can design a signal that achieves 
the bound in (90) with equality. We first review two examples that we 
studied in Section 4.1.2. 
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Example 1. This example is identical with Example 4 on page 116. The channel-scattering 
function is 

&{f} = Ifl 9% 
(94) 

Ifl >B* 
The transmitted signal is 

elsewhere. 
(95) 

We assume that BT is large enough that we may use the SPLOT formulas. We constrain 
ET and choose T to minimize ; Bs,&). From (4.76), the optimum value is T,, which 
is specified by 

GIN, - = 3.07. 
ZBT, (96) 

Then 

and we achieve the bound with equality. The result in (96) assumes the SPLOT condition 
If we require 

ST0 2 5 (98) 

to assure the validity of the SPLOT assumption, the result in (96) requires that 

ET jif- 2 30.7. 
0 

(99) 

When (99) is satisfied, the optimum binary system for a channel whose scattering 
function is given by (94) is one that transmits a rectangular pulse of duration T,. 
[Notice that the condition in (99) is conservative.] 

Example 2. This example is identical with Example 3 on page 111. The channel-scattering - 
function is 

${f} = 4kob2 
(2rf)2 + k2’ (100) 

and the transmitted signal is given in (95). Previously, we used the SPLOT assumption to 
evaluate p&s). In this example we use complex state variables. The channel state 
equations are 

&t) = -k, 

at) = C(t) = 1, 

r2; = 4kob2, 

wu 

(102) 
(103) 

N 

PO = za,‘. (W 

We evaluate ~ss(&) by using (48a), (48b), (54), and (76) and then minimize over T. 
The result is shown in Fig. 11.15. We see that if &./IV0 is small, we can transmit a very 
short pulse such that 

kr.3 = 0. (109 
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Fig. 11.15 Optimum error exponent and kT, product as a function of&./N, (first-order 
fading, rectangular pulse (from [4]). 

A short pulse causes a single eigenvalue at the channel output, because the channel 
does not fluctuate during the signaling interval. (This is the model in Chapter 9.) When 

ET - = 3.07, 
NO 

(106) 

the condition in (89) is satisfied and the bound in (90) is achieved. As long as 

a single eigenvalue is still optimum, but the system only achieves the bound in (90) when 
(106) is satisfied. As the available &./No increases, the optimum kT product increases. 
For 

ET y- > 13, (108) 
0 

the results coincide with the SPLOT results of Example 3 on page 111: 

WNO kT,=-- 
3.44 

(109) 

and 
E 

,&&) = -0.118 -?I . 
NO 

(110) 

The result in (110) indicates that a rectangular pulse cannot generate the equal eigen- 
value distribution required to satisfy the bound. 

In the next example we consider a more complicated signal in an effort 
to reach the bound in (90) for a channel whose scattering function is 
given in (100). 
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Example 3. The channel-scattering function is given in (100). To motivate our signal 
choice, we recall that a short pulse generates a single eigenvalue. By transmitting a 
sequence of pulses whose time separation is much greater than the channel correlation 
time, we can obtain the desired number of equal eigenvalues at the output. 

The signal of interest is shown in Fig. 11.16. It consists of a train of rectangular pulses 
with width T, and interpulse spacing Tp. The number of pulses is 

r&D 0 

The height of each pulse is chosen so that 

E,i = 3.07&, 

We can write 
DO 

&IN, 
=3,07- (111) 

the average received energy per pulse is 

i = 1,2, . . . , Do. (112) 

where 

f(t) = 2 c G(t - iT,), 
i=l 

(113a) 

1 
-9 

l/T 
O<t<T, 

i(t) = S (1136) 

0, elsewhere, 

and c normalizesf(t) to have unit energy. The covariance function of the output signal 
process is 

Do Do 
&(t, r) = 2 2 cZii(t - iTP,xD(t - $“(r - kT,). (114) 

We can evaluate 
interest is obtained 

and 

! 

i=l k=l 

the performance for any particular T, and TP. The case of current 
by letting 

T, ---, 0 (115 1 

T*+ol). (116) 

In this limit the covariance function becomes the separable function 

&(t, 7) = 2 c2&(o)ii(t - iT&?(T - kT,). (117) 
i=l 

Fig. 11.16 Transmitted signal in Example 3. 
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We now have D, equal eigenvalues whose magnitudes satisfy (88). Therefore the 
performance satisfies the upper bound in (90). 

The limiting case is not practical, but we can frequently obtain a good approximation 
to it. We need to make T, appreciably shorter than the correlation time of b”,(t). This 
will make the amplitude of each returned pulse approximately constant. We need to 

make Tp appreciably longer than the correlation time of b&t), so that the amplitude 
of different pulses will be statistically independent. The result approximates an optimum- 
diversity system. Notice that the optimum receiver reduces to two branches 
in Fig. 4.16 in the limiting ca se. There are no integral equations to solve. 

There mav be constraints that it impossible to use this solution: 

like that 

1. I f  there is a peak power limitation, we may not be able to get enough energy in 
each pulse. 

2. I f  there is a bandwidth limitation, we may not be able to make T, short enough to 
get a constant amplitude on each received pulse. 

3. I f  there is a time restriction on the signaling interval, we may not be able to make 
Tp long enough to get statistically independent amplitudes. 

These issues are investigated in Problems 11.3.6 and 11.3.7. If  any of the above con- 
straints makes it impossible to achieve the bound with this type of signal, we can return 
to the signal design problem and try a different strategy. 

Before leaving this example, we should point out that a digital system using the signal 
in Fig. 11.16 would probably work in a time-division multiplex mode (see Section 
II-91 1) and interleave signals from other message sources in the space between pulses. 

We should also observe that the result does not depend on the detailed shape of 
so-m 

In this section we have studied the problem of digital communication 
over a channel that exhibits time-selective fading by using binary ortho- 
gonal signals. The basic receiver derivation and performance analysis were 
straightforward extensions of t .he results in Section 11.2. 

The first important resul t of the sectio n was the bound in (90). For any 
scattering function, 

In order to achieve this bound, the transmitted signal must generate a 
certain number of equal eigenvalues in the output signal process. 

The second result of interest was the demonstration that we could 
essentially achieve the bound for various channel-scattering functions by 
the use of simple signals. 

There are two topics remaining to complete our digital communication 
discussion. In Section 11.3.3, we study the design of suboptimum receivers. 
In Section 11.3.4, we discuss Wary communication briefly. 

11.3.3 Suboptimum Receivers 

For a large number of physical situations we can find the optimum 
receiver and evaluate its performance. Frequently, the optimum receiver is 
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complicated to implement, and we wish to study suboptimum receiver 
designs. In this section we develop two logical suboptimum receiver 
configurations and analyze their performance. 

To obtain the first configuration, we consider a typical sample function 
of &t) as shown in Fig. 11.17~2. For discussion purposes we assume 
that 6,(t) is bandlimited to &B/2 cps. We could approximate 8,(t) by the 
piecewise constant function shown in Fig. 11.17b. In this approximation 
we have used segments equal to the reciprocal of the bandwidth. A more 
general approximation is shown in Fig. 11.17~. Here we have left the 

0 
*t 

T 

(4 

Fig. 11.17 Channel process and approximations. 
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length of the subintervals as a parameter. We would expect T, to be less 
than the reciprocal of the fading bandwidth in order for the approximation 
to be valid. 

In order to design the first suboptimum receiver, we assume that the 
function in Fig. 11.17~ is exact and that the values in each subinterval are 
statistically independent. Notice that the two assumptions are somewhat 
contradictory. As T, decreases, the approximation is more exact, but the 
values are more statistically dependent. As TS increases, the opposite 
behavior occurs. The fact that the assumptions are not valid is the reason 
why the resulting receiver is suboptimum. 

We write 

6,,(t) = $ h&t - m, (119) 
i=l 

where C(t) is the unit pulse defined in (113b). Using (119) in (20) gives 

A’ 2ob2E, - 
E&t, u) = 2 --f(r)n(t - i~*)p*(u)ii*(u - iT,). (120) 

i=l 

The covariance function in (120) is separable, and so the receiver structure 
is quite simple. 

The branch of the resulting receiver that generates I, is shown in Fig. 
11.18. A similar branch generates ZJ The different weightings arise because 

s iT* 

Ei = (121) ( . 
2- 

is usually a function of i, so that the eigenvalues are unequal. From 
Problem 11.2.1, 

g 
2cb2Ei 

i= 
2Gb2Ei + No ’ 

(122) 

The receiver in Fig. 11.18 is easy to understand but is more complicated 
than necessary. Each path is gating out a Ts segment of r”(t) and operating 
on it. Thus we need only one path if we include a gating operation. This 
version is shown in Fig. 11.19. A particularly simple version of the receiver 
arises when&) is constant over the entire interval. Then the weightings are 
unnecessary and we have the configuration in Fig. 11.20. We have replaced 
the correlation 
cha .ngeabili ty . 

operati on with a matched filter to emphasize the inter- 

‘f In Figs. 11.18 to 11.22, we use complex notation to show one branch of various 
receivers. The complex envelopes in the indicated branch are referenced to q so that 
the output is I,. As discussed at the beginning of Section 11.3.1, we compute I, by using 
the same complex operations referenced to cog. 
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dt 
(N- UT, 

Fig. 11.18 Suboptimum receiver No. 1 (one branch). 

Fig. 11.19 Alternative version of suboptimum receiver No. 1 (one branch). 
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Sample at Sample at 

1 1 t = iT, and t = iT, and 
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> > 

Fig. 11.20 Fig. 11.20 Suboptimum receiver No. 1 for constant?(t) (one branch). Suboptimum receiver No. 1 for constant?(t) (one branch). 

388 
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This completes our development of our first suboptimum receiver 
structure. We refer to it as a GFSS (gate-filter-square-sum) receiver. 
Before analyzing its performance, we develop a second suboptimum 
receiver configuration. 

In our development of the second suboptimum receiver, we restrict our 
attention to channel processes with finite-dimensional state representations. 
The second suboptimum receiver configuration is suggested by the 
optimum receiver that we obtain when both the LEC condition and the 
long observation time assumption are valid. This receiver is shown in 
Fig. 11.21. (This is the receiver of Fig. 11.11 redrawn in state-variable 
notation with 3L = 0.) Notice that the state-variable portion corresponds 
exactly to the system used to generate b&). 

We retain the basic structure in Fig. 11.21. To obtain more design 
flexibility, we do not require the filter matrices to be capable of generating 
B,(t), but we do require them to be time-invariant. The resulting receiver 
is shown in Fig. 11.22. (This type of receiver was suggested in [4].) The 
receiver equations are 

a,(t) = Q,(t) + e,f*(qr”(t), (123) 

I,(0 = l@,<t>12, (124) 

m,m~r+ml = s,, (125) 
and 

ii, = 0. (126) 

This specifies the structure of the second suboptimum receiver [we refer 
to it as an FSI (filter-squarer-integrator) receiver]. We must specify 
f;;, 6,., C,., and pr to maximize its performance. 

r ----------em- --d-d 1 

I 

I 
& 4 

I 
I I 
I I 
L ----------- -- --m-v -I 

State-variable realization of [& if)]+ 

Fig. 11.21 Optimum LEC receiver: long observation time (one branch). 
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r ----------w--e--- 
1 

l- - - - - - - m - - - - m - - - -  - I  

Fig. 11.22 Suboptimum receiver No. 2 (one branch). 

We now proceed as follows. 

1. We derive a bound on the performance of the suboptimum receivers. 
This is a straightforward extension of the bound in Section 5.1.2 to include 
complex processes. This bound is valid for both receiver configurations. 

2. We develop expressions for the quantities in the bound for the two 
receivers. 

3. We optimize each receiver and compare its performance with that of 
the optimum receiver. 

All the steps are straightforward, but complicated. Many readers will 
prefer to look at the results in Figs. 11.24 and 11.25 and the accompanying 
conclusions. 

Performance Bounds for Suboptimum Receivers. Because we have a 
binary symmetric system with orthogonal signals, we need to modify the 
results of Problem 5.1.16. (These bounds were originally derived in [5].) 
The result is 

where 
pr (6) < i@BS(‘), 

(127) 

and 
ji,,(s) A In E[eSI1 1 H,], (129) 

,&(s) A In E[eszO 1 HI]. (130) 

The next step is to evaluate ,i&(s) for the two receivers. , 
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Evaluation of j&(s) for Suboptimum Receiver No. 1. In this case, I, and 1, are finite 
quadratic forms and the evaluation is straightforward (see Problem 11.3.9; the original 
result was given in [4]). 

f&(s) = --In det (I - &[& + &,I) (131) 
and 

p&) = --In det (I - &&), 

Sl 
- 

82 0 

g3 

0 l 

I CW- 

11, = No 

0 . 

(132) 

(133) 

(134) 

13(t) I 2&(t - u) 13(a) I2 dt du. (135) 
J (i-1)T8 J (i-l)T, 

Notice that we include the statistical dependence between the various subintervals in 
the performance analysis. Using (13 l)-(135) in (127) gives the performance bound for 
any particuIar system. 

Evaluation of PBS(S) for Suboptimum Receiver 
p11w and p(&) as Fredholm determinants, 

Here the 
the input 

No. 2. In this case, we can write 

Fll(s) = -2 In (1 - &J 
i=1 

= &J--s), s < 0. (136) 

ll,i are the ordered eigenvalues 
to the squarer in the ith branch. 

of jjl(t) when 
Similarly, 

Hl is true. Notice that &(t) is 

fiol(s) = -s In (1 + s&~,~) 
i=l 

= &Fol(s), 
1 

- r < s 5 0, 
01,i 

(137) 
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where the A,,ti are the ordered eigenvalues of f&-,(t) when HI is true. We now illustrate 

how to evaluate 0s Js) using state-variable techniques. 

Evaluation ofDsI1( -s). To do this we must write &(t)given HI as the output of a linear 
dynamic sytesm excited by a white noise process. We assume the relations 

k,(t) = F,(t)&(t) + ~&L(t), t 2 Ti, (138) 

%IU) = ~&)~,W, (139) 

E[iQt)u,+(,)1 = 6,, (140) 

E[~,(Ti)~,+(Ti)l = PC- (141) 

We must specify F,(r), G,(t), o,, &(t>, and 6,. 
On H,, &(t) is generated as shown in Fig. 11.23. We must express this system in the 

form of (127)-(130). We do this by adjoining the state vectors Z(t) and Sk,(t) to obtain 

Z,(t) = (142) 

The resulting system matrices are 

5 F,(t) = 
j 0 

-_________________.; ___---. f*ct>ii& ’ 1 j 6, ’ 

e,(t) = q 0 [ 1 - - - - - , - - - - - - . 
0 j g, ' 

Cc(t) = [O 1 c,l, 

(143) 

(144) 

(145) 

) (146) 

and 

P, = F; 0 [I - - - - - _ I - - - - - - - / 5, . 
0 

(147) 

Once we have represented &(t) in this manner, we know that 

where 

6+&-s) = In det f;,(r,> + Re 
s 

Tf 
Tr &WI & 

Ti 

WO 

(149) 
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(see pages 42-44). 
T,(T,) = I (151) 

The results in (143)-(151) completely specify the first Fredholm determinant. We can 
carry out the actual evaluation numerically. The second Fredholm determinant can be 
calculated in a similar manner. Thus, we have formulated the problem so that we can 
investigate any set of filter matrices. 

Example [4]. We consider a first-order Butterworth fading 
signal with a constant envelope. The scattering function is 

3;,(f) = 4k*b2 
(277-f j2 + k2 

spectrum and a transmitted 

(152) 

(153) 

The average received energy in the signal component is 

E, = 2ab2EI. (154) 

To evaluate the performance of Receiver No. 1, we calculate &&) by using (128) and 
(131)-(135). We then minimize over s to obtain the tightest bound in (127). Finally we 
minimize over T,, the subinterval length, to obtain the best suboptimum receiver. The 
result is a function 

which is a measure of performance for Receiver No. 
In Recei ver No. 2 we use a first-order filter. Thus, 

1 , 
1. 

(155) 

ij(t) = -k,W) + r*(t)@). (156) 

We also assume that 

F, = 0 
for simplicity. 

We evaluate fi BS(~) as a function of k,T. For each value of k,T we find 

(157) 

min [&&)I (158) 
S 

to use in the exponent of (127). We then choose the value of k,T that minimizes (158). 
The resulting value of 

min min [j$Js)] (159) 
k,T s 

is a measure of performance of Receiver No. 2. In Figs. 11.24 and 11.25, we have 
plotted the quantities in (155) and (159) for the cases in which E,./& equals 5 and 20, 
respectively. We also show ji RS(&) for the optimum receiver. The horizontal axis is kT, 
and the number in parentheses on the Receiver No. 1 curve is T/T,, the number of 
subintervals used. In both cases, the performance of Receiver No. 1 approaches that of 
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Fig. 11.24 Normalized error-bound exponents for optimum and suboptimum receivers: 
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the optimum receiver as kT approaches zero, and the performance of Receiver No. 2 
approaches that of the optimum receiver as kT becomes large. This behavior is just what 
we would expect. We also see that one of the receivers is within .Ol of the optimum 
over the entire range of kT. Thus, for this particular example, the simplicity afforded 
by the suboptimum receivers is probably worth the slight decrease in performance. 

We should comment that the above example is not adequate to verify 
that these suboptimum receivers will be satisfactory in all cases. A more 
severe test of the suboptimum receiver structure would require a non- 
constant signal. Our problem formulation allows us to carry this analysis 
out for any desired f(t). Other references that deal with suboptimum 
receiver analysis include [2 1 ] and [22]. 

11.3.4 Wary Systems 

We consider an M-ary system in which the transmitted signal on the 
ith hypothesis is 

s,dt> = & Re [f( t)ejwLt] : Hi. (160) 
We assume that the CC)~ are chosen so that the output signal processes on the 
different hypotheses are in disjoint frequency bands. The received wave- 
form on the ith hypothesis is 

r(t) = && Re [&t)f(t)e’“it] + w(t), 0< t< T:Hi. - - W) 
The hypotheses are equally likely, and the criterion is minimum probability 
of error. 

The optimum receiver is an obvious generalization of the binary receiver 
in Figs. 11.12 and 11.13. To calculate the performance, we extend (5.22) 
to include nonstationary complex processes. The result is 

Pr (6) < epTR 
[&(l/N,))IP 

&(p/No(l + p))]‘+’ ’ 
05p51, (162) 

D&z) = fi (1 + Ji), 
i=l 

(163) 

and the & are the eigenvalues of (20). We then minimize over p as in 
(5.29-5.35) to obtain E(R). The next step is to find the distribution of 
eigenvalues that minimizes E(R). Kennedy has carried out this minimiza- 
tion, and the result is given in [3]. Once again, the minimum is obtained 
by using a certain number of equal eigenvalues. The optimum number 
depends on &/IV0 and the rate R. The final step is to try to find signals to 
give the appropriate eigenvalue distribution. The techniques of the binary 
case carry over directly to this problem. 
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This completes our discussion of the M-orthogonal signal problem. 
The interested reader should consult [3] for a complete discussion. 

11.3.5 Summary : Communication over Doppler-spread Channels 

In this section we have studied the problem of digital communication 
over Doppler-spread channels. There are several significant results that 
should be re-emphasized : 

1. The optimum receiver can be realized exactly when the channel 
process has a state-variable representation. 

2. Tight bounds on the probability of error are given by (75). These 
can be evaluated for any desired f(t) if &(t) has a state-variable repre- 
sentation. 

3. There exists an upper bound on the probability of error for LZ~.$@) 
that does not depend on &{j}. For any binary system, 

Pr (E) 2 8 exp 
( 

E 
-0.1488 T . 

No 1 
(164) 

4. In many cases we can choose signals that give performance close to 
the bound in (164). 

5. Two suboptimum receiver configurations were developed that are 
much simpler to implement than the optimum receiver. In many cases 
they will perform almost as well as the optimum receiver. 

6. The basic results can be extended to include systems using M- 
orthogonal signals. 

This completes our discussion of digital communication. 
The reader may wonder why we have included a detailed discussion 

of digital communication in the middle of a radar/sonar chapter. One 
obvious reason is that it is an important problem and this is the first 
place where we possess the necessary background to discuss it. This reason 
neglects an important point. The binary symmetric problem is one degree 
easier to analyze than the radar-detection problem, because the symmetry 
makes ,C(Q) the important quantity. In the radar problem we must work 
with /Z(S), 0 < s < 1, until a specific threshold (or Ps) is chosen. This 
means that all the signal-design ideas and optimum eigenvalue distribu- 
tions are harder to develop. Now that we have developed them for the 
symmetric communications case, we could extend them to the asymmetric 
problem. The quantitative results are different, but the basic concepts 
are the same. 
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11.4 PARAMETER ESTIMATION: DOPPLER-SPREAD TARGETS 

The model for the estimation problem is a straightforward modification 
of the detection model. Once again, 

F(t) = JEtf( t - A>d, T < t ,< Tf. (165) 

There are two cases of the parameter-estimation problem that we shall 
consider. In the first case, the only unknown parameters are the range to 
the target and its mean Doppler shift, ?nD. We assume that the scattering 
function of 6,(t) is completely known except for its mean. The covariance 
function of the signal returned from the target is 

&(t, u:& m,> = E&t - A)ej2”mDtRDo(t - u)e-jznmDuf*(u - A), (166) 

where i?D (t - U) iS the covariance function of d,(t) with its mean Doppler 
removed. “In other words, 

xD<t - u> c\ ej2”mutKDo(t _ tl)e-j2~m~~~e WV 

We observe r”(t) and want to estimate A and ?nD. Notice that the parameters 
of interest can be separated out of the covariance function. 

In the second case, the covariance function of 6,(t) depends on a 
parameter (either scalar or vector) that we want to estimate. Thus 

&(t, u: 1, A) = E,f(t - n>.&(t - u :A)f*(u - 1). (168) 

A typical parameter of interest might be the amplitude, or the root-mean- 
square Doppler spread. In this case the parameters cannot necessarily be 
separated out of the covariance function. Notice that the first case is 
included in the second case. 

Most of the necessary results for both cases can be obtained by suitably 
combining the results in Chapters 6, 7, and 10. To illustrate some of the 
ideas involved, we consider the problem outlined in (166) and (167). 

We assume that the target is a point target at range R, which corresponds 
to a round-trip travel time of 1. It is moving at a constant velocity corre- 
sponding to a Doppler shift of ?nD cps. In addition, it has a Doppler 
spread characterized by the scattering function SD,{ f}, where . 

sD,{fL} a gD{.fl - mD>* (16% 

The complex envelope of the received signal is 

-m < t < O”* (170) 

We assume an infinite observation interval for simplicity. 



Parameter Estimation 399 

The covariance function of the returned signal process is given in (166). 
The likelihood function is given by 

1 O” 
&A m,) = jy 

ss 
?*(t)h”,,(t, u: A, m&F(u) dt du, 

0 --co 
(171) 

where &,,(t, u:L, mD) is specified by 

s 
03 NoK,,(t, u: a, r?zD) + h,,(t, x: A, m,)&, u : A, m,) dx 

--co 
= K&t, u :a, q)), -oo < t, u < 00. (172) 

(Notice that the bias term is not a function of 2 or MD, and so it has been 
omitted.) In order to construct the likelihood function, we must solve 
(172) for a set of Ai and ??zD. that span the region of the range-Doppler 
plane in which targets- may ‘be located. Notice that, unlike the slowly 
fluctuating case in Chapter 10, we must normally use a discrete approxima- 
tion in both range and Doppler. (There are other realizations for generating 
l(l, MD) that may be easier to evaluate, but (171) is adequate for discussion 
purposes.) The maximum likelihood estimates are obtained by finding the 
point in the 2, mD plane where I(& mD> has its maximum. 

To analyze the performance, we introduce a spread ambiguity function. 
As before, the ambiguity function corresponds to the output of the 
receiver when the additive noise G(t) is absent. In this case the signal is a 
sample function of a random process, so that the output changes each 
time the experiment is conducted. A useful characterization is the expecta- 
tion of this output. The input in the absence of noise is 

Y(t) = JKf(t - il,)ei2RmDat~Do t - 42 . i 1 2 
(173) 

We substitute (173) into (171) and take the expectation over 6, (t). The 
0 

result is 

&){&, a: m&, m> = j+- 
0 ss i;,,( t, u : 1, mD)R:(t, u : aa, mDa) dt du 

--co 
03 

Et- -- - 
N, cs 

h”,,(t, u : il, m.,)f*(t - 1,) 

L3 
Xe -j2amD&-u) u 

A - &)~;,(t - u) dt du, 
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which we define to be the Doppler-spread ambz’guity function. Notice that 
it is a function of four variables, A,, A, mDa, and MD. This function provides 
a basis for studying the accuracy, ambiguity, and resolution problems 
when the target is Doppler-spread. The local accuracy problem can be 
studied by means of Cramer-Rao bounds. The elements in the J matrix 
are of the form 

(see Problem 11.4.7). The other elements have a similar form. 
We do not discuss the ambiguity and resolution issues in the text. 

Several properties of the Doppler-spread ambiguity function are developed 
in the problems. Notice that 8,u{&, km, , m} may be written in several 
other forms that may be easier to evaluate: 

In general, the spread ambiguity function is difficult to use. When the 
LEC condition is valid, 

1 
h,,(t, u: A, m> 2 - K&t, u 3, nz) 

N, 

= &y(t - +pmt&&t - u)pn’y*(ld - A)* 
No 

(176) 

Using (176) in (174) gives 

Xe --i2;1( m-mcllu -* 
f( 11 - ;t>jy 11 - A,..) dt du. (177) 

(We suppressed the D subscript on m for notational simplicity.) This 
can be reduced to the two-variable function 

Some of the properties of O,, I FC{*, l } are developed in the problems. /,P 1 A ’ 
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A final comment concerning ambiguity functions is worthwhile. In the 
general parameter estimation problem, the likelihood function is 

r”*(t)h,,(t, u:A)r”(u) dt du + I,(A), A E ya, (179) 

where &u(t, u:A) satisfies 

Noh”o,(t, u : A) + 
s 

mh (t “ou , z : A)&, u : A) dx = i?&, u : A), 
-m 

-co < t, 21 < 00, A E ya, (W 

and I,,(A) is the bias. For this problem we define the generaked spread 
ambiguity function as 

u3 

&(A,, A) = L 
No u 

h”,,(t, u:A)&(t, u:A,) dt du, 
--co 

(W 

We shall encounter this function in Chapters 12 and 13. 
This completes our discussion of the estimation problem. Our discussion 

has been brief because most of the basic concepts can be obtained by 
modifying the results in Chapters 6 and 7 in a manner suggested by our 
work in Chapter 10. 

11.5 SUMMARY: DOPPLER-SPREAD TARGETS AND CHANNELS 

In this chapter we have studied detection and parameter estimation in 
situations in which the target (or channel) caused the transmitted signal to 
be spread in frequency. We modeled the complex envelope of the received 
signal as a sample function of a complex Gaussian random process whose 
covarrance 1s 

Kg(t, u) = E,f(t - ;Z)&)(t - u,p*<u - A). (179) 

The covariance function ED(t - U) completely characterized the target 
(or channel) reflection process. We saw that whenever the transmitted 
pulse was longer than the reciprocal of the reflection process, the target 
(or channel) caused time-selective fading. We then studied three problems. 

In Section 11.2, we formulated the optimum detection problem and 
gave the formulas that specify the optimum receiver and its performance. 
This problem was just the bandpass version of the Gaussian signal in noise 
problem that we had solved in Chapters 2-5. By exploiting our complex 
representation, all of the results carried over easily. We observed that 
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whenever the reflection process could be modeled as a complex finite-state 
process, we could find a complete solution for the optimum receiver and 
obtain a good approximation to the performance. This technique is 
particularly important in this problem, because the reflected signal process 
is usually nonstationary. Another special case that is important is the LEC 
case. Here the optimum receiver and its performance can be evaluated 
easily. The results for the LEC condition also suggest suboptimum 
receivers for other situations. 

In Section 11.3, we studied binary communication over Doppler-spread 
channels. The first important result was a bound on the probability of 
error that was independent of the channel-scattering function. We then 
demonstrated how to design signals that approached this bound. Tech- 
niques for designing and analyzing suboptimum receivers were developed. 
In the particular example studied, the performance of the suboptimum 
receivers was close to that of the optimum receiver. The extension of the 
results to M-ary systems was discussed briefly. 

The final topic was the parameter-estimation problem. In Section 11.4, 
we formulated the problem and indicated some of the basic results. We 
defined a new function, the spread-ambiguity function, which could be 
used to study the issues of accuracy, ambiguity, and resolution. A number 
of questions regarding estimation are discussed in the problems. We 
study parameter estimation in more detail in Section 13.4. 

We now turn to the other type of singly-spread target discussed in 
Chapter 8. This is the case in which the transmitted signal is spread in 
range. 

11.6 PROBLEMS 

P.ll.2 Detection of Doppler-spread Targets 

Problem 11.2.1. We want to derive the result in (33) Define 

(P.1) s Tf j$ = cr(t)@%(t) dt, Ti 
where pi is the ith eigenfunction of &(t, u). Observe from (A.116) that 

P?jjIfl(‘i 1 Hl) = ’ 
n<ii + N,) 

exp[-ZJ, -m<&<m. (P-2) 

Using (P.1) and (P.2) as a starting point, derive (33). 
Problem 11.2.2. Derive (33) directly from (2.31) by using bandpass characteristics 
developed in the Appendix. 
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Problem 11.2.3. Derive the result in (38) in two ways: 
1. Use (33) and (34) as a starting point. 
2. Use (2.86) as a starting point. 

Problem 11.2.4. Consider the detection problem specified below. 

30 = ~E$(t)bg(t) + G(t), Ti s t 5 Tt:H,, 

Y(t) = G(t), Ti < t I, Tf:H,,. 

The Doppler scattering function is 

4kub2 
Sdf) = &..)2 + k2 ’ 

The complex white noise has spectral height NO. 
1. Draw a block diagram of the optimum receiver. Write out explicitly the differential 

equations specifying the system. 
2. Write out the equations that specify F(s). Indicate how you would use F(s) to 

plot the receiver operating characteristic. 
Problem 11.2.5. Consider the same model as in Problem 11.2.4. Assume that 

elsewhere, 
where 

T= Tf- Tip 

and that T is large enough that the asymptotic formulas are valid. 
1. Draw the filter-squarer realization of the optimum receiver. Specify the transfer 

function of the filter. 
2. Draw the optimum realizable filter realization of the optimum receiver. Specify the 

transfer function of the filter. 
3. Compute b&s). 

Problem 11.2.6. Consider the same model as in Problem 11.2.4. Assume that f(t) is a 
piecewise constant signal, 

c - 0 5 t < Ts 3c 
t 
1 5 &L(t iTs), 

= i=l 

0, elsewhere, 

and 

The 
unit 

fi are complex 
energy. 

i(t 

weighting coefficients, and c is a constant 

1 
-9 0s t< T,, 

1 = 2/T s 

0, elsewhere, 

T 
Ts=-. 

K 

so that f(t) has 
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1. Draw a block diagram of the optimum receiver. Write out explicitly the differential 
equations specifying the system. 

2. Write out the equations specifying ,6(s). 
Problem 11.2.7. Repeat Problem 11.2.4 for the Doppler scattering function 

4kab2 
‘df’ = [2v(f - m&j2 + k2 ’ 

-- <,f’< m. 

Problem 11.2.8. Repeat Problem 11.2.4 for the case in which the target reflection 
process is characterized by the spectrum in (A.148). 
Problem 11.2.9. Consider the following detection problem: 

‘;‘(t) = 1/Etjyt)h,(t) + ii,(t) + G(t), 0 < t < T:H,, 

w = r-i,(t) + i?(t), 0 < t < T:H,. 

The colored noise is a zero-mean complex Gaussian process with covariance function 
&,(t, u). It is statistically independent of both h,(t) and ii;(t). 

1. Derive the equations specifying the optimum receiver. 
2. Derive a formula for F(S). 

Problem 11.2.10. Consider the model in Problem 11.2.9. Assume that r?,(t) has a complex 
finite state representation. 

1. Write out the differential equations specifying the optimum receiver. 
2. Write out the differential equations specifying j%(s). 

Problem 11.2.11. Consider the following detection problem. 

= vqfl(t - 3,2)ejd,2(t) + i;;(t), Ti < t ,< Tf:Ho. 

The quantities JU 1, A2, CC)~, and o,, are known. The two reflection processes are statistically 
independent, zero-mean complex Gaussian processes with covariance functions &(T) 
and RD2(7). Both processes have finite state representations. 

1. Find the optimum receiver. 
2. Find an expression for p(s). 

Problem 11.2.12. Consider the model in 
variable instead of a random process. 

Problem 11.2.11. Assume that hD2(t) is a random 

iiD2(f) = 60,. 

1. Find the optimum receiver. 
2. Find an expression for p(s). 

Problem 11.2.13. Consider the model in Problem 11.2.11. Assume that gDl(t)isarandom 
variable instead of a random process. 

Assume that JD2(t) has a finite state representation. 
1. Find the optimum receiver. Specify both a correlator realization and a realizable 

filter realization. 
2. Recall that 
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for this type of model (see page 251). Find an integral expression for A. Find the set of 
differential equations that specify A. 

3. Assume that 

Gl2-tf > = 
2kP, 

(2zf)2 + k2 ’ 

Write out the differential equations specifying the optimum 
Problem 1 1.2. 14. Consider the model in Problem 11.2.13. 

receiver and A. 

7(t) = 1/E, &-J(t - ll)ejmlt + ~~ &D2(t)f(t - i2)eja2t + i;;(t), Ti 5 t < Tf:H,, 

F(t) = 1/E, b,,(t)f(t - A2)ej*2t + S(t), Ti I, t < Tf:H,. 

We want to design the optimum signal subject to an energy and bandwidth constraint. 

s Tf 

1 r’<t)l*dt = 1, 
Ti 

s 
Tff2,F{f},2dt = B2. 

Ti 

1. Assume that we use an optimum receiver. Find the differential equations that 
specify the optimum signal (see Section 9.5). 

2. Assume that we use a conventional receiver (see Section 10.5). Find the differential 
equations that specify the optimum signal. 

3. What is the fundamental difference between the equations in parts 1 and 2 and the 
equations in Section 9.5 (9.133)-(9.139) ? 
Problem 11.2.15. Consider the following detection problem: 

The 6oi( t) are statistically independent, zero-mean complex Gaussian processes with 
covariance functions RDi(T). The Ai and ~t)~ are known. The target reflection & is a 
complex zero-mean Gaussian variable with mean-square value 2ab2. 

1. Find the optimum receiver and an expression for A. 
2. Assume that a conventional receiver is used (see Section 10.5). Find an expression 

for Awe. Write this expression in terms of 0{7, f  > and +{ f}. 
Problem 11.2.16. Consider the multiple hypothesis detection problem: 

w = G(t), Ti 5 t < T$:H,, 

F(t) = 2/g &J(t) + G(t), Ti < t < TfzHl, 

Y(t) = 1/E, b&t)jQ> + W), Ti < t 5 TftH2. 

We see that the three hypotheses correspond to noise only, noise plus a point-non- 
fluctuating target, and noise plus a fluctuating target. 
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Assume the following cost matrix: 

0 c*lf Gl’ 
C = c*1 0 CAT 

G KS O _ 

1. Find the optimum Bayes receiver. 

I . 
2. Consider the special case when CAY = 0. Draw the optimum receiver. Find an 

expression for /Z(s). 
3. Assume that the following criteria are used: 
a. Pp a {Pr [say HI or H, 1 HO is true]}. 
b. PO a {Pr [say HI or H, 1 HI or H, is true]}. 
c. Maximize PI, subject to constraint that PE’ 5 bc. 
d. I f  the receiver says that a target is present, we want to classify it further. Define 

and 
PF 

2 
h {Pr [say Hz 1 H, is true, target decision positive]} 

PD * { Pr [say H, 1 H, is true, target decision positive]}. 
2- 

Maximize PO2 subject to constraint ~~~ < 0~~. 
Explain how the over-all receiver operates. Can you write this in terms of a Bayes 

test? 
Problem 11.2.17. Consider the detection problem in (30) and (31). Assume that 

E&(t)] = ih, 

where ;I is itself a complex Gaussian random variable with mean-square value 20~. The 
rest of the model remains the same. Find the optimum receiver. 

P. 11.3 Digital Communication over Doppler-Spread Channels 

Problem 11.3.1. Consider the binary FSK system described in Section 11.3.1. Assume 
that 

1. Write out the differential equations specifying the receiver in detail. 
2. Write out the differential equations specifying ,6&). 

Problem 11.3.2. The performance of a binary FSK system operating over a Doppler- 
spread channel is given by 

--21n(l+&)]. W) 

For constant transmitted signals and large time-bandwidth products, we can use the 
SPLOT formulas. 

1. Write the SPLOT formula corresponding to (P.1). 
2. Evaluate PBS+ (9) for 

The transmitted signal has energy Et and duration T. 
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3. Find the optimum value of kT. Show that if the optimum value of kT is used, 
PBS, oo (8) will decrease monotonically with n. 
Problem 11.3.3. Consider the binary FSK system described in Section 11.3.1. Assume 
that 

e-t212T2 
9 --oo<t<co 

&{f} = g e-f 213c2, -a<f<a 
n c 

The observation interval is infinite. 
1. Find the output eigenvalues. (Hint: Use Mehler’s expansion [e.g., [6] or [7].) 
2. Evaluate ,!&S, &). 

Problem 11.3.4. Consider a binary communication system operating under LEC 
conditions. 

1. Show that p R&) can be expressed in terms of A [see (9.49)]. 
2. Use the results of part 1 in (75) to find a bound on the probability of error. 
3. Find an expression for A in terms of f(t) and so{ f }. 

Problem 11.3.5. Consider a K-channel frequency-diversity system using orthogonal 
FSK in each channel. The received waveform in the ith channel is 

(\i 
2E, 
K Re [&(t)f(t)ejWlit] + w(t), To 5 t 5 Tf:HI, 

40 = \ I- 24 y Re [6i(t)f(t)ejWOit] + w(t), T,<t<Tf:HO, i=l,2,...,K. 

The channel fading processes are statistically independent and have identical scattering 
functions. Assume that the SPLOT condition is valid. 

1. Evaluate PBS(&). 
2. Assume that 

4kab2 
‘D{f} = @f)2 + k2 l 

The single-channel system with this scattering function was discussed in Example 2 on 
page 382. How would you use the additional freedom of a frequency-diversity system to 
improve the performance over that of the system in Example 2? 
Problem 11.3.6. Consider the model in Example 3 on page 384. We want to investigate 
the probabilitv of error as a function of Ts. One of the two branches of the receiver is 

Fig. P.ll.1 
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shown in Fig. P.11.1. This branch is referenced to fi; the other branch, to Jo. Assume 
that TD is large enough that the outputs due to each pulse are statistically independent. 

1. Find an expression for Pr (E> as a function of E,, No, k, and T,. Assume that D, 
pulses are used. [Hint: Recall the results in (I-2.434) and (I-2.516).] 

2. Plot 
In Pr(E) 

-0.1488&/N, 
as a function of kT,. 

Problem 11.3.7. Consider the model in Example 3 on page 384. We want to investigate 
the probability of error as a function of TS and Tp. The receiver in Problem 11.3.6 is 
used. Derive an expression for ,&&). 
Problem 11.3.8. Consider the piecewise constant channel model in Fig. 11.17 and 
assume that f(t) is a rectangular pulse. We generate a set of random variables yi as 
shown in Fig. 11.18. However, instead of using a weighted sum of their squared magni- 
tudes, we operate on them in an optimum manner. 

1. Find the optimum test based on the observed vector F. 
2. Find an expression for &&) for this test. 
3. Prove that the receiver in part 1 approaches the optimum receiver of Section 

11.3.1 as TS approaches zero. 
Problem 11.3.9. The definitions of fill(s) and ,&l(s) are given in (129) and (130). 

1. Verify that the results in (131) and (132) are correct. 
2. Verify the result in (136). 

Problem 11.3.10. Consider the M-ary problem described in Section 11.3.4. Draw a 
block diagram of the optimum receiver. 

Problem 11.3.11. Consider a binary communication system operating over a discrete 
multipath channel. The complex envelopes of the received waveforms are 

r(t) = ‘Et I 
+ i?(t), Ti < t I Tf:H,, 

where the complex representation is with reference to al, and 

T(t) = 4% + G(t), Ti < t 5 Tf:Ho, 

where the complex representation is with reference to co”. The iii are known and the 
fDi(t) are statistically independent, zero-mean complex Gaussian random processes 
with rational spectra. The signal components on the two hypotheses are in disjoint 
frequency bands. 

1. Find the optimum receiver. 
2. How is the receiver simplified if f(t) and iii are such that the path outputs are 

disjoint in time (resolvable multipath) ? 
Problem 11.3.12. Consider the detection problem described in (30)-(32). Assume that we 
use a gated correlator-squarer-summer-receiver of the type shown in Fig. 11.18. 

1. Modify the results of Chapter 5 to obtain formulas that can be used to evaluate 
suboptimum bandpass receivers. 

2. Use the results of part 1 to obtain performance expressions for the above receiver. 
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P.ll.4 Parameter Estimation 

ProbIem 11.4.1. Consider the estimation problem described in (168)-(175). Assume that 
the LEC condition is valid. 

1. Verify that the result in (178) is correct. 
2. Evaluate 8a LEC{O, 0). 
3. Prove D’ 

&-lD.LE& m) 5 ei2,,LEC{“~ Ob 

4. Is there a volume invariance relation for 8 Sl,,LE& m)? 

Problem 11.4.2. Assume 

and 

So,(f} = $5 e -f ?/2a02, --co<f<co. 
= aD 

Evaluate 8 il,.LEC& m>- 

Problem 11.4.3. Consider the LEC estimation problem discussed in Problem 11.4.1. 
1. Derive an expression for the elements of the J matrix in terms 
2. Evaluate the J matrix for the signal and scattering function in 

of ei2 LECh m>. 
Probl& 11.4.2. 

Problem 11.4.4. Go through the list of properties in Section 10.3 and see which ones 
can be generalized to the spread-ambiguity function, eaB,,EC(7, m}. 
Problem 11.4.5. Assume that we are trying to detect a Doppler-spread target in the 
presence of white noise and have designed the optimum LEC receiver. 

1. In addition to the desired target, there is a second Doppler-spread target with an 
identical scattering function. Evaluate the effect of the second target in terms of 
&-+Ec{& m}. (Notice that th e receiver is not changed from the original design.) 

2. Extend the result to K interfering targets with identical scattering functions. 
3. What modifications must be made if the Doppler scattering functions are not 

identical ? (This is the spread cross-ambiguity function.) 
4. In part 3, we encountered a spread cross-ambiguity function. A more general 

definition is 

x g*(u -;)f(u ‘2) dtdu. (P.1) 

Where would this function be encountered? How is it related to the ordinary cross- 
ambiguity function $B(il, f > ? 
Problem 11.4.6. Consider the degenerate case of Problem 11.4.5, in which we are trying 
to detect a slowly fluctuating point target in the presence of white noise and have 
designed the optimum receiver. 

What effect will the presence of a set of a set of Doppler-spread targets have on 
the performance of the above receiver.? 
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Problem 11.4.7. Derive the term in (175) and the other elements in the J matrix. 

Problem 
function. 

11.4.8. Consider the problem of estimating the amplitude of a scattering 

&(T: A) = A&,(T), P. 0 

and I?&) is assumed to be known. The complex envelope of the transmitted signal is 
dG&), The complex envelope of the returned waveform is 

;r(t) = 1/E, &t, A)?(t) + ii;(t), Ti I t Ls T’y 

where hD(t, A) is a complex Gaussian random 
(P. 1). Assume that the LEC condition is valid. 

process covariance is given in 

1. Find a receiver to generate 6,,. 
2. - Is 6,, unbiased ? 
3. Assume that the bias of 6,, is negligible. (How could you check this?) Calculate 

4. Calculate a bound 
5. Express the bound 
6. Assume that 

on the normalized variance of any unbiased 
in part 4 in terms of e(,,f} and &{f}. 

e-t2/2T2 

estimate of A. 

&{f} = -& e-f212B2 

7T 

Evaluate the bound in part 4 for this case. Discuss the behavior as a function of BT. 
Would this behavior be the same if the LEC condition were not satisfied? 

7. Express the largest eigenvalue in terms of A, B, and T. 

Problem 11.4.9. The complex envelope of the received waveform is 

7 (t) = Gi$(t)[ej@lt + ej@ot&(t) + i?(t), --co<t<co. 

We want to estimate the quantity COLJ, = co1 - oo. The process &D(t 
complex Gaussian process whose bandwidth is much less than cog. 

) is a zero-mean 

1. Find a receiver to generate the maximum likelihood estimate of a~. 
2. Find an expression for the Cramer-Rao bound. 

Problem 11.4.10. Assume that 

where ,!&{*} is known. We want to estimate A, the scale of the frequency axis. Assume 
that 

F(t) = Z/@&t, A) f(t) + ii;(t), --oo<t<a, 

and that the LEC condition is valid. 

1. Draw a block diagram of a receiver 
2. Evaluate the Cramer-Rao bound. 

generate 4n,. 



References 411 

Problem 11.4.11. Assume that the target consists of two reflectors at different ranges. 
The complex envelope of the returned waveform is 

%I = dE, i $if(t - li) + ii;(t), -a<t<q 
i=l 

where the bi are statistically independent complex Gaussian random variables (E Igil” = 
2ai2). We want to estimate the mean range, which we define as 

A, = 8@, + Q. 

1. Draw the block diagram of a receiver to generate a,,,,. 
2. Does 

A r,ml = 9(xl,m1 -I- &,nzp 

3. Evaluate the Cramer-Rao bound of the variance of the estimate. 

Problem 11.4.12. Consider the problem of estimating the range and mean Doppler 
when the amplitude of the scattering function is unknown. Thus, 

I?&, u: A) = AE, f(t - A)ej2nmtK&(t - u)e--isamuf*(u - A). 

Assume that the LEC condition is valid and that the bias on iiml can be ignored. 
1. Find I(ciml, 1, m). 
2. Draw a block diagram of the optimum receiver to generate AmE, A,,. 
3. Evaluate J. Does the fact that A is unknown increase the bounds on the variances 

of Am, and &rrnl? 
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Range-Spread Targets 
and Channels 

In Chapters 9 and 10, we studied slowly fluctuating point targets. In 
Chapter 11, we studied point targets that could fluctuate at an arbitrary 
rate. In this chapter, we consider slowly fluctuating targets that are 
spread in range. 

A typical case is shown in Fig. 12.1. We transmit a short pulse as shown 
in Fig. 12.1~. The target configuration is shown in Fig. 12.16. The surface 
is rough, so that energy is reflected in the direction of the receiver. The 
target has length L (measured in seconds of travel time). To characterize 
the reflected signal, we divide the target in Al increments. The return 
from each increment is a superposition of a number of reflections, and so 
we can characterize it as a complex Gaussian random variable. Thus the 
return from the first increment is 

the return from the second increment is 

and so forth. The total return is 

s”(t) = &$ b(n,)f(t - &) AA. 
i=o 

We see that it consists of delayed v ,ersions of the 
with complex Gaussian variables and summed. 

signal, which are weighted 
typical returned signal 

is shown in Fig. 12.1~. We see that the signal is sprea.d out in time (or 
range) , and so we refer to this type of target as a range-spread 
Other adjectives co mmonly used are delay-spreud and dispersive. 

target. 
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(a) Transmitted envelope 

Direction of 
propagation 

- - 

(b) Target geometry 

*t 
0 L+T 

(c) Received envelope (shifted time origin) 

Fig. 12.1 Range-spread model. 
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In this chapter we study detection and parameter estimation for range- 
spread targets. In Section 12.1 we develop a quantitative model for range- 
spread targets and channels and show how this type of target causes 
frequency-selectiue fading. In Section 12.2, we discuss optimum receiver 
configurations briefly. In Section 12.3, we develop the concept of time- 
frequency duality. This development enables us to translate all range- 
spread channels into equivalent Doppler-spread channels. We can then 
use all of the results in Chapter 11 directly. We also discuss a number of 
applications in Section 12.3. Finally, in Section 12.4, we summarize our 
results. 

12.1 MODEL AND INTUITIVE DISCUSSION 

We begin our model development with the relation in (3). The incre- 
ments are useful for explanatory purposes, but the reflections actually 
occur from a continuous range of A. s AA1 -+ 0, the sum in (3) becomes the 
integral 

Now g,(1) is a sample function from a zero-mean complex Gaussian 
process whose independent variable is the spatial variable 2. Notice that 
b,(L) is not a function of time. We see that a range-spread target behaves 
exactly as a linear time-invariant filter with a random complex impulse 
response 8,(L). To characterize 8,(A) completely, we need the two com- 
plex covariance functions 

where the result in (6) is a restriction we impose. 
We shall assume that the returns from different ranges are statistically 

independent. To justify this assumption, we return to the incremental 
model in Fig. 12.1. The value of 6,&) will be determined by the relative 
phases and strengths of the component reflections in the ith interval. 
Assuming that the surface is rough compared to the carrier wavelength, 
the values of 8&J in different intervals will not be related. In the con- 
tinuous model this implies that 

&(il’ Al) = w  - Wh3(412~* (7) 

Notice that the relation in (‘7) is an idealization analogous to white noise 
in the time domain. The reflected signal is given by the convolution in (4). 
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As long as the correlation distance of 6,(L) is much shorter than the 
reciprocal of the bandwidth off”(t), then (7) will be a good approximation. 

Physically, the expectation in (7) is related to the expected value of 
energy returned (or scattered) from an incremental element located at ;k. 
We define 

,TX(n) 2 m412L -oo<il<oo (8) 

and refer to it as the range-scattering function. For convenience, we shall 
always define &(3L) for an infinite range. The finite target length will be 
incorporated in the functional definition. 

The covariance of the received signal in the absence of additive noise is 

&t, u) = EC&( t)i+)] 

Using (7) and (8) in (9) gives 

The relation in (10) completely characterizes the signal returned from a 
range-spread target. 

Notice that the total received energy is 

s 
co ET = &(t, t) dt 

-cn 
= &E&(i) dlJ;Jf(t - A),” dt = Et/~&(l) dil. 

(11) 
We see that 

&(A) dl = 
expected value of the energy returned from (A, L + dA) . c (12) 

The result in (12) is a quantitative statement of the idea expressed in (8) 
In order to be consistent with the point target model, we assume that 

J &(A) d3L = 2~5”. 
-00 

This completes our specification of the reflection model. Before begin- 
ning our optimum receiver development, it is useful to spend some time 
on an intuitive discussion. In Chapter 11 we saw that a Doppler-spread 
target causes time-selective fading. Now we want to demonstrate that a 
range-spread target causes frequency-selective fading. 
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The Fourier transform of s’(t) is a well-defined quantity when the target 
length is finite. Thus, 

sI( f } A la S(t)e-i2nf1f dt 

=fe-j2rf1’ dtJly(t - A&(A) dA. (14) 

Notice that g{f} is a sample function of a complex Gaussian process. 
We want to compute the cross-correlation between ${f} at two different 

frequencies. 

E[~(f,}~*{f,}] = E{ Ia e--i21rf1t1 dt,Im f(tl - jll)hB(Al) dA, 

t/lej2Tf2t2 diJlf*(t2 - A2)6g(,A2) dl,). (15) 

Bringing the expectation inside the integrals, using (7) and (8), we obtain 

E[S{ fi)$*{ f2}] = F{ fi}i’*{ f2}Im e-j2n’(f1-f2)&(A) dA, (16) 
-00 

where F{fl} is the Fourier transform of .f( t). To interpret (16), we define 

Using (17) in (16), we obtain 

mfi>s”*cfi>1 = 4L>F*{fi>Gt(fi - t-i> 9 
or 

(18) 

Gdfi - f2) = 
m{fI~~*{fi)l 

E’{fi)~*{f2} l 

(1% 

The function &{v} is called the two-frequency correlation function. It 
measures the correlation between the fading at different frequencies. Notice 
that it is the Fourier transform of the range-scattering function. Therefore, 

I s &(a) = O” ej28A2,&{u) dv, 
-w 

(20) 

and we can use either &{v} or &(A) to characterize the target. 
To illustrate the implication of the result in (18), we consider the 

scattering function in Fig. 12.2a, 

1 
2db2 

&(a) = L ’ 
&<a<& 

- 2 - - 2 ’ (21) 

\O 9 elsewhere. 
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(a) Scattering function 

(b) Two-frequency correlation function 

Fig. 12.2 Functions for a uniform range-spread target. 

Thus, 

as shown in Fig. 12.2b. We see that frequency components separated by 
more than l/L cps will be essentially uncorrelated (and statistically inde- 
pendent, because they are jointly Gaussian). 

Now assume that we transmit a signal whose Fourier transform is 

Ftf) 1 1 - 
J 

-7 
w 

W<f<-w - - -2- 2’ 

LO 9 elsewhere. 

In Fig. 12.3a, we show the case in which 

1 w>>;. 

(23) 

(24) 

In Fig. 12.3b, we show the transform of a typical sample function of 
J(t). The amplitudes at frequencies separated by more than l/L cps are 
essentially statistically independent, and so we refer to this behavior as 
frequency-selective fading. 
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(a) Transform of transmitted envelope 

(b) Transform of a typical received signal 

Fig. 12.3 Functions to illustrate frequency-selective fading. 

The function in Fig. 12.36 is very similar to that in Fig. 11.2b, except 
that the axis is frequency instead of time. We shall exploit this similarity 
(or duality) in detail in Section 12.3. 

Notice that if the signal bandwidth is such that 

1 w<<-, 
L 

(25) 

the returned signal will be undistorted. This is, of course, the slowly 
fluctuating point target model of Chapters 9 and 10. The relation in (25) 
tells us when we can model the target as a point target. 

We now have a quantitative model for range-spread targets and an 
intuitive understanding of how they affect the transmitted signal. The next 
step is to consider the problem of optimum receiver design. 

12.2 DETECTION OF RANGE-SPREAD TARGETS 

In this section we consider the binary detection problem, in which the 
complex envelopes of the received waveforms on the two hypotheses are 

F(t) = a(t) + K(t), -m < t < m:& (261 



420 12.2 Detection of Range-spread Targets 

and 
r”(t) = i?(t), -GO < t < KM?,. (27) 

The signal is a sample function from a zero-mean complex Gaussian 
process, 

i(t) = (28) 

whose covariance function is 

&(t, u) = E, 
s 

O” f(t - l)&(A)f*(u - A) d1. (29) 
-m 

The additive noise, G(t), is a sample function from a statistically inde- 
pendent, zero-mean, complex white Gaussian process with spectral height 
A$. We have assumed an infinite observation interval for simplicity. 

The expression for the optimum test follows directly from (11.33) as 

1 
1 ao Hl 

=- 

No ss 
r”*(t)h(t, u)?(u) dt du z y, 

HO -cn 

where h(t, u) satisfies the equation 

N(&t, u) + s O” h(t, z)&, u) dz = K&t, u), -Go < t < m. (31) 
--oo 

The difficulty arises in solving (31). There are two cases in which the 
solution is straightforward, the separable kernel case and the low-energy- 
coherence case. The separable kernel analysis is obvious, and so we 
relegate it to the problems. The LEC condition leads to an interesting 
receiver configuration, however, and so we discuss it briefly. 

When the LEC condition is valid, the solution to (31) may be written as 

K(t, u) = 
1 

- E&t, u). (32) 
No 

Using (29) in (32) and the result in (30) gives 00 Et Hl 
1 -w - 

No2 
F*(t)f(t - A)&(A)f*(u - A)?(u) dt du dA 3 7. (33) 

HI 

This can be rewritten as 

s 
co Hl 1 1= S;,(A) IW)I" da 2 J-59 

-cQ HO 
(344 
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Filter matched 
Yr 

dt 11 
Hl 

to F(t) 
&Yl 

-00 
A HO 

. 

&ih) 
Fig. 12.4 Two-filter radiometer: optimum detector under the LEC condition. 

where 

and we have absorbed the constant in the threshold. The operation in 
(34a) may be realized as shown in Fig. 12.4. This receiver is called a two- 
filter radiometer and is due to Price [l]. 

When the LEC condition is valid, the performance is specified by 
(11.65). Using (10) in (11.65) and integrating gives 

00 

lw 

s(1 - s)Et2 =- 
NO2 I.1 

J7,(A,>O (A1 - 12, 03&,(A2) dA, dl,, (35) 

-aI 

which is the desired result. 
When the LEC condition is not valid, it is difficult to solve (31) directly. 

In the next section we develop a procedure for solving it by transforming 
it into an equivalent Doppler-spread target problem. 

12.3 TIME-FREQUENCY DUALITY 

The utility of the duality concept is well known in classical network 
theory. Bello [2] has developed the concept of time-frequency duality 
in a more general framework and applied it to communications problems. 
In Section 12.3.1, we develop the basic duality concepts. In Section 12.3.2, 
we consider the dual relations in range-spread and Doppler-spread 
channels. In Section 12.3.3, we apply the results to specific cases. 

One comment is worthwhile before beginning our development. We 
shall develop a number of properties and formal relationships. These are 
useful in solving specific problems. The reader who only learns these 
properties and applies them blindly will miss what we think is a major 
benefit of duality. This benefit is the guidance it offers in thinking about a 
particular problem. Often by just thinking about the duality, one can solve 
a problem directly without going through the formal manipulations. 
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12.3.1 Basic Duality Concepts 

Our discussion consists of a series of definitions and properties with some 
examples interspersed to illustrate the ideas. Notice that throughout the 
discussion all functions are defined over infinite intervals. 

Definition 1. Consider the two complex time functions &(t) and a,(t). If 

&(f) = F[&(t)] A yl{f} A mgl(t)e-j2”ftdt, (36) 

then g,(t) is the 

then a,(t) is the 

Example 1. Let 

dual of &(t). If 

yU2w = F-‘Kh(f >I 

inverse dual of &(t). 

s 
m 

A - ijl( f )ej2’* t df, (37) 
-m 

s1(t> = 
1, -T<t<T, 

0, elsewhere. 
(38) 

The dual of &(t) is 

i&&t > 
sin 2rTt 

=- 
7Tt ’ 

--oo<t<a (39) 

Definition 2. Dual Processes. The complex Gaussian process ij2(t) is the 
statistical dual of the complex Gaussian process &(t) if 

&7,(fi, f2) a m72~faaf2N 

= ~[&,(t,, h>! 
a2 

A - 

ss 

exp [-j27Tfitl + j2~f2f2]&(tl, t2) dt, dt,. 
--oo 

Note the sign convention in the direct Fourier transform. The complex 
Gaussian process g2(t) is the statistical inverse dual of the complex Gaus- 
sian process gl(t) if 

&z(tl9 t2) = ~-‘Kgl{fl, f,>] 
00 

A - 

u 
exp [ +jhflh - .i2~f2tzl&,{fI, fi) dfi df2. (41) 

-a3 

Property 2 [3]. Assume that ij2(t) is the statistical dual of&(t), which is a 
nonstationary process whose expected energy is finite. We expand both 
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processes over the infinite interval. The eigenvalues of &(t) are identical 
with those of&(t), and the eigenfunctions of&(t) are Fourier transforms of 
the eigenfunctions of &(I). This property follows by direct substitution. 

Example 2. Let 

The expansion of the dual process is 

At this point the reader should see why we are interested in dual 
processes. The performance of detection and estimation systems depends 
on eigenvalues, rtot eigenfunctions. Thus, systems in which the various 
processes are dual will perform in an identical manner. 

Property 3. White complex Gaussian noise is a statistically self-dual 
process. 

Property 4. If &(t) is the dual of &(t), where &(t) is any sample function 
from a zero-mean random process, then &{fi, fi} is the double Fourier . 
transform of K&( t,, &J. 

Definition 3. Consider the two deterministic functionals 

Assume that &(t) is the dual of g,(t). If this always implies that Z2(t) is 
the dual of Z1(t), then gz(*, l ) is the dual operation of g,(-, l ). 

To illustrate this idea, we consider a simple example of a dual operation. 

Example 3. Let g,(-, a) correspond to a delay line with a delay of a seconds. Thus, 

Qt) = &(t - a). (46) 

The dual operation is the frequency translation 

12(t) = &(t)e--j2aat. 

To verify this, we observe that 

(47) 

2 VI 1 = y If> 1 
,-j2afn . (48) 
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Property 5. The operations listed in Table 12.1 are duals (see Problems 
12.3.4-12.3.10). 

Table 12.1 

Operation Dual operation 

Delay line Frequency translation 
Time-varying gain Filter 
Gate Low-pass or bandpass filter 
Adder Adder 
Convolution Multiplier 
Aperiodic correlator Square-law envelope detector 

Thus, if 

then 

which is the required result. 

a&) = r,ct}, (49) 

&(t) = 21{t}, (50) 

Property 6. Assume that the input to g&(*), t) is a sample function of a 
complex Gaussian random process and that the input to g&,(), t) is a 
sample function of a dual process. If gl(*, 0) is the dual operation of 
gl( a, Q, then Z&) is the dual process of Zlft). 

This completes our introductory discussion. We now turn to the 
specific problem of interest. 

12.3.2 Dual Targets and Channels 

In this section we introduce the idea of a dual target or channel and 
demonstrate that a nonfluctuating dispersive target is the dual of a fluctuat- 
ing point target. 

To motivate the definition, we recall the relations for the Doppler- 
spread and range-spread targets. The reflected signal from a Doppler- 
spread target at zero range is a signal 

whose covariance function is 

The reflected signal from a range-spread target is a signal 
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whose covariance function is 

$,(t, u) = E, s mfR (t - A)~R(3L)f$i - A) dl, -0 < t, u< GQ. 
-al 

(54) 
We may now define dual targets and channels. 

Definition 4. Let &(t) denote the transmitted signal in system 1, and 
Z”Jt) the returned signal. Let&t) denote the transmitted signal in system 2, 
and Z2(t) the returned signal. 

If the condition thatf2(t) is the dual of fl( t) implies that Z2(t) is the sta- 
tistical dual of Z1( t), system 2 is the dual system of system 1. (Notice that 
“systems” have randomness in them whereas the “operations” in Defini- 
tion 3 were deterministic.) 

We now apply this definition to the targets of interest. 

Property 7. If 

or, equivalently, 

then the Doppler-spread target (or channel) is a dual system with respect 
to the range-spread target (or channel). 

Pro@ We must prove that 

al 

q$,(tp t2) a 
ss 

e-j2*[fltl-f2t21~~R(fl, t2) dt,dt, 

-al 
a3 

= 

sss 
e-j2n[fitl-f2t21ia(t1 - jl)&(A)&t, - 1) dt, dt, dA 

-00 

r 

a3 

s 

co 
= SR(&--j2r4f r-f23 dA i;z(tl - ;l),--j2nflW-4 dt, 

c -co --al 
al 

X 
s 

f( R t2 
- ~)ei2~fl(t2-4 dr,. 

-a3 
(58) 

Using (17), this reduces to 

~vG,Vl, $11 = xR{fi --.fdFR{f,>%cf2>* 
I f  

SD(‘) = &{*} 

(59 

(60) 
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(61) 

(62) 

which is the desired result. 

This result is of fundamental importance, because it implies that we can 
work with the most tractable target model. We formalize this idea with 
the following definition. 

Definition 5. Dual Detection Problems. The received waveforms on the 
two hypotheses in system A are 

The received waveforms on the two hypotheses in system B are 

and 
r”BJt), -oo < t < co:H, (65) 

~l&h -CQ < t < oo:H,. (66) 

All waveforms are sample functions of complex Gaussian processes. 
If i&(t) is the dual process to ?A1 (t) and FBO( t) is the dual process to 

FAo(t), problem B is the dual detection problem of problem A. 

The following properties are straightforward to verify. 

Property 8. If the a-priori probabilities and costs are the same in both 
systems, the Bayes risks in equal detection problems are identical. 

Property 9. We can always realize the optimum receiver for system A 
as shown in Fig. 12.5a. We can always realize the optimum receiver for 
system B as shown in Fig. 12%. 

Property 9 means that being able to construct the optimum receiver for 
either one of the two dual systems is adequate. Techniques for imple- 
menting the Fourier transformer are discussed in numerous references 
(e.g., [4-71). Th ere is some approximation involved in this operation, 
but we shall ignore it in our discussion. In Section 12.3.3 we shall discuss 
direct implementations by using dual operations. 
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L 
xt, Fourier k) = Optimum receiver 

transformer * for system B 
t 

(a) Optimum receiver for system A 

l f  

a) .  

inverse 

- Fourier f * 
Optimum receiver 

transformer 
for system A 

c 
(b) Optimum receiver for system B 

Fig. 12.5 Optimum receivers for dual detection problems. 

Property 10. Consider the problem of detecting a range-spread target. 
The received signals on the two hypotheses are 

and 
r”(t) = s,(t) + e(t), -oo < t < cn:H, (67) 

F(t) = l+(t), -co < t < oo:H,. (68) 

Consider the problem of detecting a Doppler-spread target. The received 
signals on the two hypotheses are 

and 
r”(t) = j&) + G(t), -a<t<oo:H, (69 

r”(t) = i?(t), -a < t < cn:H,. (70) 

In both cases i?(t) is a sample function from a complex Gaussian white 
noise process with spectral height NO. 

If the Doppler-spread target is a dual system to the range-spread 
target, the second detection problem is the dual of the first detection 
problem. 

This property follows by using Properties 3 and 7 in Definition 5. It 
is important because it enables us to apply all of the results in Chapter 11 
to the range-spread problem. 

The result in Definition 5 concerned binary detection. The extension to 
M-ary problems and estimation problems is straightforward. 

At this point in our discussion we have a number of general results 
available. In the next section we consider some specific cases. 

12.3.3 Applications 

In this section we apply the results of our duality theory discussion to 
some specific cases. 
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Case 1. Dual of a Finite-State Doppler-spread Target. The spectrum of 
the reflection process for a finite-state Doppler-spread target is the 
rational function 

&{f} = a;f;-iz-++ (71) 
l l l 

n 

l l l -Jbao . 
0 

Notice that it is a real, non-negative, not necessarily even function of 
freauencv. To obtain dual svstems, the range-scattering function must be 
theAratio6al function of 1, ’ 

If the transmitted signal for the 
spread target system which is its 
receiver is shown in Fig. 12.6. 

an(-q2n-2 + l l l + a, 

bn(-A)2n + l l l + bo l 

(72) 

dispersive target is f{t}, the Doppler- 
dual will transmit F{t}. The optimum 

Ro 
4 

Dispersive FR 0) 

* channel 

Qo 

(a) Actual channel 

4 

Optimum receiver 
from 

Fig. 11.9 

(b) Dual system and optimum receiver 

l 

Fi 0) - Fourier E* (a 

Optimum receiver 
from 

- transformer Fig. 11.9 
4 1 

(c) Optimum receiver for dispersive channel 

Fig. 12.6 Finite-state range-spread target. 
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To illustrate this case, .we consider an example. 

Example 1. Consider the range-spread target detection problem in which 

and 

elsewhere. 

The dual of this is the Doppler-spread problem in which 

--co<f<(Jo 

(73) 

(74) 

(75) 

(76) 

Combining the results in Fig. 12.6 and (11.38)-(11.49) (see also Prob. 11.2.4) gives the 
optimum receiver in Fig. 12.7. The performance is obtained from the result in Section 
11.2.3. 

We should observe that the dual of a finite-state Doppler-spread target 
is a range-spread target that is infinite in extent. This is never true in 
practice, but frequently we obtain an adequate approximation to &(A) 
with a rational function. 

Case 2. SPLOT Condition. In the Doppler-spread case we obtained 
simple results when 

T<t<_T 
-2- -2 (77) 
elsewhere 

and 2’ was large compared to the correlation time of d,(t) as measured by 
the covariance function En(~). The dual of this case arises when 

elsewhere 

and UI’ is large compared to the two-frequency correlation distance as 
measured by &{o}. 

A filter-squarer-integrator receiver for the Doppler-spread case is shown 
in Fig. 12.8. The gating operation is added to take into account the finite 
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Fig. 12.8 Optimum receiver for Doppler-spread target: SPLOT condition. 

observation time. We could implement the optimum receiver by using a 
Fourier transformer cascaded with the system in Fig. 12.8. In this parti- 
cular problem it is easier just to implement the inverse dual of Fig. 12.8 
Using the properties in Table 12-1, we obtain the system in Fig. 12.9. 
(We reversed the two zero-memory operations to avoid factoring the 
spectrum.) Notice that the transmitted signal is 

f(t, = Jws+$, -00<<<a. (79) 

This pulse will never be used exactly. However, if the transmitted pulse 
has a transform that is relatively flat over a frequency band, the receiver 
in Fig. 12.9 should be close to optimum. 

Case 3. LEC Condition. When the LEC condition is valid, we can solve 
the problem directly for either the range-spread or Doppler-spread target. 
In Fig. 12.10 we show the two receivers. It is easy to verify that they are 
duals. 

Case 4. Resolvable Multipath. The resolvable mukipath problem corre- 
sponds to a scattering function, 

SE{n> = z 6,d{Tl - ai}, (80) 
i=l 

where the Ai are sufficiently separated so that the output due to each path 
may be identified. This is the dual of the Doppler channel with the 
scattering function 

w-7 

Fig. 12.9 Optimum receiver for range-spread target: SPLOT condition. 
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a, ~ 
Filter matched 

T to 
P*(t) 

4 I 
. 2 lR 

> 

(a) Range spread 

(b) Doppler spread 

Fig. 12.10 Optimum receiver: LEC condition. 

Notice that (81) does not describe a frequency-diversity system. It corre- 
sponds to a set of slowly fluctuating point targets moving at different 
velocities. 

Case 5. Optimum Binary Communication. The model for a binary 
communication system operating over a range-spread channel is analogous 
to that in Section 11.3. The transmitted signals are given by (11.68). The 
receiver consists of two simple binary receivers referenced to o1 and CC)~. 
The actual implementation will depend on the physical situation, but it 
will correspond to one of the structures developed in this chapter. 

The point of current interest is the performance. The derivation in 
Section 11.3.1 did not rely on the channel characteristics. Thus, the bound 
in (11.91), 

is also valid for range-spread channels. We now consider two examples of 
signal design to show how we can approach the bound. 

Example 2. Let 
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This is the dual of the channel in (11.94). From the results of that example, we know 
that if &./IV0 is large we can achieve the bound by transmitting 

f(t) = d=$ , --co<t<q @4) 

with W chosen properly. From (11.96) the optimum value of W is 

Notice that results assume 

4-J 
WY)- =- 

3.07(2L) (85) 

W*L >> 1. (86) 

The signal in (84) is not practical. However, any signal whose transform 
constant over [- W,, WJ should approach the performance in (82). 

Example 3. Let 

5,(A) = 
4kab2 

(27~1)~ + k2 ’ 
--<A< m. 

is reasonably 

(87) 

This is the dual of the channel in Examples 2 and 3 on pages 382 and 384. The dual of 
the signal in Fig. 11.16 is 

F(f) =%a?(f- iW,>, VW 
i=t 

where 

Olfl ws, 

elsewhere, 

and D, satisfies (11.111). 
I f  

and 

27T 
ws << k (90) 

277 
w* >> 7 9 (90 

then we approach the bound in (82). 
The signal in (88) corresponds to transmitting D, frequency-shifted pulses simultan- 

eously. An identical result can be obtained by transmitting them sequentially (see 
Problem 12.3.14). The shape in (89) is used to get an exact dual. Clearly, the shape is 
unimportant as long as (90) is satisfied. 

These results deal with binary communication. The results in Section 
11.3.4 on Wary systems carry over to range-spread channels in a similar 
manner. 

Case 6. Suboptimum Receiver No. 1. In Section 11.3.3 we developed a 
suboptimum receiver for the Doppler-spread channel by using a piecewise 



Gate: 

at, y T,Ltl2T, 
--+- - 

P(t) 
Fig. 12.11 Suboptimum receiver No. 1 for Doppler-spread channel. 

Fig. 12.12 Piecewise constant approximations to the transform of&(t). 
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constant approximation to the channel fading process. We have repeated 
Fig. 11.18 (redrawn slightly) in Fig. 12.11. In Fig. 12.12a and b, we show 
two types of piecewise approximations to the transform of the channel 
fading process. In the first approximation, we use segments of L-l and 
have a total of 

D, A WL (92) 

segments. In the second approximation, we let the segment length equal 
Ws and regard it as a design parameter. We also shift the origin for 
notational simplicity. The resulting receiver is shown in Fig. 12.13. This is 
the dual of the receiver in Fig. 12.11. The performance can be analyzed 
in exactly the same manner as in Section 11.3.3. 

Case 7. Suboptimum Receiver No. 2. The dual of the suboptimum 
FSI receiver in Fig. 11.20 is the two-filter radiometer in Fig. 12.14. The 
multiplier &A) is a function that we choose to optimize the performance. 
In the LEC case 

G(a) = &(a) 

(see Case 3), while in the SPLOT case 

N 
w  

%3(4 - - 
&(A) + Nj l 

This type of receiver is analyzed in [8]. 

Sample at T 

Ideal filter: 
+ 05f’LW~ 

Matched filter: 

F*(f) 

1 Matched filter: 1 

(93 

(94) 

5al filter: 
-l)w, - z- 

Matched filter: 
> Ial2 

‘A 

:’ I NW, &f, * 

Fig. 12.13 Suboptimum receiver No. 1 for range-spread channel. 
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I;;Xw 
, 

Filter matched 
to l;“(t) 

Fig. 12.14 Suboptimum two-filter radiometer. 

Case 8. Dual Estimation Problems. In Section 11.4, we introduced the 
problem of estimating the range and mean Doppler of a fluctuating point 
target. The dual problem is that of estimating the Doppler and mean range 
of a nonfluctuating range-spread target. 

We assume that the target is a nonfluctuating range-spread target whose 
mean range is 

mR i? 
1 O” 

s 20,” --oo 
agR(jb) dil. (9% 

It is moving at a constant velocity corresponding to a Doppler shiftf. The 
complex envelope of the returned waveform is 

F(t) = JEt ei2=f t 

s 
@)(t - @,(a> dA + i?(t), -m<t< co. (96) 

-co 
The covariance function of the first term is 

E[d(t)i*(u)] = Etej2nf[t-t’1 mf(t - A1 - m&!&,(&)f*(u - A1 - c m,) dal, 
J-KJ 

-co < t, I1 < m,  (97) 

where 
(98) 

This problem is the dual of that in Section 11.4. The various results of 
interest are developed in the problems. 

This completes our discussion of the applications of time-frequency 
duality. Our interesting examples are developed in the problems. Before 
leaving the subject, several observations are important: 

1. The discussion assumes infinite limits, so that there is an approxima- 
tion involved. 

2. If the system is implemented with a Fourier transformer, there is an 
approximation. 

3. The concept as a guide to thinking about problems is as useful as the 
formal manipulations. The result of the manipulations should always be 
checked to see whether they operate as intended. 
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If one remembers these points, duality theory provides a powerful 
tool for solving and understanding problems. We now summarize the 
results of the chapter. 

12.4 SUMMARY: RANGE-SPREAD TARGETS 

In this chapter we have considered range-spread targets. The returned 
signal is modeled as a sample function of a zero-mean complex Gaussian 
process that is described by the relation 

(99) 

The covariance function of the returned signal is 

s 03 
E&t, u) = E, j-yt - A)S&)f*(u - 1) da. (100) 

--co 

We observed that a range-spread target caused frequency-selective fading. 
The detection problem was once again that of detecting a sample func- 

tion of a Gaussian random process in the presence of additive noise. The 

Table 12.2 Singly spread target results 

Doppler-spread target Range-spread target 

r 4 
Reflected 

signal 
^s (t) = 1/E, 6D(t)f(t - 1) Y(t) = 1/E, 

J --co 

Covariance 
function E,fl(t - l)I&(t - u)jyu - A) Et 

s 
O” f(t - &#)jl*(u - 1) dA 

-co 

Scattering S;nif> functions * 

Correlation 
functions ~jyw 

LT,O) 

&w 
Two-frequency correlation 

function 

Type of 
fading 

Time-selective Frequency-selective 

Approximate 
diversity, (B+ W)T=BT+l (L+T)W=WL+l 
WTw 1 

Condition for 1 
flat fading T” 5 

1 
w << E 
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structure of the optimum receiver followed easily, but the integral equation 
of interest was difficult to solve. For the LEC case and the separable 
kernel case we could obtain a complete solution. 

In order to obtain solutions for the general case, we introduced the 
concept of time-frequency duality. This duality theory enabled us to 
apply all of our results for Doppler-spread targets to range-spread targets. 
In retrospect, we can think of Doppler-spread and range-spread targets as 
examples of single-spread targets (either time or frequency, but not both). 
In Chapter 13, we shall encounter other examples of singly-spread targets. 
In Table 12.2, we have collected some of the pertinent results for singly- 
spread targets. 

Our discussion has concentrated on the detection problem in the 
presence of white noise. Other interesting topics, such as parameter 
estimation, detection in the presence of colored noise, and the resolution 
problem, are developed in the problems of Section 12.5. We now turn our 
attention to targets and channels that are spread in both range and 
Doppler. 

12.5 PROBLEMS 

P.12.2 Detection of Range-Spread Targets 

Problem 12.2.1. Consider the covariance function in (10). Prove that &<t, u) can be 
written as 

a3 

&(t, U) = 
ss 

dfi dfi d~~fl~F{fi}&{fi - f2)F*{f2}e--j2sfzU. 

-co 

VW 

Problem 12.2.2. Assume that 

1. Find &(t, u). 
2. Find the optimum receiver. Specify all components completely. 

Problem 12.2.3. Assume that f(t) is bandlimited to & W/2 cps. We approximate &(;I) as 

where 
N=LW, 

which is assumed to be an integer. 
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1. Draw a block diagram of the optimum receiver. 
2. Justify the approximation in (P. 1) in the following way : 
a. Use finite limits on the expression in (P.l) in Problem 12.2.1. 
b. Expand &{a} using Mercer’s theorem. 
c. Use the asymptotic properties of the eigenfunctions that were derived in Section 

I-3.4.6 (page I-206). 
Problem 12.2.4. Assume that 

and that 

The LEC condition is valid. 

1. Evaluate F(s). 
2. What choice of T minimizes F(s)? Explain your result intuitively. 

Problem 12.2.5. 

1. Prove that the expression in (35) can also be written as 

2. Express &(“) in terms of RR{“}’ 
3. Combine parts 1 and 2 to obtain another expression for F(S). 

Problem 12.2.6. Assume that 
2a,2 

L 

14 < 
L 

-- 
3’,(A) = = 

9 
-2’ 

and 
0, elsewhere 

1 
-9 I I< 

T 
t 

fc t 1 dT -2 = 

0, elsewhere. 

The LEC condition is valid. Evaluate F(s). 

P. 12.3 Time-Frequency Duality 

Problem 12.3.1. The signal f(t) is 
K 

fc ) t = a 2 G(t - iT,), 
i=l 

where E(t) is defined in (10.29). Find the dual signal. 
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Problem 12.3.2. The signal f(t) is 

e-t212T2, -al<<<<. 

Find the dual signal. 
Problem 12.3.3. Find the duals of the Barker codes in Table 10.1. 
Problem 12.3.4. Time-Varying Gain. Let 

q*) = a”(l>aJ*>, 

where z(t) is a known function. Find the dual operation. 
Problem 12.3.5. Filter. Let 

s 

co 
qt> = hu(t - 7)iQd dr, 

-cQ 

where hc() is a known function. Find the dual operation. 
Problem 12.3.6. Gate. Let 

21(t) = 
sl(t), Tl I * S T,, 

0, elsewhere. 
Find the dual operation. 
Problem 12.3.7. Ideal Filters. Let 

where 
s 
Co qt) = i(t - d&(7) dr, --co 

A(f) = 
t 

1, F, 5.f I F,, 
0, elsewhere. 

Find the dual operation. 
Problem 12.3.8 Aperiodic Cross-Correlator. Let 

Find the dual operation. 
Problem 12.3.9. Let 21(t) = s * g; (t + &(T) d7. 

-03 
Find the dual operation. 
Problem 12.3.10. 

1. Let 

Find the dual operation. 
2. Let 

Find the dual operation. 
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Problem 12.3.11. Consider the detection problem specified in (67) and (68). 

and 

&(A) = 
242 P/k 

(2n-f,W4 + 1 ’ 
--<A<< 

II 1 t Olt<T. 

Draw a block diagram of the optimum receiver. 
Problem 12.3.12. Consider Case 2 and the signal in (78). Derive the receiver in Fig. 12.9 
directly from (29)-(31) without using duality theory. 
Problem 12.3.13. Consider the two systems in Fig. 12.10. Verify that the receiver in 
Fig. 12.10b is the dual of the receiver in Fig. 12.1Oa. 
Problem 12.3.14. Consider the example on page 433. Assume that we transmit 

f(t) = $a;(t - kT,)ej2~k~%, 
k=l 

where G (t) satisfies (11.113b). 
1. Describe f(t). 

2. Verify that this signal achieves the same performance as that in (88) when the 
parameters are chosen properly. 
Problem 12.3.15. Assume that L = 200 psec in (83). The available signal power-to- 
noise Ievel ratio at the channel output is 

The required Pr (E) is 10 -4. We use a binary FSK system. 
1. What is the maximum rate in bits per second that we can 

channel with a binary system satisfying the above constraints? 
communicate over this 

2. Design a signaling scheme to achieve the rate in part 1. 
Problem 12.3.16. Consider Case 6. Derive all of the expressions needed to analyze the 
performance of suboptimum receiver No. 1. 
Problem 12.3.17. Consider Case 7. Derive all of the 
performance of suboptimum receiver No. 2. 

expressions analyze 

Problem 12.3.18. In Case 8 (95)-(98), we formulated the problem of estimating the 
Doppler shift and mean range of a nonfluctuating range-spread target. 

1. Starting with the general definition in (11.181), show that the range-spread 
ambiguity function is 

00 

en,(mRa~ mR:fQI f 1 = 
Et 
jy 

0 sss 
h,,(t, u:mR, f)e-ierfJtwu)f*(t - A1 - mR,)S~O(ll) 

--oo 
x f(u - A, - mRa) dAl dt du. 

2. When the LEC condition is valid, the expression can be simplified. Show that 
one expression is 

Et2 

&&EC {m&f ‘1 = - 
s 

co 00 

No2 -a) 
dx e{lt: + mE, f ‘> 

s 
sRo(x + @$ 

0 
(A) dil, 

-06 
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where 

and 

3. Express ORR,LEC (0, l } in several different ways. 

Problem 12.3.19. Prove that 8 nD,~&,m&, is the dual of h2D,I,Ec{mR, f >* Specifically, 
if 

I&> = &-#I 
and 

&{;1> = 5,(-d), 
then 

Problem 12.3.20. Derive the elements in the information matrix J in terms of 
OQ,,~~~{*, l } and its derivatives. 

Problem 12.3.21. Assume that 

A 1 t = e-t2/2T2 9 --oo<t<m 

and 

1. Evaluate t&.&??&, f }. 
2. Calculate the J matrix. 

Problem 12.3.22. Consider the problem of estimating the amplitude of a scattering 
function. Thus, 

SR(A: A) = ASR(A) 

and &&(A) is assumed known. Assume that the LEC condition is valid. 

1. Find a receiver to generate 6,,. 
2. Is d,, unbiased? 
3. Assume that the bias on 6,, is negligible. Calculate 

EM,, - h21. 

4. Calculate a bound on the normalized variance of any unbiased estimate of A. 
Compare this bound with the result in part 3. 

5. Compare the results of this problem with those in Problem 11.4.8. 

Problem 12.3.23. Assume that 

where &,{*} is known. we 
the LEC condition is valid. 

want to estimate A, the scale of the range axis. Assume that 

1. Draw a block diagram of a receiver 
2. Evaluate the Cramer-Rao bound. 

to generate ci,,. 
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Problem 12.3.24. Assume that 

5,,(A) = 2a,2 s(a - AI) + 2a,2 s(n - I,). 

We want to estimate A1 and A,. 
1. Find a receiver to generate j’l,mr and &r. 
2. Evaluate the Cramer-Rao bound. 
3. How does this problem relate to the discrete resolution problem of Section 10.5? 

Problem 12.3.25. Assume that we design the optimum receiver to detect a slowly 
fluctuating point target located at T = 0, f  = 0, in the presence of white noise. We want 
to calculate the effect of various types of interfering targets. Recall from (9.49) that A 
characterizes the performance. Calculate the decrease in A due to the following: 

1. A slowly fluctuating point target located at (Q). 
2. A range-spread target with scattering function ,&(A) and Doppler shift off cps. 
3. A Doppler-spread target with scattering function $cf, and range il. 
4. Interpret the above results in terms of the ambiguity function. Discuss how you 

would design signals to minimize the interference. 
Problem 12.3.26. Assume that we design the optimum LEC receiver to detect a range- 
spread target in the presence of white noise. We want to calculate the effect of various 
types of interfering targets. For simplicity, assume that the desired target has zero 
velocity and zero mean range. Calculate the degradation due to the following: 

1. A slowly fluctuating point target at (Q). 
2. A range-spread target with scattering function ,&(A) and Doppler shift of fcps. 
3. A Doppler-spread target with scattering function &{f} and range 1. 
4. Can the results in parts 1, 2, and 3 be superimposed to give a general result? 
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Doubly-Spread 
Targets and Channels 

In this chapter, we generalize our model to include targets that are 
doubly-spread. There are several areas in which this type of target (or 
channel) is encountered. 

A simple example of the first area arises in sonar systems. When an 
acoustic pulse is transmitted into the ocean, energy is returned from a 
large number of objects distributed throughout the ocean. If a submarine 
or ship is present, it also reflects the pulse. The latter reflection provides 
the information bearing signal and the scattered returns from other objects 
constitute the interference. The reflectors that cause the interference have 
various velocities and reflective cross-sections. In a reasonable model we 
assign a random amplitude and phase to each reflection. The location of 
the scatterers can be modeled as a spatial Poisson process whose mean- 
value function governs the average density. The velocity of the scatterers 
can be modeled by assigning a range-dependent probability density for the 
velocity of each scatterer. If we use this approach and assume a large 
number of scatterers, the result is a reverberation return that is a sample 
function from a Gaussian random process. The Poisson model has a great 
deal of physical appeal. It is developed quantitatively in [l]-[4]. In the next 
section we obtain the same Gaussian result in a less physical, but computa- 
tionally simpler, manner. The first distinguishing feature of this type of 
problem is that the spread target corresponds to an unwanted return that 
we want to eliminate. The second feature is that the target is “soft” 
(i.e., its physical structure is not fixed). 

A second area in which doubly-spread targets occur is one in which the 
details of the target are the quantities of interest. This area is encountered 
in mapping radars (e.g., ground mapping from airplanes or satellites; 
moon or planet mapping from the ground). Here we try to measure the 
detailed structure of the scattered return. We shall find that the return 

Detection, Estimation, and Modulation Theory, Part III:
Radar–Sonar Signal Processing and Gaussian Signals in Noise. Harry L. Van Trees

Copyright  2001 John Wiley & Sons, Inc.
ISBNs: 0-471-10793-X (Paperback); 0-471-22109-0 (Electronic)



Typical Problem Areas 445 

from the different segments of the target acts as a source of interference 
in the measurement problem. A second feature of this area is that the 
target is “hard” (i.e., its physical structure is fixed). 

A third area of interest arises when we try to communicate over disper- 
sive fluctuating channels (e.g., ionospheric and tropospheric channels, 
underwater acoustic channels, the orbiting dipole channel, local battlefield 
communication using chaff clouds). Here the return from the scatterers 
corresponds to the wanted signal, and the interference is some additive 
noise process. In addition, we see that the channel is “soft” (i.e., its physical 
structure changes). 

The fourth area is radar astronomy. Here we want to measure the range 
and velocity of a rotating target that has an appreciable depth. Once 
again, the return from the spread target contain s the desired information 
and the interference is an additive noise process. In this case, the target is 
“hard” and has a surface that is rough compared to the carrier wavelength. 

We see that the areas of interest can be divided into two groups. In the 
first, the return from the spread target (or channel) is a source of inter- 
ference. In the second, the return from the spread target (or channel) 
contains the desired information. In this chapter we study representative 
problems from the two groups. 

In Section 13.1, we develop a simple model for a doubly-spread target 
and discuss its effect on the transmitted signal. We then use this model to 
study a sequence of problems. 

In Section 13.2, we study the continuous resolution problem in active 
radar and sonar systems. This discussion is an extension of the discrete 
resolution problem in Section 10.5. The desired target is a slowly fluctuat- 
ing point target. The interference is modeled as a continuum of reflectors, 
using the doubly-spread target model of Section 13.1. We then study 
receiver design and signal design for this type of environment. This prob- 
lem, which is referred to as the reverberation problem in the sonar field 
and the clutter problem in the radar field, completes the discussion that 
we began in Chapter 10. 

In Section 13.3, we study the detection of the return from a doubly- 
spread target in the presence of noise. This problem is just one of detecting 
a complex Gaussian process in complex white noise, which we first 
encountered in Section 11.2. However, the covariance function of the 
signal process is quite complicated, and it is appreciably harder to solve 
the problem. 

In Section 13.4, we study the parameter-estimation problem briefly. 
Specifically, we consider the problem of estimating the amplitude of a 
doubly-spread target and the problem of estimating the mean range and 
mean Doppler of a doubly-spread target. 
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The major sections of the Chapter, 13.2 and 13.3, are almost inde- 
pendent. The reader who is interested only in communications can proceed 
directly from Section 13.1 to 13.3. Section 13.4 can also be read after 
Section 13.1. The results of the chapter are summarized in Section 13.5. 

13.1 MODEL FOR A DOUBLY-SPREAD TARGET 

Our model for a fluctuating range-spread target is a simple combination 
of the models in Chapters 11 and 12. 

13.1.1 Basic Model 

To illustrate the ideas involved, we consider the rotating sphere shown 
in Fig. 13.1. The surface of the sphere is rough compared to the wavelength 
of the carrier. We transmit a signal whose complex envelope is f(t) and 
examine the reflected signal from the range interval (A, A + &). The 
signal is the superposition of the number of reflections with random 
phases and can be modeled as a Rayleigh random variable. Since the 
orientation and composition of the reflectors that contribute to the 
returned signal change as functions of time (see Fig. 13.M and c), we must 
model the reflection as a random process. Thus, 

(1) 

where 6(,, A) is a complex Gaussian process whose independent variables 
are both time and space. The return from the entire target is a super- 
position of the returns from the incremental intervals. The complex 
envelope, 

dR 9 (2) 

is a sample function from a zero-mean complex Gaussian process. It can 
be characterized by the covariance function 

R&t, 24) A E[s-(t)i*(u)J 

x P*cu - Al) dA dA,. (3) 
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Direction 
Of rotation 

Direction 
of propagation 

(b) Tip view (c) ToXp view 

Fig. 13.1 Rough rotating sphere. 

The statistical characteristics of the target specify the term in braces. We 
make two assumptions : 

1. The returns from different intervals are statistically independent. 
(This corresponds to the model in Chapter 12.) 

2, The return from each interval is a sample function of a stationary, 
zero-mean complex Gaussian random process. (This corresponds to the 
model in Chapter 11.) 
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Using these two assumptions, we can write 

q&t, @*(u, Al)] = i&&t - 24, A)S(A - 11). (4) 

The function &(T, A) is a two-variable function that depends on the 
reflective properties of the target. Using (4) in (3) gives 

&t, u) = E, *f(t - jl)KDR(t - u, A)f*(u - A) dA 

as a complete characterization of the returned signal process. 
Just as in the singly-spread case, it is convenient to introduce a scattering 

function, which is defined as 

Physically, &,{f, A} represents the spectrum of the process h(t, il). It is 
a real, non-negative function off and A. The scattering function of a rough 
rotating sphere is shown in Fig. 13.2. (This result is derived in [S].) Two 
other scattering functions that we shall use as models are shown in Figs 
13.3 and 13.4. In Fig. 13.3, 

$I& 1) = 
2ck(i) 

(2Tf)2 + k2(l) ’ 
-00 <f < *, 0 < ;3. < L* (7) 

At each value of A, the spectrum is a first-order Butterworth process, 
but the pole location is a function of 1. This is an approximate model 
for some communications channels. In Fig. 13.4, 

f 2 2 

----j 
2aD” 26R2 1 

Fig. 13.2 Scattering function of a rough 
sphere [from [S]]. 
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Fig. 13.3 A scattering function example. 

The doubly Gaussian scattering function never occurs exactly, but is a 
useful approximation in many situations. Other examples of scattering 
functions are given on pages 35-39 of [37]. 

We can also write (5) using the scattering function as 

There are several properties of the model that will be useful, and we 
include them at this point. 

Property 1. Received Energy. The average value of the received energy is 

E[E,] a j?, = r O” &t, t) dt. (10) 
J-CO 

Fig. 13.4 A doubly-Gaussian scattering function (drawn for 00 < Q&. 
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Using (9) gives 

Er = EtS_mmdfJv~d(--df If0 - w  SDR(f, 4. 

The integral with respect to t equals 1 for all il. Thus, 

(11) 

00 

& = E, 
ss 

$.ln{f, q df dL 
-00 

To be consistent with our earlier models, we assume that 

(12) 

al 
ss gDR(f, A} df dl = 2~5,~. 
-al 

(13) 

We see that the double integral of the scattering function is the ratio of 
the expected value of the received energy to the transmitted energy. 
Notice that the received energy is not a function of the signal shape. 

Property 2. When a scattering function is concentrated in one region of 
thef, A plane, we can characterize it grossly in terms of its moments. The 
mean delay is 

A l 
00 

mR - 
s s 2a,” --oo 

dA A * df s’,,{f, a). (14) 
-al 

The mean-square delay spread is 

OR 2 - A 1 -2 A 2 
20, 

s mdA 
--00 

s * df S’oR{ f, A} - mR2. 
--al 

The mean Doppler shift is 

1 
mD A - 

s s 
O” dff O” da s&f, A}= 

2ab2 -co 
(16) 

-co 

The mean-square Doppler spread is 

2 A 1 O” 
cD -2 

s s 
dff 2 

2a, -al ’ 
* dA &,(f, A} - mD2. 

--oo 

The skewness is measured by 

PDR=' 
fA - mRmD 

9 
ODOR 

where 

-A ’ fA - 
s s 

* df f 
2ab2 -aI 

* dA n&R{ f, 1). 
-aI 

(15) 

(17) 

(19) 
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In contrast with these mean-square measures, we frequently encounter 
scattering functions that are strictly bandlimited to B cps and/or are 
strictly limited in length to L seconds. In these cases the absolute measure 
is usually more useful. 

Property 3. Alternative Characterizations. We saw that two functions 
that characterized the target were &&, ;1) and &{f, A}. Two other 
functions obtained by Fourier-transforming with respect to A are 

and 

(20 

(21) 

Notice the sign convention in the Fourier transform. Transforming from 
t to f and from 2 to v, we use the minus sign in the exponent. (Remember 
that both v and fare frequency variables.) These functions are summarized 
in Fig. 13.5. The significance of the various variables should be empha- 
sized. We can consider the f, 7 pair and the 1, v pair separately. 

1. A “short” target is narrow on the l-axis and therefore is wide on the 
v-axis. 

2. A point target is an impulse on the A-axis and therefore is a constant 
for all values of 21. 

Correlation function 

ii,, (7, A) 

Fig. 13.5 Target and channel characterizations. 
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3. An infinite-depth target is constant along the A-axis and therefore is 
an impulse on the u-axis. 

4. A slowly fluctuating target is narrow on the f-axis and therefore is 
wide on the T-axis. 

5. A fixed target is an impulse on thef-axis and therefore is a constant 
on the T-axis. 

6. A rapidly fluctuating target is wide on the f-axis and impulsive on 
the T-axis. 

The advantage of having several characterizations is that one is fre- 
quently easier to use than the others. We shall encounter several examples 
at various points in the chapter. Notice that, except for a 20,~ factor, the 
scattering function, &{f, A}, has all of the properties of a joint proba- 
bility density. Thus, IDR{~, u> 
function. 

Property 4. Degenerate Targets, 
be viewed as limiting cases of a 
have 

s 

00 
&(t, u) = E, J(t - - 

-co 

is analogous to a joint characteristic 

Both singly-spread target models can 
doubly- lspread target. Repeating (5), we 

4Gm(t - u, a)f*(u - a) da. (22) 

To obtain the point target model, we assume that the length of the 
target along the &axis is much less than the reciprocal of the signal band- 
width; that is, 

1 
L<<- l 

W 
(23) t 

Then we can treat f(t - il) as a constant function of J over the range 
where K&t - u, 2) is nonzero. Consequently we can approximate 
E&&t - u, A) as 

&,(t - u, a) h/ q)(t - u)s(n - I). (24) 

Using (24) in (22) gives 

&t, u> = EJ(t - l)&(t - u>p*<u - X), (29 

which is (11.20). If (23) is satisfied, we have a fluctuating point target 
whose fading is not frequency-selective. 

f  In (23), (27), and (30) we use B, L, W, and Tin an intuitive manner. For a particular 
signal and target, the statements can be made more precise. 
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To obtain the nonfluctuating model, we start with the expression in (9), 

If 

00 

&t, u) = E, 
ss 

f(t - AJ&{f, l}f*(u - l)e’2nf(t-u) df dl. (26) 
-a3 

1 
B<<--9 

T 
then we can use the approximation 

(27) 

(28) 
Using (28) in (26), we obtain 

which corresponds to the return from a nonfluctuating range-spread 
target moving at a constant velocity. If (27) is satisfied, the fading is not 
time-selective. 

In order to have an undistorted returned signal (i.e.Y fading that is 
flat in both time and frequency), both (23) and (27) must be satisfied. 
Combining them, we have 

1 
BL<< -. 

WT 
(30) 

Because 
WT>l (31) 

for all signals, the condition in (30) can only be satisfied for BL < 1. 
We refer to targets (or channels) for which 

as underspread targets (or channels). If 

BL>L (33) 

we say that the target (or channel) is overspread. We shall look at further 
implications of the BL product as we proceed through the chapter. Our 
present discussion shows that only underspread targets that satisfy (30) 
will ever degenerate into slowly fluctuating point targets for certain 
signals. 

It is worthwhile recalling that the Doppler spread depends on both the 
target velocity spread and the carrier frequency (see (9.24)). Thus the BL 
product for a particular target will depend on the carrier frequency. 

Up to this point we have characterized the reflection process d(t, A) 
in terms of its covariance function or spectrum. It is frequently convenient 



454 13.1 Model for a Doubly-Spread Target 

to use a differential-equation model of the channel process. We develop 
this model in the next section. 

13.1.2 Differential-Equation Model for a Doubly-Spread Target 
(or Channel)T 

In our model for a doubly-spread target we have assumed that th 
returns from different range elements are statistically independent. The 
covariance function of the reflection process is 

E[&, a)d*(u, A’)] = R&t - u, i1)iyil - A’)* (34) 

In many cases of interest the Fourier transform of &(t - u) is a rational 
function of J In these cases we can derive a state-variable model for the 
doubly-spread channel. Notice that (34) implies that there is no relation- 
ship between the target processes at different values of A. Thus we can 
treat the target process at any point (say &) as a random process with a 
single independent variable t. Then the state representations developed in 
Section I-6.3.3 are immediately applicable. The first new feature is that 
the state equations will contain A as a parameter. Other new features will 
be encountered as we proceed through the development. 

Since the output of the channel is given by 

dA 9 

it is convenient to define a new process 

&(t,  1) a 6 t  -  4 A l 

(  1 
2’ 

(35) 

(36) 

Notice that 8&, A) is a zero-mean complex Gaussian process whose 
covariance function is 

E[&(t, a>RJu, A’)] = E 6 t [ ( +p*(u -;,q] 

= K&(t - u, A) 6(A - A’). ( 7) 3 

We have modeled the channel reflection process as a random process 
that depends on both time and space. We now want to characterize the 
time dependence by a state-variable representation. The spatial de- 
pendence is included by making the state representation a function of the 

t This channel model was developed by R. Kurth in his doctoral thesis [7]. It is 
used primarily in sections 13.2.2 and 13.3. One can defer reading this section until 
that point. 
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spatial variable I. The representation that we need to describe a doubly- 
spread channel incorporates the spatial dependence in a straightforward 
manner. 

We denote the state vector of &(t, I) as Z(t, I). The state equation is 

y = %(il)Yc(t, ,I) + G(l)u”(t, A), t > Ti, - (38) 

where 

E[ii(t, A)n*(7, A’)] = Q(A) d(t - 7) 6(il - A’). (3% 

The initial covariance of the state vector is 

E[3i(Ti, A)z+(q, A’)] = &)(A) d(il - A’). ( (40) 

The channel process is 
l&t, a> = C(l)Z(t, A). (41) 

Notice that there is no coupling between the different values of 1 in the 
description. The state equation is written as a partial differential equation, 
but it is actually just an ordinary differential equation containing A as a 
parameter. Because of this parametric dependence, we can write a co- 
variance equation easily. We define 

&(t, t’:l, 1’) A E[Z(t, A)et(t’, A’)] 

= R,(t, t’:A) 6(il - I’). (42) 

As before, &( t, t ’ : 1) can be related to &( t, t : A) by the relation 

g,(,, t’:l) = 
pt - i’:l)g,(t’, t.l), t 2 t’, 

\g;(t, t)G+(t’ - t:A), t < t’, 

where 6(t: I) is the transition matrix and is the solution to 

(4% 

(44) 
with the initial condition 

t&o, n> = I. (45) 

Notice tha.t the transition matrix has a single time argument, because 
P(2) and c(L) are not functions of time. 

Since we have assumed that the channel process is stationary, &(t, t: 1) 
is not a function of time. Thus we can write 

9,(A) a ii;,(t, t:n>, t > Ti. - (46) 
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The matrix &A) is just the solution to 

[see (I-6.333a)]. Notice that the stationarity assumption requires 

P,(l) = R;(A). (48) 

The channel covariance function is obtained by using (41) and (42) in (37) 
to obtain 

R&7, I) = C(A)ii;,(T, n)c+(A). 1 (49 

Once again we emphasize that all the results are ordinary state-variable 
results with a parametric dependence on il. To complete our model, we 
must describe the observed signal process. Using (36) in (35) gives 

i(t) = s y/EJ(t - A)b”,(t, A) dil. (50) -co 
Using (41) in (50), we have 

/ 1 

i(t) = 00 -JEJ(t - n>C(A)ji(t, A) dil. 
-co 

(51) 

We see that (51) contains an integration over the spatial variable A. This 
spatial functional is the new feature of the problem and will require 
extension of our earlier state-variable theory. Notice that it is a linear 
functional and is analogous to the modulation matrix in Section 6.6.3. 
It is sometimes convenient to rewrite (51) as 

$1 (52) 

This completes our differential equation model of the doubly-spread 
channel. To illustrate the techniques involved, we consider an example. 

Example [7]. We consider a complex first-order state equation 

aqt, A) 
- = -R(A)z(t, I) + ii(t, A), 

at 
(53) 

and 
b,(t, A) = ciqt, a). (54) 

These equations correspond to (38)-(41) with 

F(A) = -;(A) = -k,(i) - jki@h (55) 

G(a) = 1, (56) 
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and 
E(A) = c. (57) 

We assume 

m> 2 0 w9 
and 

k,(A) > 0. (59 
From (44) and (45), we have 

&T, A) = exp [-k,(A) ITI -jk&A)T], (60) 
and from (47), 

Y 

km 
Q(a) 

= 2k,(il)’ 
(61) 

Using (60) and (61) in (43) and the resuft in (49) gives the channel covariance function as 

&)R(T, 4 = es exp [-k,(A) IT[ - jkJA)r]. (62) 
T 

Transforming gives the channel-scattering function as 

Notice that 

q&f9 Al = 
c2m 

(z-rrf + k,(W2 + k:(A) ’ 

co 

ss 

co S&f, a> df dil = c2 
f  

‘@’ dl A zcr 2 - 
-* &@I b l 

-co 

(63) 

(64) 

The scattering function in (63), considered as a function of the frequency at 
any value of A, is a one-pole spectrum centered at f = --k@)/Z~ with a peak value 
c2&A)/kr2(jl) and 3-db points fk,(A)/Zr about the center frequency. 

In Fig. 13.6 we show the scattering function for the case when 

( 

274 
1 - cos - , 

( 1 L 
OO<L, 

m = (65) 

0, elsewhere, 

and 

R(A) = 

i 

,(,-&sin(G)), O<A<L, 
(66) 

0, elsewhere. 

Except for the constraints of (58), (59), and (64), &(A) and k(A) are arbitrary. This 
permits considerable flexibility in the chaise of S &{f, A}, even for this first-order 
model. For instance, if_ki(A) is proportional to A, then sDR{f, 1) is sheared in the 2, f  
plane. We can choose Q(A) to give a multimodal (in A) scattering function. In Fig. 13.7 
we show a scattering function that exhibits both the multimodal behavior and the 
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Fig. 13.6 Scattering function specified by (65) and (66) (from [fl). 

shearing effect. Here 

elsewhere, 

f  
Fig. 13.7 Scattering function specified by (67) and (68) (from [7]). 



Model Summary 

and 

f(i)=k(l -&) -jr&). 
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(48) 

This example illustrates the flexibility available with a first-order model. 
By using a higher-order system, we can describe any scattering function 
that is a rational function in f for each value of 1. To obtain multimodal 
behavior inf requires at least a second-order state model. 

Just as in our previous work, the main advantage of the state-variable 
formulation is that it enables us to express the optimum receiver and its 
performance in a form such that we can actually compute an explicit 
answer. We shall look at specific examples of this model in Sections 13.2 
and 13.3. 

13.1.3 Model Summary 

In this section we have developed a model for a doubly-spread target. 
The target return is characterized by either a scattering function or a 
distributed state-variable model. 

In the next three sections we discuss various situations in which doubly- 
spread targets are the central issue. As we pointed out earlier, because the 
sections deal with different physical problems they can almost be read 
independently. (There are a few cross-references, but these can be under- 
stood out of context.) 

13.2 DETECTION IN THE PRESENCE OF REVERBERATION OR 

CLUTTER (RESOLUTION IN A DENSE ENVIRONMENT) 

In this section we consider the problem of detecting the return from a 
slowly fluctuating point target in the presence of distributed interference. 
The problem is an extension of our discrete resolution discussion in Section 
10.5. 

This type of problem is often encountered in active sonar systems. 
The complex envelope of the transmitted signal is &$(l). The target of 
interest is a slowly fluctuating point target that is located at a known 
delay Q and known Doppler CC)~. As the transmitted signal travels through 
the ocean, it encounters various inhomogeneities and numerous objects 
that cause reflections. A possible target environment is shown in Fig. 13.8. 
The return of the distributed interference is referred to as reverberation 
in the sonar case and as clutter in the radar case. 

These reflections can be modeled as a spatial Poisson random process. 
In [l] we have developed the model in detail (see [2], [3] also). When there 
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i” target 

Distributed /. 
interference 

Fig. 13.8 Target environment in (AJ) plane. 

are a large number of reflectors we are led back to the complex Gaussian 
model of Section 13.1. There has been a great deal of work done on 
reverberation models, which the interested reader may consult (e.g., 
[8]-[18]). It appears that in many situations our spatial Poisson model is 
an adequate description of the environment. 

Denoting the complex envelope of the reverberation return as ii,(t), 
we have 

Z,(t) = E, J (69) 

This is a zero-mean complex Gaussian process with the covariance 
function 

&,(t, u) = E, 
s 

mf(t - n>KDB{t - u, A}f*(u - A) dl. (70) 
-co 

[These are just (2) and (5) repeated.] Alternatively, we can write (70) as 
Go 

i?;,(t, U) = E, 
ss 

f(t - A)!&,{f, a>f*(u - l)ei2rf(t--u) df dA. (71) 
--a3 

The function ,&{f, I} is the scattering function of the reverberation and 
characterizes its distribution in range and Doppler. In addition to the 
reverberation return there is an additive, statistically independent complex 
white noise process G(t). Thus, we have the following hypothesis testing 
problem : 

F(t) = Ef(t - qJeiOdt + ii,(t) + G(t), -oo < t < mH1, 
(72) 

F(t) = fir(t) + w>, --a < t < axH,,. 
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This is just a detection in colored noise problem that we encountered 
previously in Section 9.2. The only new feature is the dependence of the 
colored noise covariance function on the transmitted signal. Notice that 
this problem is just the continuous version of the discrete resolution prob- 
lem discussed in Section 10.5. Just as in that case, we can consider two 
types of receivers : 

1. The conventional receiver, which is designed assuming that only 
white noise is present. 

2. The optimum receiver, whose design is based on the assumed statis- 
tical knowledge of the reverberation. 

In Section 13.2.1 we study the performance of the conventional receiver. 
In this case we try to eliminate the reverberation by choosing the signal 
properly. In Section 13.2.2 we study the optimum receiver problem. In 
this case we try to eliminate the reverberation by both signal design and 
receiver design. 

13.2.1 Conventional Receiver 

We consider the problem of detecting a target at some known delay Q 
and Doppler md. If there were no reverberation, the results in Section 9.2 
would be directly applicable. From (9.36), we compute 

s 00 IA - F( t)f*( t - Td)e-jwdt dt. 
--oo 

The test consists of comparing 111” with a threshold, 

(73) 

When reverberation is present, this receiver is not optimum. It is fre- 
quently used for several reasons : 

1. It is simpler than the optimum receiver. 
2. The scattering function may not be known, and so we cannot 

design the optimum receiver. 
3. Our analysis will demonstrate that it 

optimum receiver in many situations. 
works almost as well as the 

It is straightforward to calculate the effect of the reverberat ion on the 
performance of the conventional receiv per. The output l is still a complex 
Gaussian random variable, so that A as defined in (9.49) is a complete 
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performance measure. The definition of A is 

A A E{li12 1 h} - E{lzI” 1 &} 
wo - 

l 

(75) 

As in Section 10.5, we use the subscript wu to denote that the receiver 
would be optimum in the presence of white noise only. Using (70), (72), 
and (73), we have 

= E 
1s 

O” [r?i,( t) + G( t)]f*( t - qJemsiod’ dt 
--a0 

x 
s 

O” [ii,?(u) + @*(u)]f(u - q-Jeiodu du 
--a 

00 

s s 

a3 
- - dt duf?*(t _ rd)f(u - Td)e-jad(f-u) 

-09 -a3 

x 
[s 
E, =)( t - A)&( t - u, l)f*(u - A) dil + IV, s(t - u) 1 . (76) 

--co 

Now recall that 

s 

00 
R&t - u, A) = &{ f, A}ej2af(t--u) dj. (77) 

--co 

Using (77) in (76) and rearranging terms, we obtain 

E{l~l” / Ho} = N, + E, s s O” dj mdi(. s’,,{f, A} -00 -03 

The product of the quantities in the two brackets is just the signal ambi- 
guity function, 0{~ - ;l,f -fd}. Thus, 

00 

E { II(” 1 H,} = N, + E, 
ss 

df da s;D,{.f, l}e{~, - 1, f - fd& 
-09 

(79) 

Thus, the effect of the reverberation is obtained by convolving the rever- 
beration scattering function with the signal ambiguity function, O{r, -f}.t 
Similarly, 

t This result was first obtained by Steward and Westerfeld [19], [20]. 
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A mN0 
wo = 

1 + E,INo fpfdl %&-i qq7, - kf -f,} 
J 
---co 

The second term 
reverberation, 

PT 

in the denominator represents the degradation due to the 

A Et - 

NO 
(82) 

Using Property 4 given in (10.116), we can write pr as 
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(81) 

We see that pr increases as we increase the transmitted energy. This 
means that we cannot combat reverberation by simply increasing the 
transmitted energy. This result is not surprising, because the reverberation 
is caused by a reflection of the transmitted signal. 

The result in (83) has the simple graphical interpretation shown in 
Fig. 13.9. We assume that transmitted signal has a Gaussian envelope and a 
linear frequency characteristic (see Example 4 on page 290) 

The equal-height contours of the ambiguity function are shown in Fig. 
13.9~. The equal-height contours of the reverberation scattering function 
are shown in Fig. 13.9b. To evaluate pr, we center 0{~, -f> at the desired 
target location (Q&) as shown in Fig. 13.9~. The value of pr will be 
determined by the amount of overlap of the two functions. For this 
particular target we can decrease the overlap in one of two ways: 

1. Let b = 0 and make T large. 
2. Let T be small and b any value. 

These observations can be verified qualitatively by sketching the resulting 
functions. We shall verify them quantitatively later in the section. 



(a) Equal-height contours of t9(~, f) 

(b) Equal-height contours of & (f, X) 

I 
(c) Superposition 

Fig. 13.9 Graphical interpretation of p,. integral. 

e 2’ - Possible target ranges ~+ 2’ 4 
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Scattering function is 
i uniform over this range w 

Fig. 13.10 Geometry for range-invariant approximation to the scattering function. 
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For future reference we observe that we also write pr in terms of 
two-frequency correlati on function as 

00 

Et 

P+ = y  d7 dv &{T, v}B{T, v} exp [-j2+fd - VT& (85) 
0 --a 

b the 

The results in (83) and (85) are valid for an arbitrary scattering function. 
A special case of interest is when the scattering function is essentially 
infinite in length and has a uniform Doppler profile. 

Range-Invariant Scattering Functions. When the scattering function has 
a uniform Doppler profile and extends beyond the range of a possible 
target by a distance greater than T, we can treat it as if it were infinite in 
extent. The geometry is shown in Fig. 13.10. We write 

Notice that both sides of (86) have units cps-l x meter-? Thus, 

s 00 E, L{f 1 df (87) 
-0Q 

is the average received energy per meter of reverberation. 
We can calculate pr by specializing the result in (83). We can also 

calculate pr directly from the original model. We carry out the second 
procedure because it has more intuitive appeal. 

When the reverberation is infinite in extent, the reverberation return is 
a sample function of a stationary process. Using (86) in (71), we have 

&i,(t, u) = E&,(t - u) s mf(t - A)f*(u - A) dA. (88) 
-al 

The integral can be written as 

co 
s s d;3. ao F{ fi)e3’27Tf+~) dfi 
--oo -aI s 

O” F*( f2je-j2nf&-A) df2 
-cl0 

s 
co - e i2nf1(t--u) N - s7(fi) dfl9 (89 

-00 
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Using (89) in (88) and transforming both sides, we obtain 

Thus the spectrum of the reverberation return is obtained by convolving 
the Doppler spectrum with the pulse spectrum. To compute the degradation 
for a stationary input process, we use (76) and (82) and obtain 

The results in (91) and (92) specify the degradation for this special case. 
A simple example illustrates the application of (92). 

Example. We assume that the Doppler profile is Gaussian, so that &,( f } is 

N 
S,,{f] = -4-e -f2/2o2, 

42 
9 

IT uD 
(93) 

where OD is the root-mean-square Doppler spread in cycles per second. Assume that the 
sienal is a Dulse with a Gaussian envelope and linear FM sweep rate of 2b cps/sec. 
Thus f ( t )  is* 

A I 

Then 

where 

fO)= ($);“-p[-(&jb)t2], -a <t< a, 

is the root-mean-square signal bandwidth in cycles per second [recall (10.48)] 
Convolving (93) and (96) gives 

where 

N,Et S&{f } =- e-f212Y2, 
42 =Y 

y2 h ofi2 + Bf? 

Using (95) and (97) in (92), we have 

<f --.fdj2 f2 
Pr Cm- - - - 2y2 2Br” df* 

(94) 

(95) 

(96) 

(97) 

(98) 

(994 
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Integrating and rearranging terms gives 

Et% 1 
Pr = 

N/% OR dl + 2(Bf/O~)2 1 l 

ww 
We see that the loss depends on the three quantities : 

1. DA Et& the ratio of the reverberation power to the noise power in 

No& aR’ the equivalent rectangular bandwidth of the reverberation. 

f 2. A, 
the ratio of the target Doppler to the root-mean-square Doppler spread 

“R 
of the reverberation. 

Bf 3. -, 
OR 

the ratio of the effective signal bandwidth to the rms 
the Doppler spread of the reverberation. 

The performance is given by substituting (996) into (81) to obtain 

A A Awe 1 -z- 
wo,n - - 

E,lNo 1 + Pr’ 

In Fig. 13.11, Awo,n is plotted for some representative values of D. 

D Physical meaning Figure 

0.3 Reverberation < additive noise 13.11a 
1.0 Reverberation = additive noise 13.11b 

10.0 Reverberation/additive noise = 10 db 13.llc 
100.0 Reverberation/additive noise = 20 db 13.1 Id 

The parameters on the curves are fd/oR. This is ratio of the target Doppler shift to the 
root-mean-square Doppler spread of the reverberation. The horizontal axis is B&. 
This is the ratio of the signal bandwidth to the root-mean-square Doppler spread of 
the reverberation. Two observations may be made with respect to this class of signals: 

1. For zero target velocities, we have monotone improvement as the bandwidth 
increases. 

2. For nonzero target velocities, one can use either very small or very large bandwidth 
signals. 

The logic of these results follows easily from the diagrams shown in Figs. 13.12 and 13.13. 
In Fig. 13.12, we show a zero-velocity target. As we increase the bandwidth, either by 

shortening the pulse (decreasing T) or by increasing the sweep rate (increasing b), the 
common volume between the ambiguity function and the reverberation decreases 
monotonically. In Fig. 13.13, we show a non-zero-velocity target. By transmitting a 
long pulse with no frequency modulation, the width of the ambiguity function in the 
Doppler direction is small and the common volume is negligible. I f  we shorten the 
pulse (by decreasing T) or widen the bandwidth (by increasing b), the result in Fig. 
13.12b is obtained. We have increased the common volume, and the performance is 
degraded as shown in Fig. 13.10~ and d. Finally, as B, continues to increase, as shown in 
Fig. 13.12c, the width of the overlapping part of the ambiguity function decreases 
(it is z B;l), and the performance increases again. 



468 13.2 Detection in the Presence of Reverberation 

0.8 

0.6 
A wo, n 

- bit = l.u \ 

H 

-- 
fd 
aH 

r, -= 
QIi 0 

D = 0.3 

“f , ,,,1,,1, I ,,I ,,,,, lll,,,j 
0.1 0.5 1.0 5.0 10.0 50.0 100.0 

(4 3 __f 
(TR 

= 5.0 

1.0 

0.8 

0.6 
A wo, n 

0.4 

0.2 

I I 1111111 I I I111111 I I IllIll 

0. I I I111111 I I I Ill1 I I IIIIII 
0.1 

(4 

0.5 1.0 5.0 10.0 

Bt-. 
CR 

50.0 100.0 

Fig. 13.11 Performance of conventional receiver in the presence of reverberation. 

This example demonstrates the importance of matching the signal to 
the environment of interest. In this particular case, one might want to have 
two types of signals available: a long, unmodulated pulse, which is easy 
to generate and very effective for moving targets, and a linear FM pulse, 
which is effective for targets whose velocity was less than the root-mean- 
square Doppler spread. The example also illustrates an environment in 
which the signal design problem is relatively insensitive to detailed assump- 
tions in the model. In other words, the basic results depend more on GE9 
the root-mean-square Doppler spread of the reverberation, than on the 
detailed shape of &,{f }. 
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Fig. 13.11 (continued) 

There are several comments with respect to the effect of reverberation 
on the performance that apply to both the range-invariant case and the 
general problem in which &,{f, I} is a function of I. 

1. The evaluation of receiver performance is always straightforward. 
At worst, a numerical evaluation of (83), (85), or (92) is required. 

2. The problem of designing the optimum signal to minimize pr subject 
to suitable constraints such as energy, bandwidth, or duration is mathe- 
matically difficult and can usually be avoided. Even if we could solve it, 
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Fig. 13.12 Zero-velocity target in reverberation. 

the solution would vary with s;oR{f, ;I>, T&, and fd. A more practical 
solution is the following: 

(a) Choose a class of signals [e.g., the coded pulse sequence in (10.145)]. 
Maximize their performance by varying the parameters. 

(b) Consider a set of allowable scattering functions instead of a specific 
scattering function. This gives a result that is less sensitive to the detailed 
environment. 

There are a number of references dealing with the signal design problem 
at various levels of sophistication (e.g., [21]-[28]). 

3. The nature of the ambiguity function of a sequence of pulses with 
complex weightings make it an excellent waveform for reverberation 
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Fig. 13.13 Target with nonzero velocity in reverberation. 
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suppression. Because it is also easy to generate and detect, it is used in 
many systems. 

This completes our discussion of the conventional receiver performance. 
We now turn to the optimum receiver problem. 

13.2.2 Optimum Receivers 

The problem of interest was given in (72), but we restate it here for 
convenience. The complex envelopes of the received waveforms on the 
two hypotheses are 

r”(t) = ~f~<t> + ii,(t) + C(t), --oo<t<cn:H, uw 
and 

Y”(t) = E,(t) + i?(t), -oo < t < co:Ho, uoxl 
where 

A(t) A f( t - 7d)eiwdt. (103) 

The reverberation return is a sample function of a complex 
random process whose covariance function is given by (70) as 

Gaussian 

&$, u) = E, s y(t - 3L)E&(t - u, A)f*(u - A) dl. uw --oo 
We want to find the optimum receiver to detect ,fd(t). This is just the 
familiar problem of detecting a slowly fluctuating point target in the 
presence of nonwhite Gaussian noise, which we solved in Section 9.3. 

The optimum receiver computes 

where g(a) satisfies 
s 00 Ta - g’*(t)?(t) dt, W) -a3 

30 1 dt = m&r(t9 u>g'(u> du + &g'(t), -Go<t<oo. uw 
--co 

It then compares Ill2 with a threshold. Using (104) in (106) gives the equa- 
tion we must solve to find the optimum receiver. It is 

L(t) = Et m f(t - A)K&Jt - u, 2)3*(u - R)g(u) du dl + N&(t), 
ss 
-aI 

-al< t< 00. (107) 

For arbitrary &,(* ,a) the solution of (107) is difficult. There are several 
cases when a solution can be obtained. 
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Case 1. If the functions&) and &(t - U, I) are of a form so that the 
eigenvalues and eigenfunctions of (104) can be found, the solution to (107) 
follows easily. One example of this is the discrete resolution problem of 
Section 10.5. A second example is when &(t - U, 1) is a separable 
kernel. A third example is whenf(t) is a Gaussian pulse and &,(t - U, il) 
is doubly Gaussian. The basic procedure in this case is familiar, and so we 
relegate it to the problems. 

Case 2. If we can describe the channel-scattering function by the dis- 
tributed differential-equation model of Section 13.1.2, we can find the 
optimum receiver. We discuss this case in detail in the next subsection. 

Case 3. If the scattering function is long in the &dimension (as shown 
in Fig. 13.10) and has a uniform Doppler profile, then fir(t) is a stationary 
process and (107) can be solved using Fourier transforms. We studied the 
conventional receiver for this case on page 466. On page 477, we study the 
optimum receiver and compare the performance of the two systems. 

We now carry out the analysis of Cases 2 and 3. 

Case 2. Optimum Receiver: State-Variable Realization. In Section 9.4, 
we developed a realization of the optimum receiver for the detection of a 
slowly fluctuating target in nonwhite noise. This realization was based on a 
realizable whitening filter and contained the minimum mean-square error 
estimate of the nonwhite noise as a basic component. This realization of 
the optimum receiver is shown in Fig. 13.14 (this is just Fig. 9.8 with modi- 
fied notation). The test statistic is Tf t t 2 

1 0 
= IS [s dt h”,,(t, x)?(x) dx s h”tAt, Y)fl,*(Y) dY II 9 w9 

TL Ti Ti 

where hwr(t , x) is defined as 

‘A 
h”,,(t, 4 a !- ( 1 No { s(t - 2) - h”,,(t, z)}. (109) 

The filter h,,(t, z) is the optimum realizable filter for estimating n”,(t) 
when the input is 

w = E,(t) + G(t). (1w 

From (9.111) we have the degradation due to the colored noise, 

The functionJl,(t) is the output of h,,(t, z) when the input is fd(t). 
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We see that we can completely design the optimum receiver and analyze 
the receiver performance if we can find h”,,(t, x). In this section we derive 
a set of differential equations that specify &(t> [and therefore &(t, z)]. 
Our derivation is based on the distributed state-variable model in Section 
13.1.2. 

The differential equations describing e,(t) are analogous to (38)-(41). 
The state equation is 

am = F(A)Z(t, A) + G(A)i?(t, a), 
at 

t>T,JEQ& (112) 
where 0, is the range of A where the target-scattering function is nonzero. 
The covariance function of ii( t, 1) is 

E[ii(t, Qa*(7, A’)] = &(A)s(t - 7) 6(1 - A’). (113) 

The reverberation process is 

&t, A) = C(A)Z(t, I). (114) 
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The colored noise due to the reverberation is 

ii&) = 
f 

a3 JFJ(t - n&t, a> da 
-a3 

a qt:qt, a)), W) 
which we refer to as the modulation functional. 

The minimum mean-square error estimate is obtained by extending 
Kalman-Bucy filtering theory to include the spatial integral operator in 
(115). This extension was done originally by Tzafestas and Nightingale 
[29], [30]. The results are given in (116-121)$ 

The estimator equation is 

au = E(a)i(t, a) + Z(t, @[F(t) at - C(t:i(t, a))], 

t > T,,k sz,. - 
i(T&) = 0, Ad&. 

The gain equation is 

The function &t : 1, A’) is the error covariance matrix 

&<t:a, a’) a E[(S(t, a) - P(t, a))(S(t, a’) - Zt(t, a’))]. 
Notice that 

gyt:a, a’) = E(t:X, a). 

The covariance matrix satisfies the differential equation 

aw9 a3 = F(a)f(t:a, a’) + &t:a’, a)Ft(n’) 
at 

+ G(a)e”<a)~‘<n~) qa - a’) - qt, a)N,Zyt, a’), 
a, a’ E s&r, t 2 x&. (120) 

t We have omitted the derivation because, for the particular case described by (112)- 
(115), the reader should be able to verify that the result is correct (see Problem 13.2.15). 
The model studied in [29] is much more general than we need. The reader should note 
the similarity between (116)-(121) and the Kalman-Bucy equations of Section I-6.3. 
Other references dealing with estimation in distributed parameter systems include 
[70]- [75 1. 
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The reader should notice the similarity between (120) and (A.161). 
Using (118) in (120) gives 

a&t: a, a’) 
at 

= qqQt:a, a’) + &?:a’, a)Pt(af) + e(a)Q(a)c+(a) @il. - a’) 

((?A, o)et(o)f*(t - a) da 

x 
s 3( t- a’)C(a’)& t : d, 2) da’ , 
a74 i 

1, 1’ E Q,, t > Ti. - 
-L 

(121a) 
The initial condition is 

&q:a, a’) = &)(Ti, a) s(n - a’). (121b) 

These equations completely specify the filter whose impulse response is 
&.(t, z). Thus, the receiver is completely specified and its performance 
can be calculated. The block diagram of the optimum estimator is shown 
in Fig. 13.15 (the heavy lines represent signals that are functions of both 
space and time). Using the system in Fig. 13.15 in the diagram of Fig. 
13.14 gives the optimum receiver. 

Several comments regarding the optimum receiver and the correspond- 
ing equations are useful. 

1. The optimum filter contains spatial operations. In most cases these 
will be difficult to implement exactly. We discuss several approximate 
realizations in Section 13.3. 

2. The performance of the optimum receiver provides a bound on the 
performance of simpler systems. To evaluate the performance we must 
find Adg as specified in (111). This requires solving the variance equation 
(120). 

3. The equations are algebraically complex. We shall find that we can 
obtain solutions to them with a reasonable amount of calculation. 

We shall defer doing an example to illustrate the solution techniques until 
Section 13.3. The same filtering problem arises in that section, when we 
communicate over doubly-spread channels. 

This concludes our discussion of the state-variable realization of the 
optimum receiver in the presence of reverberation. We now consider the 
third case listed in the introduction on page 473. 
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Fig. 13.15 Distributed state-variable realization of optimum realizable filter. 

Case 3. Reverberation with Constant Doppler Profile and Infinite Range. 
In some cases R, is long enough compared to the observation time that 
we can assume it is infinite (see Fig. 13.10). If, in addition, 

E&t - 24, A) = R&t - u), (122) 

we can obtain a solution to (106) by using Fourier transform techniques. 
Using (122) in (104), we obtain &(t, 24) = E,K&( t - 24) s O” f(t - A)$*(24 - A) dl, 
which is identical with (88). From (9;; 

(123) 
Grtjl = G%u~f> @ &If>, 

where 
&w A IQf>I”* 

Using (124) in (106), transforming, and solving for &{f} gives 

co{fl = (126~) 

wheref, is Doppler shift of the desired target. For a zero-velocity target, 

(Y 

co{f) = 
Fifl 

N, + @il,{f > @ Qf > l _ 
(126b) 

. 
The performance is obtained from (9.77) as 

(127) 
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We now discuss a particular problem to illustrate the application of 
these results. 

Example 1. We consider the same model as in the conventional receiver example on 
page 466. The signal is specified by (94), and the Doppler profile is given in (93). Using 
(95) and (97) in (127) gives 

1.2 

1.0 

0.8 

0.6 
A 0, n 

0.4 

Fig. 13.16 Performance of optimum receiver in the presence of reverberation. 
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As in the conventional receiver case, the performance depends on D, fd/aR, and BflaB, 
which were defined on page 467. When D = 0.3 and 1.0, the performances of the 
optimum receiver and the conventional receiver are almost the same. In Fig. 13.16, we 
have plotted Ao/(&/&J for D = 10 and 100. 

It is useful to consider a particular set of values. We assume the following set of 
parameter values : 

fl d “R = 5.0, 
B&OR = 1.0, 

D= 100.0. (129) 

We see that this set of parameters puts us in the valley on both curves (Figs. 13.16 and 
13.11) and corresponds to a poor signal choice. 

For this set of parameter values, 

A0 = Er 0.762 N 
0 

(130) 

and 

A 4 
u?o = 0.528 -0 

NO 
(131) 

We see that, for a very poor signal choice, the difference is about 1.5 db. For any 
reasonably good signal choices, the difference in the performance of the two receivers 
is negligible. This is because a good signal choice decreases the reverberation return to a 
point where the optimum receiver is not needed. 

We consider a second example briefly. 

Example 2. In some cases, the Doppler spreading of the reverberation (or clutter) is 
small compared to the bandwidth of the signal energy spectrum, 37 (f}. In these cases 
it is convenient to approximate &J f } by an impulse, 

We assume that fd = 0, because 
Using (132) in (126b) gives 

a zero-velocity target is the most difficult to detect. 

For small values of reverberation return, such that 

we see that the optimum 
reverberation return, 

filter reduces to a matched filter. However, for large values of 

WcWf I<< 1 
NO 

9 

(133) 

(134) 

which is an inverse filter (this filter was first derived in [31]). Thus, we see that the 
optimum receiver has an appreciably different character in the frequency ranges where 
reverberation rather than the additive white noise is the limiting factor. 
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To evaluate the performance, we use (132) in (127) and obtain 

It is useful to evaluate A ,for a 
whose energy spectrum is 

AO= E, 

particular signal set. We consider the Butterworth family 

(136) 

$tf, = 
(2n/k) sin (fl/2n) 

(2n-j/k)2n + 1 ’ 
-00 <f< 00, n= 1,2 ,.... (137) 

Substituting (137) into (136) and integrating gives 

Fern= co, 

l/278--1 
. (138a) 

(1386) 

Two conclusions follow from (138): 

1. Increasing the energy in the transmitted signal 
reverberation; we see that, for strong reverberation, 

is an ineffective way to 

A,(n) = E, lj2n 5 Ep for E&l, (138~) 

where we obtain equality by using an exponential pulse (n = 1). 
2. As we would expect 9 A, increases monotonically with k. (Recall Fig. 13.13.) 

Notice that this example has considered a zero-velocity target, which is the most 
difficult to detect in the reverberation environment specified by (132). The performance 
increases monotonically with target velocity. 

This case completes our discussion of the design and performance of 
optimum receivers in the presence of reverberation. We now summarize 
our discussion of the reverberation problem. 

13.2.3 Summary of the Reverberation Problem 

We have investigated the problem of signal and receiver design when the 
target is a slowly fluctuating point target and the interference consists of 
reflectors that are spread in range and Doppler and additive white noise. 
A number of interesting results were obtained. 

1. If a conventional 
reverberation is 

matched filter receiver is used, the degradation due 
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This integral has the simple graphical interpretation shown in Fig. 13.9. 
2. The optimal signal design problem for the conventional receiver 

consists of trying to minimize the common volume of the reverberation- 
scattering function and the shifted signal ambiguity function. The best 
signal will depend on the target’s location in the range-Doppler plane 
as well as on s;,,Cf, A}. 

3. If one can make the two functions essentially disjoint, the con- 
ventional and optimum receivers are identical and the performance is 
limited only by the additive noise. 

4. If one is constrained to use a signal that results in an appreciable 
overlap, the optimum receiver provides an improved performance. It is 
important to remember that this improved performance requires a more 
complex receiver and assumes knowledge of the scattering function 
(including its level) and the additive noise level. 

5. For a large number of cases we can find the optimum receiver and 
evaluate its performance. The techniques for performing this analysis 
were developed in detail. 

We have confined our discussion to conventional and optimum receivers. 
A third category of receivers is useful in some situations. This receiver 
computes 

a3 
I A 

m- 
s 

qt>u”*( t) dt 0~0) 
--oo 

and compares 11rni2 with a threshold. The function i;(t) is not necessarily the 
desired signal, A(t), or the optimum correlation function g(r) specified by 
(106). We might choose a v”(t) that is simpler to implement than g’(t) 
but performs better than A(t). The performance of the receiver in (140) 
is given by 

where &{*, 0) is the cross-ambiguity function defined in (10.222). We can 
now choose u”(t) to minimize Am. Notice that we must put additional 
constraints on v”(t), or we shall find that the optimum C(t) equals g’(t). 
One possible constraint is to require v”(t) to be a piecewise constant 
function. This would be a logical constraint if f(t) were a sequence of 
rectangular pulses. Various other constraints are possible. 

This particular formulation is attractive because it allows us to design a 
system that works better than the conventional receiver but can be con- 
strained to be less complicated than the optimum receiver. This problem 
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and variations of it have been studied by Stutt and Spafford [32], Spafford 
1331, and Rummler [34]. We suggest that the reader consult these refer- 
ences, because they provide an excellent demonstration of how the doubly- 
spread reverberation model of this section can be used to obtain effective 
practical systems. Various facets of the question are developed in the 
problems (e.g., Problems 13.2.17 and 13.2.18). 

This completes our discussion of the reverberation and clutter problem. 
We now turn to a different type of problem. 

13.3 DETECTION OF DOUBLY-SPREAD TARGETS AND 

COMMUNICATION OVER DOUBLY-SPREAD CHANNELS 

In this section we consider two closely related problems. The first 
problem arises in the radar and sonar area and consists of trying to detect 
the return from a doubly-spread target in the presence of additive noise. 
The second problem consists of communicating digital data over a doubly- 
spread channel. 

The section is divided into four parts. In Section 13.3.1, we formulate 
the quantitative models for the two problems and derive expressions for 
the optimum receivers and their performance. The results contain integral 
equations or differential equations 
cases. In Section 13.3.2, we develop 

that cannot 
approximate 

be solved exactly in most 
target and channel models 

that enable us to obtain a complete solution for the optimum receivers 
and their performance. In Section 13.3.3, we calculate the performance of 
a particular binary communication scheme to illustrate the techniques 
involved. In Section 13.3.4, we discuss some related topics. 

13.3.1 Problem Formulation 

In this section we formulate the detection and bi nary communication 
problem quantitatively. 

13.3.1.A. Detection. The first problem of interest is the radar or sonar 
detection problem. We transmit a signal whose complex envelope is 

J&f(t). If d bl a ou y-spread target is present, the complex envelope of the 
returned signal is 

3(t) = 
s 

* JEtJ7(f - 1)&t, A) da, (142) 
-a3 

where a(t, A) is a sample function from a complex Gaussian process whose 
covariance function is given in (37). We are using the process defined in 
(36), but the subscript x is omitted. The covariance function of s”(t) is 
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given by (22) as 

&(t, u) = E, 
s 

*Jr(t - @R&t - u, 43*(u - ;I) dA. (143) 
-co 

In addition to the signal co mponent, the received waveform contains 
additive complex white noise G(t), whose covariance function is 

an 

E[iqt)E*(u)] = I&) s(t - u). (1~4) 

The received waveform is just the noise term, i+(t), if the target is not 
present. Thus, we have a binary hypothesis testing problem in which the 
received complex envelopes on the two hypotheses are 

r”(t) = g(t) + G(t), Ti < t < T,:H,, - - (145) 

r”(t) = G(t), Ti < t < T,:H,. - - (146) 

On both hypotheses, r”(t) is a sample function of a complex Gaussian 
random process. If we compare (145) and (146) with the equations 
specifying the detection problem in Chapter 11 E(11.30) and (11.31)], 
we see that the form is identical. The only difference is in the form of the 
covariance functions of the signal processes. Therefore all of the results in 
Chapter 11 that contain & (t, U) as an arbitrary covariance function are 
valid for the problem of current interest. Specifically, (11.33)-(11.40) and 
Figs. 11.7-l 1.9 are valid relations for the receiver structures, and (11.50)-- 
(11.54) are valid expressions for the performance. It is when we evaluate 
these various formulas that the doubly-spread model becomes important. 
Specifically, we shall find that the covariance function given in (143) is 
harder to work with than the covariance functions encountered in the 
singly-spread cases. 

Some of the pertinent results from Chapter 11 are listed for ease of 
reference. The likelihood ratio test is 

1 
1 T/ Wl 

R=- 
N s 

?*(t)h(t, u)F(u) dt du $ y, 
0 Ti HO 

(147) 

where h(t, u) satisfies the integral equation 

s T/ No&, u) + h( t, x)&z, u) dx = K&t, u), 
Ti 

Ti 2 t, u < Tf, (148) 

and &(t, u) is given in (143). The estimator-correlator realization is 
shown in Fig. 11.7. 

An alternative expression for the likelihood ratio test is 

1 R=- i ITT’{2 Re [F*(t)$t)] - &(t)l”} dt: y, 
0 i Ho 

(149) 
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where &(t) is the realizable MMSE estimate of i(t) when HI is true. An 
advantage of the implementation in (149) is that whenever s’(t) has a 
distributed state-variable representation we have a set of equations, 

(116)-(121), that specify i&). 
The approximate performance expressions that we derived earlier 

require knowledge of p(s), which can be written in three different forms 

ii(s) =z[(l - s)ln (1 + :) -In (1 + (1 - s)$)]. (150) 

/i(s) = (1 - s)ln &($) -In D,(y), (151) 

II) P(S) . (152) 

We evaluate one of these expressions to find the performance. Before 
discussing techniques for doing this, we formulate the communications 

13.3.1.B. Binary Communication. We consider a binary communica- 
tion system using orthogonal signals. We transmit one of two orthogonal 
signals, 

q(t) = Re [&!?&)ejU1”], 0 < t < T:H,, _ _ ( 153) 

40 = Re [Jww~“otl, 0 < t < T:H,, - - (W 

where f(t) has unit energy. Notice that both tran smitted signals h ave the 
same complex envelope but have different carrier frequencies. We discuss 
the choice of CC)~ and ml in a moment. The two hypotheses are equally 
likely. 

The received waveforms are 

r(t) = Re [,f? jl( t)ej*“] + w(t), Ti < t < Tf: HI, _ _ w5) 

where 
r(t) = Re [Jz &( t)eiwot] + w(t), Ti < t < Tf: H,, _ _ 

t - A)&( t, 1) dl, i = 0, 1. 

The reflection processes 6,(t, I), i = 0, 1, are sample functions from zero- 
mean complex Gaussian processes, which can be characterized by the 
same scattering function, &R(f) ;1}. 



Problem Formulation 485 

The channel has two effects on the transmitted signal. The first effect is 
a delay spread. If the scattering function has a length L, there would be a 
signal component in the received waveform over an interval of length 
T + L. The second effect is a frequency spread. If f(t) is approximately 
bandlimited to a bandwidth of FV cps and the scattering function is 
approximately bandlimited to B cps the signal portion of the received 
waveform is approximately bandlimited to FV + B cps. 

We assume that co1 - CC)~ is large enough so that the signal components 
at the receiver are in disjoint frequency bands. We see that this separation 
must take into account both the transmitted signal bandwidth FV and the 
channel-scattering function bandwidth B. Thus, 

cc)1 - Cc)0 

27r 
>W$-B* (158) 

The observation interval is [Ti, T,], and includes the entire interval 
in which there is a signal output. This implies 

T - Ti > T+ L. f - (159) 

The receiver must decide between two orthogonal bandpass Gaussian 
processes in the presence of additive white Gaussian noise. The criterion 
is minimum probability of error. This is a familiar problem (see Section 
11.3). The optimum receiver consists of two parallel branches containing 
filters centered at ml and CC)~. In the first branch we compute Tf 4 A - ss r”*(t)&, u)F(u) dt du, (160) Ti 
where the complex representation is with respect to c+. In the other branch 
we compute 

Ti 

where the complex representation is with respect to 
impulse response is specified by 

NJ@, u) + s Tfw 
h(t, z>&(z, u) dx = E&t, u), 

Ti 
Ti < - 

where 

&(t, u) = E, 
s 

O” f(t - A)&-& - u, n)f*(u 
--co 

co,. The complex 

4 u < Tf, - 

- I) da. 

(162~) 

(162b) 
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The optimum test is 

Ho 

as shown in Fig. 11.12. We see that (162a) is identical with (148). We can 
also write l1 and I, in a form identical with (149). Thus, the equations 
specifying the optimum receiver are the same for the radar detection 
problem and the communication problem. Notice that the actual scattering 
functions will be different in the two problems, because of the different 
physical environments. 

The performance calculation is appreciably simpler in the communica- 
tion problem, because of the symmetric hypotheses and the zero threshold. 
Just as for the Doppler-spread case discussed in Section 11.3, we have 
tight bounds on the error probability. From (11.75), 

&$$4) 

211 + Jw-9~ BSWI 
5 Pr (E) < 

&QM) < &J?4’ 
--- 

- 2[1 + JQji,,(~)] - 
- (164) 

’ 2 

where ,&&) can be expressed as 

FBS(d = ih3(~) + ,&IB(l - 8). (165) 

The subscript BS denotes binary symmetric, and the subscript SIB denotes 
simple binary. The formulas for ,G SIB(s) were given in (150)-(152). Sub- 
stituting (151) into (165) and simplifying gives 

riiB&) = In 

6,Kl I  
l 

(166) 

The exponent in (164) just involves 

~BS(!t) = In 
44ll~o~ 

fiF2WNO) 

= &(l +-$ -2zln(l +--$ (167) 
i=l 

We can also write ,&&) in terms of the realizable MMSE filtering error as 

1 
s 

Tr 
PBS(+) = F w&(4 w, NJ - Ep(t, i(t), 2N,)]. (168) 

0 i 
T  

The basic form of these expressions is familiar from Chapter 11. We must 
now develop a procedure for finding the required functions. 

13.3.1.C. Summary. In this section we have developed the model for the 
radar detection problem and the binary communication problem. The 
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equations specifying the optimum receivers and their performance were 
familiar. The new issue that we encountered is that of actually solving 
these equations when the covariance is given by (143). 

There are two cases in which we can solve the equations in a reasonably 
straightforward manner. We identify them at this point and return to them 
later in the section. The first case is the low-energy-coherence (LEC) 
condition that we originally encountered in Chapter 4. We study this case 
in Section 13.3.4. The second case is a degenerate one in which we choose 
the transmitted signal so that the target or channel appears to be singly- 
spread. We discussed this degeneracy in Property 4 (22)-(29) on page 452 
and shall study it again in Section 13.3.3. Although these two cases 
include many of the problems that we encounter in practice, we would like 
to be able to solve any doubly-spread target (or channel) problem. In the 
next two sections we develop techniaues to deal with the general problem. 

13.3.2 Approximate Models for 
Doubly-Spread Channels 

In Section 13.3.1 we developed 
spread target or channel: 

Doubly-Spread Targets and 

two methods of characterizi “g a doubly- 

1. The scattering function characterization. 
2. The partial differential equation characterization. 

These characterizations were easy to visualize and were taken as exact 
models of the actual physical phenomena. Unfortunately, except for a few 
special cases, we cannot solve the resulting equations specifying the 
optimum receiver and its performance. 

In this subsection we develop some approximate channel models that 
allow us to compute the functions needed to specify the optimum receiver 
and its performance. Our discussion considers three models: 

1. The tapped-delay line model. 
2. The 
3. The 

general orthogonal series model. 
approximate differential-equation model. 

The tapped-delay line model is intuitively satisfying and relatively easy 
to implement, and so we present it first. The general orthogonal series 
model is a logical extension of the tapped-delay line model and leads to 
simpler computational requirements in many situations. The approximate 
differential-equation model leads to the general orthogonal series model 
in a different manner. 
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In all three cases, the complex envelope of the signal component is 

00 
i(t) = & J 1 f( - t - n)g(t, I) d>b, --<t<q (169) 

---a3 
where we have assumed an infinite observation time for simplicity. The 
signal s”(t) is a sample function from a zero-mean Gaussian random process 
whose covariance function is given by (143). 

The technique that we use in developing our approximate models 
is straightforward. We expand either f<t - A) or @t, 1) using a complete 
set of orthonormal functions. This enables us to replace the integral in 
(169) by an infinite sum. We then truncate the infinite series to obtain an 
approximate model. The various models differ in their choice of orthog- 
onal functions. 

It is important to remember that the “exact” model that we have 
been working with and the approximate models that we shall develop are 
both approximations to some physical target or channel. In most cases 
we have to estimate the target characteristics, and this introduces errors 
into our model. Thus, in many cases, the approximate models in the next 
section may represent the physical target or channel as effectively the 
exact model we have been using. 

13.3.2.A. Tapped-delay Line Model. We assume that the transmitted 
signal f(t) is bandlimited around its carrier frequency. Thus, 

N 

F(f) = 0, Ifl q . (170) 

Since J’(t) is bandlimited and 
to expand f (t - A) using the 

the interval is infinite, a logical procedure is 
sampling theorem. We write 

f(t - A) = 2 
k=--00 

where W, > W. Notice that we could just let W, = FVfrom the standpoint - 
of the sampling theorem. Introducing W, gives an additional flexibility in 
the model, which we shall exploit later. 

Observe that we have put the 3L dependence in the coordinate functions 
and the t dependence in the coefficients. This separation is the key to the 
series expansion approach. The sin X/X functions are orthogonal but not 
normalized. This is for convenience in interpreting the coefficients in (171) 
as samples. Substituting (171) into (169), we have 
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If we define 

k A s 00 Y b it) &4 1) sin rrlV9(il - k/W,) dA 

--a3 nWs(A - k/ Ws) ’ 
then 

i(t) = 

(173) 

iw 

Two observations regarding (174) are useful: 

1. The functions f(t - k/W,) can be generated by passing f(t) through 
a tapped-delay line with taps spaced l/PV seconds apart. 

2. The functions d,(t), - co < t < 00, are defined by (173). This 
weighted integration is sketched in Fig. 13.17. We see that if the scattering 
function has length L, d,(t) will be essentially zero for negative values of k 
and all positive values of k greater than LW,. 

These two observations lead us to the target (or channel) model shown in 
Fig. 13.18.9 

The tap gains are sample functions from complex zero-mean Gaussian 
processes. To specify the model completely, we need their cross-covariance 
functions 

=E bit, a)h*(u, al) 
sin VW,@ - k/ Ws) sin nW,(A, - 1/ Ws) dA da 

7w3i~ - WYJ ~ws(ill - VYS) 
I 

1' 

iw 

Bringing the expectation inside the integral, using (37), and 
the integration with respect to A,, we have 

performing 

00 
- sin nv9(A - k/W,) sin nW,(;1 - l/W,) - s I&.&t - t1, a) 1 dA 

’ 
(176) 

--co flW,o - VKJ 77w,(A - z/w,) 
This expression is true for any &,<t - u, A). 

The analysis is somewhat simpler if the tap gains are statistically 
independent. If &,<t - u, A) is essentially constant with respect to A 
over l/W, units, the integral in (176) is approximately zero for k # 1. 
If&&t - u, A) is a smooth function of A, we can improve the approxima- 
tion by increasing PV”. Unfortunately, the dimension of the model in- 
creases as W, increases. On page 500 we look at the effect of correlated 

t The model in Fig. 13.18 is due to Kailath [35]. 
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(b) k = - 1 

(c) k=LW,+ 1 

Fig. 13.17 Location of sin x/x weighting function for various values of k. 

490 
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Fig. 13.18 Tapped-delay line model for doubly-spread target (or channel). 

coefficients. When the independent assumption is valid, we have 

k=l, (177) 

k # 1. 

Because they are stationary, the tap gain processes can also be char- 
acterized in terms of their spectra. Transforming (177) gives 

(W 

These spectra are just cross-sections of the scattering function at various 
values of I. 

We now have an approximate model for the target (or channel). 
Looking at (174), we see that we have replaced the doubly-spread channel 
by a set of (K + 1) singly-spread channels whose signal output is 

. (179 
This is a problem we can solve for a large class of channel processes. 

As indicated by (149), the optimum receiver will contain &--(t) as a 
waveform. Because f(t) is known, 

Thus the basic problem in implementing the optimum receiver is to gener- 
ate the tap gain estimates and weight them with f(t - k/W,). The tapped- 
delay model has the advantage that the required functions can be generated 
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in a reasonably straightforward manner. We now discuss the design of the 
optimum receiver using the tapped-delay model. 

If SD,{ f, A} is a rational function off, each of the tap-gain functions has 
a finite state representation. When this is true, the optimum receiver and 
its performance can be evaluated using the techniques that we have already 
developed. To illustrate this, we set up the state-variable mode1.t 

We assume that the scattering function is such that we need (K + 1) 
taps. Then 

) Ti < t < Tf, - - (181) 

where [ ri, Z’J is long enough so that essentially all the output signal energy 
is contained in the observation interval. The state vector for the kth tap 
gain is j&(t), where 

and 

kk(t)  = &f&(t) + @ik(t), 

w 

b (9 k = &%k( t ) ,  

E[&(t)&+] = & d(t  - a>, 

The dimension of the state vector is Nk. 
The over-all state vector has the dimension 

N=&, 
k-0 

and can be written as 

Then 

(186) 

(188) 

7 This model is due to Van Trees [36]. 
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The received signal process is just 

where c(t) is defined by (188) and (189) as 

1 

. 
0 

- 

. 

We have now reduced the problem to one that we have already solved 
[see (11.41-l 1.49)]. The complex receiver structure for the detection 
problem in (145) and (146) is shown in Fig. 13.19. (This is just the system 
in Fig. 11.9.) The optimum realizable filter is shown in Fig. 13.20. The A 
only problem is the complexity of this system to generate j&t). This com- 
plexity is related to the dimension of the variance equation, which is an 
N x N matrix equation in this case. As usual, the variance equation can be 
solved before any data have been received. 

To compute the performance, we evaluate /Z(s) by using (152). Recall 
that cp(t, i(t), 0) is the realizable mean-square error in estimating s”(t) 
and is obtained from the solution to the variance equation. 

It is important to emphasize that we have the problem in a form in which 
the optimum receiver and its performance can be calculated using straight- 
forward numerical procedures. Notice that the dimension of the system 
grows quickly. An analytic solution is not feasible, but this is not impor- 
tant. We defer carrying out the details of an actual example until we 
complete our development of the various channel models. 

';;'ct, 1 *r Hl 

)r Conjugate * 2Re[*] L 
* s 

- 
No Ti 

dt I=_ 
zr d 

HO 

* L44 4 
g-(t) 

=- I I . 2. 

J , 4 

Fig. 13.19 Optimum receiver for the detection of a doubly-spread target. 
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13.3.2.B. General Ortbgonal Series Model. The tapped-delay model has 
a great deal of intuitive appeal and is an adequate model for many physical 
situations. However, in many problems there are other orthogonal func- 
tions that provide a more efficient representation. In this section we 
develop a general model. 

Our starting point is the 
was introduced in Section 

aqt, 2) 

where 
at 

differential-equation model of the channel that 
13.1.2. The state equation is 

= F(il)Z(t, A) + qqqt, A), (191) 

E[u”(t, A)u”*(t’, A’)] = Q(l)s(t - t’) 6(A - A’). 

The initial condition of the state vector is 

(192) 

E[si(T,, A)%y&, A’)] = P,(l) a(1 - A’). (193) 

The channel process is 
B(t, 1) = C(l)z(t, A). (194) 

The signal component at the channel output is 

j(t) = Ft JS ( O” f’ t - q&t, 1) dA. -a3 (195) 

In the tapped-delay model we expanded the signal in an orthogonal 
series. In this case we represent the channel process and its state vector by 
a series expansion. We assume that the Ji(A), i = 1,2, . . . , form a 
complete orthonormal set with 

where the interval R, is the target (or channel) length. Notice that the 
&(A) are an arbitrary set of orthonormal functions of 1 only. We discuss 
methods of choosing the @&A) later. 

We first expand the state vector as 

qt, 4 = 1.i.m. EK(t, A) = 1.i.m. z &(t)&(h), -GQ<t<co,3LE~~, 
K-+00 K+cn i=l 

where 
(197) 

Z,(t) = s qt, q&4 dk -Go<t<oO. a (198) 
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We expand the channel process, using the same set of orthonormal 
functions, as 

6(t, A) = 1.i.m. 6,(t, A) = 1.i.m. z &(t)@(A), -cJo<t<m,aEQ~, 
K-00 .K'*oo i=l 

where the 6,(t) are determined by the requirement that 
(199) 

We refer to &(& 1) as the &term approximation to the channel. We 
now develop a state-variable representation for &(t, A). 

From (197), 
aqt, a) * d%j(t) - m - 

at 2 dt 
B (1) j 8 W) 

j=l 

Substituting (197) and (201) into (191) gives 

c O” 9 4j(A> = F(A)%Zj(,)Bj(A) + e(A)G(t, A). 
j-1 dt j=l 

(202) 

Multiplying both sides of (202) by $:(A) and integrating with respect to 
1 over R,, we obtain 

We now define 

and 

i&(t) = J G(A)u”(t, l)@(A) dA, 
RL 

i = 1, 2, . . . . (2W 

Truncating the series gives a K-term approximation to the channel state 
vector. The state equation is 

-4 

W) - ~2(0 
d . 
dt . 

. 

-K&L 

I  

F 
i 
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F :flc ’ 
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If the original distributed state vector is N-dimensional, the state 
vector in (206) has AK dimensions. We can write (206) compactly as 

dn,( t) 
- = &@y?,(t) + ii&t). 

dt 
(207) 

The subscript M denotes model. The elements in the covariance function 
matrix of the driving function are 

E[“i(t)u;( t’)] = E (s ti(A)ii(t, A)#@) dA e’(X)ii*(t’, X)&(Z) dil’ 
QL s QL 

- - 

[S 

@&A)ii+(A)&?(A)~j(n> dl s(t - t’) 
QL 1 A Qijqt - t’). (208) 

The initial conditions are 

where &(A) is defined in (46). 
We must now find the observation matrix relating hi(t) to jiM( t)* 

Using (197), (199), and (200), we have 

$ g,(t)qj(l> = C(A) 5 a,(t>pj(a). WV 
j=l j=l 

Multiplying both sides by @F(A) and integrating over QL gives 

The signal component at the output of the channel is 

(211) 

(212) 

s’(t) = Et J (214) 
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The K-term approximation is 

SK(t) = 
i=l 

where 

@j3i(A) d3c. 

Using (213) in (215), we obtain 

We now have the K-term approximation to the problem completely 
characterized by a state-variable representation. Once we have this 
representation, all the results in Section 11.2.2 are immediately applicable. 
Notice that, although the formulas appear complicated, all the necessary 
quantities can be calculated in a straightforward manner. 

Two comments regarding the model are worthwhile. 

1. The tapped-delay line model is a special case of this model (see 
Problem 13.3.9). 

2. The proper choice of the orthogonal set will depend on the scattering 
function and the signal. A judicious choice will simplify both the structure 
of the state equation and the value of K required to get a good approxima- 
tion. It is this simplification in the state equation that has motivated the 
development of the general orthogonal series model. In the next section 
we illustrate the choice of the orthogonal set for a typical example. 

Up to this point in this section, we have considered various orthogonal 
series models for doubly-spread channels. The goal was to obtain a 
finite-dimensional approximation that we could analyze completely. We 
now consider a direct analysis of the differential-equation model. 

13.3.2.C. Approximate DzJkrential-equation Model. t The differential- 
equation model for the doubly-spread channel was described by (38)-(41), 
which are repeated here for convenience. The state equation is 

aqt, A) 
at = Q;l)ji(t, A) + k(n)ii(t, A), (218 ) 

T The results in this section are due to Kurth [7]. 
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where 
E[n(t, qii*(t’, A’)] = Q(A) d(t - t’) 6(1 - A’). (219) 

The initial covariance of the state vector is 

E[Z(T,, A)z+(Ti, A’)] = &)(A) d(l - A’). 

The channel process is 
6(t, 1) = C(R)%(t, A). 

The signal component at the channel output is 

i(t) = s O” f( t - q&t, A) da. (222) -0cJ 
The optimum test can be written in terms of the MMSE realizable 

estimate of S(t). From (149), 

T’{2 Re [?*(t&t)] - Gaul”} dt. (223) 

Notice that s’(t) is a function of time only, so that the derivation leading 
to (149) is applicable without any modification. 

To implement the test, we need an expression for &t). These equations 
were encountered previously in Section 13.2.2 (116)-(121). The estimator 
equation is 

%!a = F(A>a(t, A) + qt, A)[F(t) at 
- S(t:i(t, A))], 

and 
QT.., 1) = 0, hSQ,. 

The gain equation is 

t > Ti, 1 E Q,, - 

(224) 

(225) 

qt, A) = - ; [s, f<t : 1, n’)Ct(A’),/E,f*(t - A’) dl’] . (226) 
0 L 

The variance equation is 

aw9 I’) = F(A)&t: a, A’) + i$+(t :A’, A)l?+(;ll) + e(A)Q(n)c+(n’) 
at 

&t:l, o)C+(o)JE,j*(t - a) da 

a’)&r’)&t : d, I’) da’ , 
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with the initial condition 

((T$A, A’) = &)(TY, 1) &(A - A’), 

= ii,(l) s(n - A’). (228) 

The expressions in (224)-(228) characterize the channel estimator. Using 
these equations, (222) and (223) give the optimum receiver that was shown 
in Fig. 13.19. We are still faced with the problem of implementing (224). 
(228) in order to generate &). A block diagram of a system containing 
spatial operations that could be used to generate &(t) was shown in Fig. 
13.15 [replace i,(t) with $(t)]. In general we cannot implement this 
system and must be content with an approximate solution. We consider 
three procedures for obtaining an approximate solution. 

The first procedure is to expand the state vector in an orthonormal 
expansion and truncate the expansion at K terms. This procedure takes 
us back to the model on pages 495-498. A second procedure is to sample 
in A. The resulting model would be similar to the tapped-delay line model 
derived in Section 13.3.2.A, but the tap gains would be correlated. This 
procedure is generally inefficient from the computational standpoint. 

We now develop a third procedure that seems to offer some computa- 
tional advantages. The first step is to divide the covariance matrix into an 
impulsive term and bounded term as 

&<t : A, I’) = f,(T, I) d(il - A’) + “p(t : A, al), A, A’ E S&, t 2 & (229) 

Substituting (229) into (227), we find that @(CA, X) must satisfy the 
differential equation 

+ s &nt - a))e(a’)ii;( t : d, A’) da’ , 
nc 
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with the zero initial condition 

p(t:a, a’) = 0. (231) 

We then expand i(t : 1,X) in a series expansion as 

where the &(A) are an arbitrary set of orthonormal functions and 

ii,(t) * . . - s s da dqi( t : a, a’)$& @)$&j*(X)* 
RL RL 

(233) 

This procedure is referred to as a modal expansion technique. 
We truncate the series at i = j = K to obtain an approximate solution. 

Proceeding as before, we can derive a set of differential equations specify- 
ing the $ij(t) (see Problem 13.3.12). The advantage of separating out the 
impulse in (229) is that the convergence of the series approximation is 
usually better. We shall apply this third procedure to a specific problem in 
Section 13.3.3. 

The final step is to compute the performance. We do this by evaluating 
,6(s) and using it in our approximate error expressions. We can express 
p(s) in terms of the realizable MMSE signal estimation error, &,(t, s’(t), l ), 
by (11.54). Finally, we express Fp(t, s’(t), N,) in terms of &,(t:n, 1’). 

&t, j(t), NJ A E[ls’(t) - 3(t)12]. (234) 
Using (221) and (222) in (234) gives 

EP(4 s(t), &I) = s s da da’EJ(t - a)C(&(t : 0, a’)e+(a’)f*(t - a’). 
RL RL 

(235) 

Notice that to find j#) we must solve the variance equation (227) for 
two values of the additive noise level, NO and 2N,. To find F(s), in general, 
we must solve the variance equation for three values of the additive noise 
level. 

13.3.2.0. Summary of Approximate Model Discussion. In this sub- 
section we have developed various models that we can use tc approximate 
a doubly-spread target (or channel). The advantage of all these models is 
that they enable us to obtain a complete solution for the optimum receiver 
and its performance. 

As we pointed out in the introduction to Section 13.3.3, the tapped- 
delay line model is the simplest to implement and is the only model that 
has been used in actual systems. At their present state of development, 
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the other two models are most useful in the study of performance limita- 
tions. 

There are many approximate channel models in addition to those that 
we have discussed. Suitable references are [35], [61], and [64]. 

13.3.3 Binary Communication over Doubly-Spread Channels 

In Section 13.3.1.B we formulated a model for a binary FSK system 
operating over a doubly-spread channel [see (153)-( 168)]. In this section 
we continue our discussion of the communication problem. 

Our discussion is divided into three parts. In Section 13.3.3.A we discuss 
the performance bounds on binary communication systems and demon- 
strate some simple signaling schemes that approach these bounds. In 
Section 13.3.3.B we carry out a detailed performance analysis of a specific 
system using one of the approximate channel models developed in Section 
13.3.2. In Section 13.3.3.C we discuss suboptimum receivers briefly. 

13.3.3.A. Performance Bounds and Eficient Systems. As we pointed 
out in Section 13.3.1 .B, the decision problem is that of detecting a complex 
Gaussian process in complex white Gaussian noise. The covariance 
function of the signal process, Z(t), is given by (5) as 

&(t, u) = E, s * f(t - A)&-&t - u, l)f*(u - I) d;l. (236) 
--oo 

The performance will depend on E,, No, f(t), and ED,< t - u, 1) and 
may be difficult to evaluate in the general case. However, 
we derived a bound on how well any binary system could perform for a 

in Section 11.3 

given E, and No. Since this bound only depended on the eigenvalues of 
s’(t), it is still valid in this problem. 

On page 380 we demonstrated that in order to achieve the bound we 
would like to design the signal so that the output process has D, equal 
eigenvalues, where 

GINO D, = - 
3.07 

For this optimum case, 

(237) 

(238) 

,i&(Q) = -0.1488 (239 
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Thus, the probability of error using any signal f(t) is bounded by 

Pr (E) < & exp 
( 

E 
-0.1488 T . 

No ) 

This gives us a simple bound on the probability of error for binary 
orthogonal signals. The difficulty is that there is no guarantee that a 
signal exists that enables us to achieve this performance. We now discuss 
two situations in which we can approach the bound with simple signals. 

UNDERSPREAD CHANNELS. In (32) we defined an underspread channel 
as one whose BL product was less than 1. We now discuss the problem of 
communicating over an underspread channel. (Notice that we allow 
B>> 1 orL>> l,aslongasBL<< 1.) 

In our discussion of communication over Doppler-spread channels in 
Section 11.3 (specifically pages 384385), we saw that we could achieve 
the bound in (240) for any scattering function if there were no peak-power 
or time-duration constraints. The required signal consisted of a sequence 
of short pulses, with the number of pulses chosen to achieve the optimum 
diversity specified in (237) [i.e., y1 = D,]. The length T of each pulse was 
much less than B-l (the reciprocal of the bandwidth of the Doppler 
spread), so that there was no time-selective fading. Here we achieved the 
desired eigenvalue distribution by reducing the channel to a set of non- 
fluctuating point channels. 

We now consider a similar system for signaling over a doubly-spread 
channel. The signal is shown in Fig. 13.21 e To avoid time-selective fading, 
we require that 

1 
T<<--• 

B (241) t 

To avoid frequency-selective fading, we require that 

1 w<<--• 
L (242) 

Combining (241) and (242), we see that the requirement for flat (nonselec- 
tive) fading is 

However, we know that for any signal 

WT> 1. - (244) 

t Our discussion uses B and W as imprecise 
is not needed in the current context. 

bandwidth measures. An exact definition 
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(Do identical pulses) 

Fig. 13.21 Signal for communication over an underspread channel. 

Therefore we require that 

in order for us to be able to satisfy (243). The condition in (245) can only 
be met by underspread channels [see (32)]. The condition in (245) is 
stronger than the underspread requirement of (32). If the condition in 
(245) is satisfied and there is no peak-power or time-duration constraint, 
we can achieve the bound in (240) by using the signal in Fig. 13.21 with 
its parameters chosen optimally. 

We should observe that the requirement in (245) is usually too strict. 
In many cases we can come close to the performance in (240) with the 
signal in Fig. 13.21 for BL products approaching unity. 

We next consider the case in which BL exceeds unity. 

OVERSPREAD CHANNELS. If BL > 1, we cannot have fading that is 
flat in both time and frequency. However, we can choose the signal so that 
we have either time-selective fading or frequency-selective fading, but 
not both. We demonstrate this with a simple example. 

Example. We consider an idealized channel whose scattering function is shown in Fig 
13.22. We assume that 

BL = 5. (246) 
We transmit a long rectangular pulse 

fc 1 
O<t<T, t = (247) 

0, elsewhere, 
We also require that 

T 2 1OL. (248) 

Comparing (248) and (242), we see that we can treat the channel as a Doppler-spread 
channel. From the results in Example 1 of Chapter 11 ., we know that if 

u% 2BT=- 
3.07 ’ 

(24% 
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Fig. 13.22 An idealized scattering function. 

we shall achieve the bound in (240). Using (246) and (248) in (249), we obtain the 
requirement 

T ; 2 307 9 (250) 
0 

which is unrealistic [the Pr (E) (v 10-21]. 
We can obtain a more realistic solution by relaxing some of the requirements. For 

example, if we require that 
T  > &!?sL - 3 (251) 

1 Jwo 2BT=-- 
2 3.07 ’ 

A?? 
2 2 60 
NO 

(252) 

(253 

is adequate. The system in (251)-(253) is realistic and will perform close to the bound. 

This example illustrates one procedure for signaling efficiently over an 
overspread channel. The basic principle involved is straightforward. The 
doubly-spread channel provides a certain amount of implicit diversity 
in the output signal. If the value of &/No is large enough to make this 
amount of diversity close to optimum, the system will work close to the 
bound. On the other hand, if &/No is too small, the performance may be 
relatively poor. 

SUMMARY. In this section we have discussed the performance bounds 
that apply to any binary system. In addition, we have studied possible 
signaling schemes for underspread and overspread channels. In the 
underspread case we could use a signal that reduced the channel to a set 
of nonfluctuating point channels. By selecting the correct num.ber of 
subpulses, we could achieve the bound. In the overspread case we could 
use a signal that reduced the channel to a singly-spread channel. In this 
case we could approach the bound if the available &/No was large enough. 
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In both cases we were able to use signals that eliminated the double 
spreading in the channel. This has several advantages: 

1. The optimum receiver is simpler. 
2. The performance analysis is simpler. 
3. The performance is close enough to the bound that using the channel 

in a doubly-spread mode could not provide a significant decrease in the 
error probability. 

It appears that in a large number of physical situations we can achieve 
this simplification, so that the above discussion is relevant. On the other 
hand, there are at least two reasons why we want to be able to analyze 
the doubly-spread model directly : 

1. There are cases in which we cannot simplify the channel, because of 
limitations on the signal duration or bandwidth. 

2. There is a transitional region between the singly- and doubly-spread 
cases in which we must check our intuitive arguments; in this region the 
gross signal and channel characterizations (W, T, B, and L) are not 
adequate. 

In Section 13.3.2 we developed the necessary models to carry out this 
analysis. In the next section we use these models to analyze the binary 
communication problem. 

13.3.3.B. Performance Analysis for a Specific System.t In Section 
13.3.2 we developed approximate channel models with which we could 
design the optimum receiver and analyze its performance. We now con- 
sider a specific system to illustrate the details of the technique. The 
discussion has two distinct purposes. The first purpose is to demonstrate 
with an example the actual steps that one must go through to analyze the 
system performance. This detailed discussion illustrates the ideas of 
Section 13.3.2 and enables the reader to analyze any system of interest. 
The second purpose is to provide an understanding of the important 
issues in a communication system operating over a doubly-spread channel. 
The relationship between the signal parameters and the scattering function 
is explored. The quantitative results apply only to this specific system, but 
the approach can be used in other problems. This discussion will augment 
the results in Section 13.3.3.A. 

The binary communication problem is described in (153)-( 168). The 
channel-scattering process is described by (38)-(51). We consider a scattering 
function that is a special case of the scattering function in the example on 

t The material in Subsection 13.3.3.B is due to Kurth [7]. 
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page 456. The functions specifying it are 

&(A) = F[l - cos (Y)]m,(A), 

where mL(A) is a gate function defined as 

-)/j-d4 = 1, o<a<Id, - - 
0, elsewhere. 

In addition, 

and 
k(A) = k 

C(A) = 1. 

Notice that in this simple problem 

&t, A) = qt, A). W8) 
The scattering function is 

To use (230), we need &(A). Recalling from (46)-(49) that 

we have 

&;l> = ;(l - cos (Y))r,cg. (261) 

We assume that the transmitted signal is a rectangular pulse. Thus, 

elsewhere, 

We assume that the propagation time is zero for notational simplicity. 
(This is equivalent to redefining the time origin.) The endpoints of the 
observation interval are 

T$ = 0 (263) 
and 

Tf = T+ Lo (264) 
We now have the system completely specified and want to determine its 
performance. To evaluate ,ZBs($) we must evaluate fP( t, s”(t), 0) for two 
noise levels. The function &(t, j(t), s) is related to &:A, A’) by (235). 
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Using (262) in (235) gives 

m,<t - ;3-)r,(t - A’& t : A, 2) da d?, (265) 

where &: A, A’) is specified by (227) and (228). To find &: A, A’), we divide 
it into two terms as in (229) and solve for jj(t: il, A’). Using (254)-(257) and 
(261) and (262) in (230) gives 

ap<t : a, a’) 
- -2kp”(t:A, 1’) - E, ’ 

- cos (2&/L) - 
at NJ L 

m,<t - 4 

+ “m,ct s - a’)jj( t : a, a’) da’ ’ - ‘OS (2rra”L) m,c t - a’) -00 L 

+ 
s 

m~,(t-~)~(t:A,~‘)dl *, O<A,A’<L,t>O, (266) I) - - - -aI 
with initial conditions 

jqO:ilJ) =o, - - 0 < a, a’ < L. (267) 
We now demonstrate how to obtain an approximate solution to (266) 

by using the modal expansion technique suggested on page 501. We 
expand p(t:A, A’), using (232), as 

p(t :  4 A') = 2 ~pij(t,~i(~)~~(~~), 0 < a, a’ < L, -  -  O<t<T+L, 
i=l j=l 

(268) 
where the +&A) are an arbitrary set of orthonormal functions. Proceeding 
as suggested below (233), we can derive an equation specifying pii( We 
include the details to guarantee that the actual manipulations are clear. 

ModaLExpansion Equations. Substituting (268) into (266) gives 

-2k 5 E Fij(t)$i(A)$,*(“) 
i=lj=l Et 1 - cos (2721/L) 

- N,T L 
?[rT(t - 2) 

1 
X 

- cos (2&‘/L) 
L mT<, - 1’) 
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We now carry out the following steps: 

1. Multiply both sides of (269) by $#)$,(k’) and integrate over A and 2. 
2. Define 

to simplify the equation from step 1. 
3. Truncate the equation at K terms to obtain a finite-dimensional Riccati equation. 

In the present problem (270) and (271) reduce to 

and 

Qt) = 
b 1 SC - cos (24L) 

L 
##J> da (272) 

a 

where 

and 

l&(t) = 

s 

b 

+;@I dc, 
a 

b a min (L, t) 

a * min (b, max (0, t - T)). - 

(273) 

W) 

(275) 

Carrying out the first step and using the definitions in the second step gives the differen- 
tial equation 

d&&t> 

Et - = -2k&,(t) - ~~ zk 
dt 

[- (t) + 2 fikj(f)6j(f)l[z F(t) + 5 @it(t)67 (?)I* (276) 
0 j=l i=l 

Truncating the series at K, we can put (276) in matrix notation as 

di%O - = -2k$t) 
dt - CT G(t) + i(t&t>l~w + iu)i;olt, 

0 
(277) 

where the definition of S(t), i(t), and 6(t) is clear. The initial condition is 

i(t) = 0. (278) 

We now have reduced the proslem to a finite-dimensional Riccati equation, which we 
can solve numerically. 

The final issue is the choice of the orthogonal functions {&(A)}. We want to choose 
them so that the dimension of the approximating system will be small and so that the 
calculation of the quantities in (272) and (273) will be simple. As pointed out earlier, 
a judicious choice will reduce the computational problem significantly. In this case, the 
scattering function is a raised cosine function and the signal is rectangular, so that a 
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conventional Fourier series is a logical choice. We let 

and so forth. We now have all of the quantities necessary to evaLate the performance. 

The performance will depend on I?#,, k, L, and T. Before carrying 
out the calculations, we discuss the effect of these parameters. 

First, we fix the first three parameters and study the effect of T. The 
length of the input signal affects the number of degrees of freedom in the 
output waveform. We refer to this as the system “diversity.” A crude 
estimate of this diversity is obtained by multiplying the diversity due to 
Doppler spreading by the diversity due to range spreading to obtain 

Three comments regarding (280) are useful: 

1. The fading spectrum is a one-pole, and so the best bandwidth 
measure is not obvious; the equivalent rectangular bandwidth is k/2 cps 
(double-sided) (i.e., one might get a more accurate measure by including 
a constant before kT). 

2. More refined diversity measures are discussed by Kennedy [37]; 
the expression in (280) is adequate for our intuitive discussion. 

3. The expression in (280) is for a rectangular transmitted pulse and 
assumes that WT = 1. 

The diversity expression in (280) is plotted as a function of T’ ii TJkIL 
in Fig. 13.23. We see that the minimum diversity occurs when 

and its value is 
D min = (l + JkL)‘* (282) 

From our earlier work we know that there is an optimum diversity, which 
we would estimate as 

D 
1 E, h/-- opt - 
3 N, l 

(283) 
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.l 1 10 20 

T’ 4 

Fig. 13.23 Diversity of a doubly spread channel (WI’ = 1). 

Comparing (282) and (283), we see that if 

D min > Dopty (284 

the optimum value of T will be given by (281) and the performance will 
decrease for either smaller or larger T, as shown in Fig. 13.24~. Intuitively, 
this means that the kL product is such that the channel causes more 
diversity than we want. On the other hand, if 

D min < Dopty (285) 

the performance curve will have the general behavior shown in Fig. 13.246. 
The performance will have a maximum for two different values of T. 

The minimum diversity increases monotonically with the kL product, 
while the optimum diversity increases monotonically with &/N,. There- 
fore, for a particular kL product, we would expect the behavior in Fig. 
13.24~~ for small &No and the behavior in Fig. 13.24b for large &/A!,. 
From our discussion in (247)-(253), we would expect that increasing the 
kL product will not decrease the performance significantly if &/No is 
large enough. 

This completes our intuitive discussion. Kurth f7] has carried out the 
analysis for the system described in (254)-(264), using the modal expansion 
in (265)-(279). In Figs. 13.25 to 13.27, we show several sets of performance 
curves. The vertical axis is the efficiency factor, 
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(a) Excess diversity 

I I *T 

(b) Optimum diversity 

Fig. 13.24 Qualitative behavior characteristics as a function of the pulse length, T. 

The horizontal axis is T, the pulse length. In Fig. 13.25, kL = 0.25, in 
Fig. 13.26, kL = 1 .O, and in Fig. 13.27, kL = 6.25. In all cases k = L. 
The different curves correspond to various values of &/A& We see that 
the anticipated behavior occurs. For small E$V,, Dopt < Dmin, and there 
is a single peak. For larger J?#V& Dopt > Dmin, and there are two peaks, 
As kL increases, a larger value of &/A&-, is required to obtain the two-peak 
behavior. 

In Figure 13.28, we show the effect of the kL product. To construct 
these curves, we used the value of T that maximized IFss(+)I for the 
particular kL product and &/A&, (k = L for all curves). The vertical axis is 
-j&&), and the horizontal axis is &/iV,,. Each curve corresponds to a 
different kL product. As the kL product increases, the exponent decreases 
for a fixed &/N,, but the change is not drastic. 

This example illustrates the performance analysis of a typical system. 
The reader may be troubled by the seemingly abrupt transition between the 



0.140 * 
I I I IIIlll I 1 I llllll 

. 

0.040 - 

0.020 - 

O* I I I I IllI I I I IIIl!l 4 
0.1 0.2 0.3 0.4 0.5 0.7 1 2 3 4 5 7 10 20 

T- 

Fig. 13.25 Optimum receiver performance, binary orthogonal communication, first- 

order fading, underspread channel; k = 0.5, L = 0.5, constant?(t). (From [7].) 
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Fig 13.26 Optimum receiver performance, first-order fading, doubly-spread channel, 
k=l,L = 1, constantf(t). (From [7].) 
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011 I I IIIIII I I I IIIII, 
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T- 

Fig. 13.27 Optimum receiver performance, binary orthogonal communication, first-order 
fading, overspread channel; k = 2.5, L = 2.5, constant&. (From [7].) 

formulas on pages 508410 and the curves in Figs. 13.25-13.28. The 
intermediate steps consist of carrying out the calculations numerically. 
Efficient computational algorithms are important, but are not within the 
scope of our discussion. There is, however, one aspect of the calculation 
procedure that is of interest. We emphasized that a suitable choice of 
orthogonal functions reduces the complexity of the calculation. To generate 
the curves in Figs. 13.25-13.28, we kept increasing K until ,Gss(+) stabilized. 
In Table 13.1, we indicate the values of K required to achieve three-place 
accuracy in ,Zss(+) as a function of various parameters in the problem. 
When 

or 

wA<<l 
T I4 (286) 

1 
T << - 

k 
(287) 

and &/No is large, more terms are required. Notice that when (286) is 
satisfied we can model the channel as a Doppler-spread point channel, and 
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Fig. 13.28 Optimum receiver performance for optimum T, constant f<?), binary orthog- 
onal communication over a doubly-spread channel (k = L). (From [7].) 

Table 13.1 Number of Terms 
Required to Achieve at Least Three- 
place Accuracy in the Calculation 
of (l~,~(1/2)I/~r/No) (From cm 

&/No k L T K 

5 0.5 0.5 0.1 17 

5 0.5 0.5 1 13 

5 0.5 0.5 10 20 
20 0.5 0.5 1 13 

5 1 1 1 13 

5 1 1 10 21 

20 1 1 1 17 

5 2.5 2.5 0.1 25 
5 2.5 2.5 1 17 

20 2.5 2.5 1 17 

20 2.5 2.5 10 25 
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when (287) is satisfied we can model the channel as a nonfluctuating 
range- ‘spread channel. Thus, the cases that required the most calculation 
could be avoided. 

In this sub Isection we have actually carried out the performance analysis 
for a specific problem. The a .nalysis demonstrates the utility of the channel 
models developed in Section 13.3.2 for studying problems containing 
doubly-spread channels or doubly-spread targets. In addition, it demon- 
strates quantitatively how the various system parameters affect the system 
performance. 

13.3.3.C. Summary. In this section we have studied the problem of 
binary communication over doubly-spread channels. There are several 
important points that should be re-emphasized. 

1. When the BL product of the channel is small, we can reduce it to a 
set of nonfluctuating point channels by proper signal design. The resulting 
system achieves the performance bound. Because the receiver is straight- 
forward, this mode of operation should be used for underspread channels 
whenever possible. 

2. When the channel is overspread, we can reduce it to a singly-spread 
channel by proper signal design. The efficiency of the resulting system 
depends on the details of the scattering function and the available &/NO. 
Because the singly-spread receiver is simpler than the doubly-spread 
receiver, the above mode of operation should be used for overspread 
channels whenever possible. 

3. Most scattering functions can be adequately approximated by a 
distributed state-variable model. For this case, we can analyze the per- 
formance using the modal expansion techniques developed in this section. 
Although the analysis is complicated, it is feasible. The results provide 
quantitative confirmation of our intuitive arguments in simple cases and 
enable us to study more complicated systems in which the intuitive argu- 
ments would be difficult. 

This completes our discussion of binary communication. In Section 
13.3.5, we shall discuss briefly the extensions to M-ary systems. 

13.3.4 Detection under LEC Conditions 

The model for the detection problem and the binary communication 
problem were formulated in Section 13.3.1. In the succeeding sections we 
studied various facets of the general case in detail. There is one special case 
in which the results are appreciably simpler. This is the lower-energy- 
coherence (LEC) case that we have encountered several times previously. 

In Section 13.3.4.A we study the LEC problem. The discussion suggests 
suboptimum receivers for the general case, which we discuss briefly in 
Section 13.3.4.B. 
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13.3.4.A. m LEC Receivers. If we denote the largest eigenvalue of s’(t) by 
a max, the LEC condition is 

m 
a max 

<< 1 
N, l 

(288) 

Paralleling the derivation in Section 11.2.4, we can see that the likelihood 
ratio test for the simple binary detection problem reduces to 

Tr 

1 
1 HI 

R 
= No2 

r”*(t)&t, u)?(u) dt du 2 y. (289 
Ho 

Ti 

Substituting (143) into (289) gives 
Tr 

E 
= -J- 

HI 
1 R 

No2 
* dl r”*(t)f(t - &,(t - u, l)f*(u - a)?(u) >< ye 

HO 
Ti 

A particularly simple realization can be obtained when Ti = - co and 
Tf = 00 by factoring && - u, 2) along the time axis as 

KDR(t - u, A) = 00 -M* s KoR -I%1 (X - t, A)K,R(z - U, A) dx. 
---co 

(291) 

Using (291) in (290) gives 

The receiver specified by (292) is shown in Fig. 13.29 (due originally to 
Price [5]). Because the receiver requires a continuous operation in R, 
it cannot be realized exactly. An approximation to the optimum receiver 
is obtained by sampling in 1 and replacing the il integration by a finite 
sum. This realization is shown in Fig. 13.30. This receiver is also due to 
Price [5] and is essentially optimum under LEC conditions. 

When the LEC condition is valid, (11.65) gives 

LI 
P(S) - -- 

s(1 - s) 
2N,2 

I&t, u)12 dt du. 

Using (143) in (293) gives 
Ti 

(293) 

x s w dA,f*(t - &)E&(t - u, &)r”<u - &) . (294) -w I 
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Typical increment 

-T- 
r 00 

time 

Spatial integration hi . 

Fig. 13.29 Optimum LEC receiver for doubly-spread channel. 

This can be written more compactly as 

u 
P(S) e(,, u> I&&, u}l” dT dzJ 9 (295) 

-a3 

where 6{~, v> is the signal ambiguity function, and &{T, u> is the two- 
frequency correlation function defined in (21). (See Problem 13.3.21) 

Our discussion of the LEC problem has been brief, but the reader 
should not underestimate its importance. In many cases the system is 
forced to operate under LEC conditions. Then the results in (292) and 
(295) are directly applicable. In other cases the LEC condition is not 
present, but the LEC receiver suggests a suboptimum receiver structure. 
We explore this problem briefly in the next subsection. 
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Tapped-delay line 

i 

Typical tap 
output 

FYt - Xl) 

Similar paths 

*z---q> 

Fig. 13.30 Approximation to optimum LEC receiver for doubly-spread channel. 

13.3.4.B. Suboptimum Receiuevs. The first suboptimum receiver follows 
directly from Fig. 13.30. We retain the structure but allow an arbitrary 
time-invariant filter in each path. Thus, 

The performance of this receiver can be analyzed by combining the 
techniques of Sections 11.3 and 13.3.3. By varying the h”(*, A,), we can 
optimize the performance within the structural limitations. The actual 
calculations are complicated but feasible. 

The second suboptimum receiver is a generalization of the receivers in 
Figs. 11.19 and 12.11. This receiver is shown in Fig. 13.31. Notice that 
there are NR branches and each branch contains ND correlation operations. 
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Fig. 13.32 Approximation to suboptimum receiver No. 2 for rectangular envelope case. 

As a first approximation, we might choose 

1 ws = - 
T+L 

(297a) 

1 
Ts = - 

B+W’ 
(297b) 

so that we have a system with diversity 

NRND = (T + L)(B + W)* (297~) 

In general, we leave the filter bandwidth, w$ and the correlation time, T,, 
as parameters. This receiver can be analyzed by using the techniques of 
Section 11.3.3. Once again, the calculations are complicated but feasible. 

When f(t) is a rectangular pulse, a good approximation to the receiver 
in Fig. 13.31 can be obtained as shown in Fig. 13.32. Here 

wm a 1 
min W,, - . [ 1 Ts 

ww 
This receiver is essentially that suggested by Kennedy and Lebow [38&t 

This completes our suboptimum receiver discussion. We now consider 
some other detection theory topics. 

13.3.5 Related Topics 

In this section we discuss three topics briefly. In Section 13.3.5.A we 
discuss equivalent channels. In Section 13.3.5.B we comment on Mary 

t This reference contains an excellent intuitive discussion of communication 
doubly-spread channels, and most engineers will find it worthwhile reading. 
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communication over doubly-spread channels. In Section 13.3.5.C we 
re-examine the reverberation problem of Section 13.2. 

13.3.5.A. Equivalent Channels and Systems. The idea of an equivalent 
channel is due to Kennedy f3’7] and is a generalization of the dual-channel 
ideas introduced in Section 12.3. Our motivation for developing duality 
theory was to simplify the design of systems and their analysis. Frequently 
it was easier to analyze the dual of the system instead of the actual system. 
The motivation for our discussion of equivalent systems is identical. In 
many cases, it is easier to analyze an equivalent system instead of the 
actual system. In addition, the ability to recognize equivalent systems aids 
our understanding of the general problem. 

The first definition is: 

Definition 1. Equivalent Processes. Consider the two processes fl(t) and 
Qt) defined over the interval [ Ti, TJ. If the eigenvalues of Y1( t) equal the 
eigenvalues of f&), the processes are equivalent on. [T,, TJ. 

For simplicity we now restrict our attention to a simple binary detection 
problem. The complex envelopes of the received waveforms on the two 
hypotheses are 

r”(t) = s’(t) + W), Ti < t < T,:H,, - - (299) 

f(t) = G(t) Ti < t < T$: Hoe - B (3w 

The additive noise i+(t) is a sample function from a zero-mean complex. 
white Gaussian noise process with spectral height No. The signal i(t) 
is a sample function from a zero-mean complex Gaussian process with 
covariance function &(t, u). From our earlier results we know that the 
performance of the system is completely characterized by the eigenvalues 
of &(t, u). Notice that the receiver depends on both the eigenfunctions 
and eigenvalues, but the eigenfunctions do not affect the p&hnmce. 
This observation suggests the following definition. 

Definition 2. Equivalent Detection Problems. All simple binary detection 
problems in which the j(t) are equivalent processes are equivalent. 

This definition is a generalization of Definition 5 on page 426. 
The next idea of interest is that of equivdent channel. The covariance 

function of the signal process at the output of a doubly-spread channel is 
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Now consider the covariance function at the output of a second channel, 

We can now define equivalent channels. 

Definition 3. Equivalent Channels. Channel No. 2 is equivalent to Channel 
No. 1, if, for every f&t) with finite energy, there exists a signal $&) with 
finite energy such that the eigenvalues of &t, u) are equal to the eigen- 
values of Qt, u). 

The utility of this concept is that it is frequently easier to analyze an 
equivalent channel instead of the actual channel. 

Some typical equivalent channels are listed in Table 13.2. In columns 1 
and 3 we show the relationship between the two-channel scattering func- 
tions. Notice that sDR{ f, A} is an arbitrary scattering function. The com- 
plex envelope of the transmitted signal in system 1 is f(t). In column 4, we 
show the complex envelope that must be transmitted in system 2 to generate 
an equivalent output signal process. We have assumed an infinite observa- 
tion interval for simplicity. 

We study other equivalent channels and systems in the problems. Once 
again, we point out that it is a logical extension of the duality theory of 
Section 12.3 and is useful both as a labor-saving procedure and as an aid 
to understan ding the basic limitations on a system. 

13.3.5. B. Wary Communications over Doubly-Spread Channels. In 
Section 11.3.4 we discussed communication over Doppler-spread channels 
using M-orthogonal signals. Many of the results were based on the eigen- 
values of the output processes. All these results are also applicable to the 
doubly-spread channel model. In particular, the idea of an optimum 
eigenvalue distribution is valid. When we try to analyze the performance 
of a particular system, we must use the new techniques developed in this 
chapter. The modification of the binary results is straightforward. The 
reader should consult [37] for a complete discussion of the M-ary problem. 

13.3.5.C. Reverberation. In Section 13.2 we studied the problem of 
detecting a point target in the presence of doubly-spread interference. 
One problem of interest was the design of the optimum receiver and an 
analysis of its performance. The appropriate equations were (116)-( 121b), 
and we indicated that we would discuss their solution in this section. We 
see that all of our discussion in Section 13.3.2 is directly applicable to this 
problem. The difference is that we want to estimate the reverberation 
return, ii,(t), in one case, and the reflected signal process in the other. 
All of the techniques carry over directly. 
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13.3.6 Summary of Detection of Doubly-Spread Signals 

In this section we have studied the detection of doubly-spread targets 
and communication over doubly-spread channels. In the Section 13.3.1 
we formulated the model and specified the optimum receiver and its 
performance in terms of integral equations and differential equations. 
Because the problem was one of detecting complex Gaussian processes in 
complex Gaussian noise, the equations from Section 11.2.1 were directly 
applicable. The difficulty arose when we tried solve the integral equations 
that specified the optimum receiver. 

In Section 13.3.2 we developed several approximate models. The reason 
for developing these models is that they reduced the problem to a format 
that we had encountered previously and could analyze exactly. In partic- 
ular, we developed a tapped-delay line model, a general orthogonal 
series model, and an approximate differential-equation model. Each 
model had advantages and disadvantages, and the choice of which one to 
use depended on the particular situation. 

In Section 13.3.3 we studied a binary communication problem in detail. 
In addition to obtaining actual results of interest, it provided a concrete 
example of the techniques involved. Because of the relative simplicity of 
the binary symmetric problem, it is a useful tool for obtaining insight 
into more complicated problems. 

In Section 13.3.4, we studied the LEC problem. In this case the optimum 
receiver can be completely specified and its performance evaluated. The 
LEC receiver also suggested suboptimum receiver structures for other 
problems. 

In section 13.3.5, we discussed some related topics briefly. This completes 
our discussion of the general detection problem. 
consider the parameter estimation problem. 

In the next we 

13.4 PARAMETER ESTIMATION FOR DOUBLY-SPREAD TARGETS 

In this section we consider the problem of estimating the parameters 
of a doubly-spread target. The model of interest is a straightforward 
extension of the model of the detection problem in Section 13.1. The 
complex envelope of the received waveform is 

r”(t) = s’(t, A) + i+(t), Ti < t < Tt, - (303) 

where Z(t, A), given A, is a sample function of a zero-mean complex 
Gaussian process whose covariance function is 

&t, u :A) = E, 
s 

=)(t - A).&-& - u, kA)f*(u - 1) dL. (304) 
-a3 
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The additive noise IF(~) is a sample function of a white Gaussian noise 
process. The vector parameter A is either a nonrandom unknown vector 
or a value of a random vector that we want to estimate. We consider 
only the nonrandom unknown parameter problem in the text. Typical 
parameters of interest are the amplitude of the scattering function or the 
mean range and mean Doppler of a doubly-spread target. 

To find the maximum likelihood estimate of A, we construct the likeli- 
hood function and choose the value of A at which it is maximum. Because 
the expression for the likelihood function can be derived by a straight- 
forward modification of the analysis in Chapter 6 and Section 11.4, we 
can just state the pertinent results. 

0 

I,(A) = L 
N, ss 

r”*(t)&.& u:A)F(u) dt du 

Ti 

E,(A) = - -!- 
s 

Tf * 

N, Ti 
&(t :A) dt. (307) 

The filter h”,(t, u : A) is specified by the equation 

N,h,(t, u : A) + 
s 

Tf_ 
h,(t, x:A)&(x, u:A) dx = &(t, CA), 

Ti 

T i t, 21 < Tf. (308) 

The function &(t : A) is the realizable minimum mean-square error in 
estimating $@:A), assuming that A is known. Notice that I,(A) is usually a 
function of A and cannot be neglected. 

A second realization for I,(A) is obtained by factoring h”,(t, U: A) as 

s Tr i;,(t, u : A) = hCM’*(x, t : A)i;[s’(x, u : A) &, T’i < t, u < Tf. (309) 

Then 
Ti 

l,(A) = -!- 
Tf 

s Is 

2 

dx 
No Ti 

Tfhc~l(z, t :A)r”(t) dt . WV 
Ti 

This is the familiar filter-squarer-integrator realization. 
A third realization is 

I,(A) = -!- s Tf 
No Ti 

(2 Re [F*(t)$t:A)] - &(t:A)12) dt, , 
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where &.@:A) is the realizable minimum mean-square estimate of J( t : A), 
assuming that A is known. This is the optimum realizable filter realization. 

We see that these real .ization s are analogous to the realization s en- 
countered in the detection problem. Now we must find the realization for a 
set of values of A that span the range of possible parameter values. In the 
general case, we must use one of the approximate target models (e.g., a 
tapped delay-line model or a general orthogonal series model) developed 
in Section 13.2 to find the receiver. The computations are much more 
lengthy, because we must do them for many values of A, but there are no 
new concepts involved. 

In the following sections we consider a special case in which a more 
direct solution can be obtained. This is the low-energy-coherence (LEC) 
case, which we have encountered previously in Section 13.3.4. 

There are four sections. In Section 13.4.1, we give the results for the gen- 
era1 parameter estimation problem under the LEC condition. In Section 
13.4.2, we consider the problem of estimating the amplitude of an otherwise 
known scattering function. In Section 13.4.3, we consider the problem 
of estimating the mean range and mean Doppler of a doubly-spread target. 
Finally, in Section 13.4.4, we summarize our results. 

13.4.1 Estimation under LEC Conditions 

The basic derivation is identical with that 
simply state the results. The LEC condition is 

in Chapter 6, and so we 

(312a) 

for all A in the parameter space and i. The Ii(A) are the eigenvalues of 
&t, u: A). Under these restrictions, 

Tr 
w ?*(t)E& u:A)r(u) dt &J 

Ti 
Tf 

l&t, u:A)12 dt du. (312b) 

Ti 
This result is analogous to (7.136). 

For simplicity, we assume that Ti = - 00 and Tf = 00 in the remainder 
of our discussion. Observe that f(t) has unit energy, so that s(t : A) is a 
nonstationary process whose energy has a finite expected value. Specifically, 

E 
cs 

O” Id(t:A)12 dt 
-co 

&{f, 1:A) elf d2. 
---a3 

(313a) 
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Thus, the infinite observation interval does not lead to a singular problem, 
as it would if s’(t:A) were stationary. Substituting (304) into (312b) gives 

The last two terms are bias terms, which can be written in a simpler 
manner. We can write the second term in (313b) as 

zc,fl(A) = - Et 
f 

* dl 
No -cm 

DR(O, A:A) 
s 

O” If(t - ;t)l” dt 
-VI Et * - - -- s N, -co 

dA &,,(o, 1: A) = - ‘2 . 
ml 

W) 

Here, &(A) is the average received energy written as a function of the 
unknown parameter A. 

To simplify the third term, we use the two-frequency correlation 
function I& (7, CA). Recall from (21) that 

&(T, A: A) = 
s 

O” &-&, v : A}ejZRV’ dv. 
-co 

(315) 

Using (315) in the last term of (313b) and performing a little manipulation, 
we find that the third term can be written as 00 1$](A) = - Et2 

2N02 ss dx &I @@, Y} I&--&, !wq12, (316) 
-00 

where 0{*, l } is the ambiguity function of f(t). We denote the sum of the 
last two terms in (313b) as IB(A). Thus, 

I&) = - ‘- - g 
s s 

mdz 
2N, 4N02 --oo 

O” dy 0(x, y} &,,{x, y:A}12. (317) 
--oo 

The last step is to find a simpler realization of the first term in (313b). 
The procedure here is identical with that in Section 13.3.4. We factor 
&20 - u, 2: A), using the relation 

RD,ct - u, L:A) = s * -CIA1 
KDR *(x - t, A: A)EF;(z - u, I:A) dx. (318) 

-00 
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Since the time interval is infinite and &&, A: A) is stationary, we can 
find a realizable (with respect to T) &&! (7, il : A) by spectrum factorization. 
In the frequency domain 

Substituting (318) into (313b) and denoting the first term by I,(A), we have 

(320) 
. Combining (320) and (317) gives an expression for I(A), which is 

For each value of A we can realize rR(A) approximately by sampling in ;3. 
and replacing the integral in A by a sum. We then add [‘(A) to obtain an 
approximate likelihood function. This realization is an obvious modifica- 
tion of the structure in Fig. 13.30. Notice that we must carry out this 
calculation for a set of values of A, so that the entire procedure is quite 
tedious. 

We now have the receiver structure specified. The performance analysis 
for the general case is difficult. The Cramer-Rao bound gives a bound on 
the variance of any unbiased estimate. For a singZe parameter, we differen- 
tiate (312b) to obtain 

Var [a - - A] > ao No2 . (322) 

dt du 1 [a&t, u : &]/&I I2 

-00 

For multiple parameters, we modify (7.155) to obtain the elements in the 
information matrix as 

Tr 

.&,(A) = L Re 
NO2 u 

dt du 
a&t, WA) aiTF(t, %A) 

. VW aA i dA 
Ti 

i 
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Substituting (304) into (323) gives the &(A) for the doubly-spread target. 
Using (316), we can write &(A) compactly as 

&(A) = Fg Re 
O” a&.+, y :A) 

u aA e{xy Y> 
a&{x9 YIA}d x . 

0 i 
aA 

dy 
(324) 

i -a3 

The principal results of this section are the expressions in (321) and 
(324). They specify the optimum receiver and the performance bound, 
respectively. We next consider two typical estimation problems. 

13.4.2 Amplitude Estimation 

In this section we consider the problem of estimating the amplitude of 
an otherwise known scattering function$ We assume that 

&,(t - u, k/4) = A&&t - u, A), WI 

where &(t - u, A) is normalized such that 

(326) 

Thus, 

(327) 

The covariance function of the received signal process is 

K&t, u:A) = E,A c mf(t - fl)&& - u, A)f*(u - A) dl ii A&t, u). 
J -00 

(328) 

The parameter A is an unknown positive number. 
In this case, the likelihood function in (312b) has a single maximum, 

which is located at 

s a3 
?*(tj&(t, u)?(u) dt du - N, &(t, t) dt 

--a 
8, = -aI . 00 (329) 

l&t, u)12 dt du 

t This problem was solved originally by Price [39]. Our problem is actually a degen- 
erate case of the problem he considers. 
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Since Li, may be negative, the maximum likelihood estimate is 

4nl = max [0, ci,]. (330) 

We discussed the truncation problem in detail in Section 7.1.2. For 
simplicity we assume that the parameters are such that the truncation 
effect is negligible. Using (326), (328), and (315) in (329), we obtain 

It follows easily that 8, is unbiased. An approximate receiver realization 
is shown in Fig. 13.33. 

If we neglect the bias on dml, we can bound its normalized variance 

by J ;l, where Jn is obtained from (324) as 

O{r, v} I&(7, v}I” dr dv. (332) 

-03 

It is worthwhile observing that we can compute the variance of 8, exactly 
(see Problem 13.4.4). The result is identical with Jil, except for a term that 
can be neglected when the LEC condition holds. 

To illustrate the ideas involved, we consider an example. 

Example. We assume that the target has the doubly Gaussian scattering function in 
Fig. 13.4. Then 

--co<f,A<a (333) 

and 

R&T, v> = exp 
(21rB)~7~ (2vLj2v2 

- - - - 
2 

-GQ<<,V<oo, (334) 

To simplify the algebra, we assume that f(t) is a Gaussian pulse. 

f(t)= (--$)tiexp (-2)) -00 <t< co. (335) 

Then, from (10.28), 

T2 
~~ + T2(2.2rfj2 )3 , -00 <T,f< 00. (336) 
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Fig. 13.33 Maximum likelihood estimator of the amplitude of a scattering function 
under LEC conditions. 

Substituting in (332), we have 

-co 
Integrating, we obtain 

+ v2((27Tj2 + 2(2nLj2) I) dr iiv. 

(337) 

W-9 

Looking at (338), we see that Jn will be maximized [and therefore the variance bound in 
(322) will be minimized] by some intermediate value of T. Specifically, the maximum 
occurs at 

T- 

J 

L. (339) 
27~B 
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Comparing (339) and (281), we see that if we let 

k = 2rB, (340) 

then this value of T corresponds to the point of minimum diversity in the output signal 
process. (Notice that B and k have different meanings in the two scattering functions.) 

Intuitively we would expect the minimum diversity point to be optimum, because of 
the original LEC assumption. This is because there is an optimum “energy per eigenvalue 
/NO” value in the general amplitude estimation problem (see Problem 13.4.8). The LEC 
condition in (311) means that we already have the energy distributed among too many 
eigenvalues. Thus we use the fewest eigenvalues possible. When the LEC condition does 
not hold, a curve of the form shown in Fig. 13.246 would be obtained. If  we use the 
value of Tin (339), then 

and 

Jn = 
( 1 
$ 2(1 + 4rBL)-l (341) 

0 

N2 
Var [Ciml - A] 2 

0 
; (1 + ~~TBL). (342) 

We see that the variance bound increases linearly with the BL product for BL > 1. 
This linear behavior with BL also depends on the LEC condition and does not hold in 
general. 

This completes our discussion of the amplitude estimation problem. 
We were able to obtain a closed-form sol .ution for B,, because Z(A) had a 
unique maximum. We now consider a different type of estimation problem. 

13.4.3 Estimation of Mean Range and Doppler 

In this subsection we consider the problem of estimating the mean 
range and mean Doppler of a doubly-spread target. A typical configura- 
tion in the T, f plane is shown in Fig. 13.34. We denote the mean range by 

Fig. 13.34 Target location in 7, f  plane. 
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Al, and the mean Doppler by AZ. The scattering function is denoted by 

where the scattering function on the right side of (343) is defined to have 
zero mean range and zero mean Doppler. Another function that will be 
useful is the two-frequency correlation function, which can be written as 

&,{T, v :A) = &,oRa{r, v} exp [-j2mA, + j2mA,]. (344) 

The purpose of (343) and (344) is to express the parametric dependence 
explicitly. 

The returned signal is given by (303). To find the maximum likelihood 
estimate of A, we first divide the 7, m plane into a set of range-Doppler 
cells. We denote the coordinates of the center of the ith cell as Ai. We next 
construct /(A,) for each cell and choose that value of Ai where I(AJ is 
maximum. 

First, we consider the general case and do not impose the LEC con- 
dition. Then, [(A,) is given by (305)-(307). As before, we let Ti = - cc and 
Tf = 00. Looking at (307), we see that &:A) does not depend on the 
mean range or Doppler, so that we do not need to compute I,(A). Thus, 

co 

l(Ai) = Ia = -!- 
No 

r”*(t)h,(t, u:Ai)T(u) dt du, (349 

where h (t, u:AJ is specified by (308) with A = Ai. For each cell we must 
solve (308) [or find one of the equivalent forms given in (309)-(31 l)]. 
Actually to carry out the solution, we would normally have to use one of 
the orthogonal series models in Section 13.3.2. 

In analyzing the performance, we must consider both global and local 
accuracy. To study the global accuracy problem we use the spread ambi- 
guity function that we defined in (11 .181). For doubly-spread targets the 
definition is 

x h”,(t, u:A)&(t - u, il:A,)f(u - a), (346) 

where A, corresponds to the actual mean range and mean Doppler of the 
target. To analyze the local accuracy, we use the Cramer-Rao bound. 
There is no conceptual difficulty in carrying out these analyses, but the 
calculations are involved. 
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When the LEC condition is satisfied, the solution is appreciably simpler. 
From (320), the likelihood function is 

The spread ambiguity function under LEC conditions is 

x &,( t - u, 1, : A)f*(u - l,)f*( t - 2,) 

x &( t - u, A2 : AJf(u - I,) 

co E,2 -- - 
No2 ss dx dy&(Z, y:A}6{x, Y]&R{% Y :A,}. 

-Go 

Notice that 
2 

&j(A) = 
a8 nDB,LEc@a9 4 

aAi aAaj A--A ’ a 
(349) 

which is identical with (324). To evaluate the Cram&Rao bound, we 
use (344) in (324) to obtain 

W) 

and 

,&,(A) = - g- 
No2 ss 

(~~T)~Tv~{T, u} &,R,,{~, u}l” d7 dv, 

-al 

00 

(351) 

J2,,(A) = E,2 
No2 

(271.~)~6{~, u} &,,Ro{~, u}l” dT du. (352) 
-a3 

As we would expect, the error performance depends on both the signal 
ambiguity function and the target-scattering function. Some typical 
situations are analyzed in the problems. 
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13.4.4 Summary 

In this section we studied parameter estimation for doubly-spread 
targets. We first formulated the general estimation problem and developed 
the expressions for the likelihood ratio. The resulting receiver was closely 
related to those encountered earlier in the detection problem. 

In the remainder of the section, we emphasized the low-energy-coherence 
case. In Section 13.4.1 we developed the expressions for the likelihood 
function and the Cramer-Rao bound under the LEC assumption. In 
Section 13.4.2 we found an explicit solution for the estimate of the ampli- 
tude of the scattering function. A simple example illustrated the effect of 
the pulse length and the BL product. In Section 13.4.3, we studied the 
problem of estimating the mean range and Doppler of a doubly-spread 
target. This problem is a generalization of the range-Doppler estimation 
problem that we studied in Chapter 10. 

Our goal in this section was to illustrate some of the important issues 
in the estimation problem. Because of the similarity to the detection 
problem, a detailed discussion was not necessary. 

13.5 SUMMARY OF DOUBLY-SPREAD TARGETS AND CHANNELS 

In this chapter we have studied targets and channels that are spread in 
both range and Doppler. The complex envelope of the signal returned 
from the target is 

a0 
j(t) = J E, / f( - t - a)& t, a> da. (353) 

--al 
The target reflection process is a sample function of zero-mean complex 
Gaussian random processes, which can be characterized in two ways : 

1. By a scattering function &,{J, 3L) or an equivalent form such as 
&&, 4, iTo&, v}, or &-&-9 v-j* 

2. By a distributed state-variable description in which the state equa- 
tions are ordinary differential equations containing the spatial variable 
1 as a parameter and i(t) is related to the state vector by a modulation 
functional. 

After formulating the model and discussing its general characteristics, we 
looked at three areas in which we encounter doubly-spread targets. 

In Section 13.2 we discussed the problem of resolution in a dense 
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environment. Here, the desired signal was a nonfluctuating point target 
and the interference was a doubly-spread environment. We examined 
both conventional and optimum receivers and compared their perform- 
ance. We found that when a conventional matched filter was used, the 
spread interference entered through a double convolution of the signal 
ambiguity function and the target-scattering function. As in the discrete 
resolution problem, examples indicated that proper signal design is 
frequently more important than optimum receiver design. 

In Section 13.3 we discussed the problem of detecting the return from a 
doubly-spread target and the problem of digital communication over a 
doubly-spread channel. After formulating the general problem, we 
developed several approximate target/channel models using orthogonal 
series expansions. The purpose of these models was to reduce the problem 
to a form that we could analyze. The tapped-delay line model was the 
easiest to implement, but the general orthogonal series model offered 
some computation advantages. We next studied the binary communication 
problem. For underspread channels we found signals that enabled us 
to approach the performance bound for any system. For overspread 
channels we could only approach the bound for large &/No with the 
simple signals we considered. To verify our intuitive argument, we 
carried out a detailed performance analysis for a particular system. The 
effect of the signal parameters and the scattering function parameters on 
the performance of a binary communication system was studied. Finally, 
we indicated the extensions to several related problems. 

In Section 13.4 we studied the problem of estimating the parameters 
of a doubly-spread target. We first formulated the general estimation 
problem and noted its similarity to the detection problem in Section 13.3. 
We then restricted our attention to the LEC case. Two particular problems, 
amplitude estimation and mean range and Doppler estimation, were 
studied in detail. 

There are two important problems which we have not considered that 
should be mentioned. The first is the problem of measuring the instan- 
taneous behavior of $(t, A). We encountered this issue in the estimator- 
correlator receiver but did not discuss it fully. The second problem is that 
of measuring (or estimating) the scattering function of the target or 
channel. We did not discuss this problem at all. An adequate discussion 
of these problems would take us too far afield; the interested reader should 
consult the references (e.g., [39]-[52] and [66]-[69]). 

This completes our discussion of doubly-spread targets and channels. 
In the next chapter we summarize our discussion of the radar-sonar 
problem. 
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13.6 PROBLEMS 

P. 13.1 Target Models 

Problem 13.1.1. Read the discussion in the Appendix of [5]. Verify that the scattering 
function of a rough rotating sphere is as shown in Fig. 13.2. 
Problem 13.1.2. Consider the target shown in Fig. P.13.1. The antenna pattern is 
constant over the target dimensions. The discs are perpendicular to the axis of propaga- 
tion (assume plane wave propagation). The carrier is at fc cps. The dimensions x0, yO, 
do, and dI are in meters. The rates of rotation, go andgI, are in revolutions per second. 

Fig. P.13.1 

The reflectivity of disc 0 is uniform and equals p. per m2. The reflectivities of the two 
disc l’s are constant, p1 per m 2. These reflectivities are along the p-axis. Assume y. > x0. 
The target geometry is symmetric about the xx plane. 

Compute the scattering function of the target as a function of CL Sketch your result. 
Problem 13.1.3. The quantities oR2, Q 2 and PDR are defined in terms of S~DR, {f, A}. , 
Find equivalent expreSSiOnS for them in terms of &$f$ v>, ~?DR(+T, v>, and .KDR(T, il). 
Problem 13.1.4. Assume that 

&R tf, ;I> = 2 BL sexp[-$$I, -m<f<a, --00<;3.<00. 

1. Find pDR{f, V>, RDR(T, V>, and gDR(7,1>. 
2. Calculate GR2, GD2, and PDR. 

Problem 13.1.5. Assume that 

s,,{f, A) = 2ob2 
27rBL(1 - ~~1% 

x exp 
L2(f - mD)2 - 2BLp(f - ??$)(il - mR) -k B2@ - mRj2 

- 
2B2L2(1 - p2) 1 . 
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1. Find P&f, v>, &,&, v>, and I&(7, A). 
2. Find the five quantities defined in (14)-(19). 

Problem 13.1.6. Assume that 

&R Cf, A> = 
4kob2 

L[(2vf)2 + k21 ’ 
-owf<*, o<a<Lh 

Find p&f, 4, &+, ~1, and &&, % 
Problem 13.1.7. Assume that 

0, elsewhere. 

Problem 13.1.8. Assume that 

&J&f, A> = 8 2/2ab2 sin2 (d/L) 

1 kU(2~flk)4 + 11 ’ 
--ao<f<a, ogI:L. 

1. Find p&f, v}, &&, v), and J&(7,1). 
2. Find oD2 and oR2. 

Problem 13.1.9. 

Problem 13.1.8. 
Consider the target process scattering function is given in 

1. Describe this process with a differential-equation model. 
2. Describe the received signal process Z(t) in terms of the results in part 1. 

Problem 13.1.10. We frequently use the doubly-Gaussian scattering function in Problem 
13.1.4. Construct a differential-equation model to represent it approximately. (Hint: 
Recall Case 2 on page I-505.) 
Problem 13.1.11. Assume that the scattering function is 

&Cf, 11 = 
48 

[( j2nf )2 + E,2(2)1[< j2nf I2 + i22(Ql ' 
-co<f<q O<ML. 

1. Sketch the scattering function for various allowable i#), i2(n), and a(n). 
2. Write out the differential equations that characterize this target. (Hint: Recall 

Example 2 in the Appendix, page 594.) 

P.13.2 Detection in Reverberation 

CONVENTIONAL RECEIVERS 

In Problem 13.2.1-13.2.9, we use the model in (69)-(72) and assume that a conven- 
tional receiver is used. 

Problem 13.2.1. The transmitted signal in given in (10.43). The scattering function is 

&,if, 21 = 
1 

27rBL(l - p2)s exp 
L2f” - 2BLpf;” + B2A2 

- l 2B2L2(1 -  p2) 1 
Find p,. [see (13.83)] as a function of E,, N,, B, L, p, and T. 
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Problem 13.2.2. Consider the reverberation model in (132). Assume that 

3(t) = +Zie-atu-,(t). 

Calculate pr as a function of E,, P,, fd, and a. 
Problem 13.2.3. Consider the reverberation model in (132). 

1. Verify that 

EtPc * 
PT =- 

s No -00 
sf2(f>df 

for a zero-velocity target. 
2. Choose ${,f} subject to the energy constant 

so that p,. is minimized. 
Problem 13.2.4. Consider the reverberation model in (132). 

1. Verify that 

E,P, co - 
PT =- 

s No -co 
q~f>Qcf-fd) df (P.1) 

for a target with Doppler shift fd. 
2. What type of constraints must be placed on f(t) in order to obtain a meaningful 

result when we try to minimize pr? 
3. Assume that we require 

s O” f2${f> df = a,,2. -00 (P.2) 

Minimize p,. subject to the constraint in (P.2) and an energy constraint. 
Problem 13.2.5. Assume that we have the constant-height reverberation scattering 
function shown in Fig. P.13.2. The signal is the pulse train shown in Fig. 10.9. 

1. Show how to choose T,, T,,, and n to minimize the effect of the reverberation. 
2. Calculate p,. (13.83) for t&e signal parameters that you selected. 

Fig. P.13.2 
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Problem 13.2.6. Consider the signal given in (10.145), which has 3N parameters to 
choose. Consider the scattering function in Fig. P.13.2. 

1. Write an expression for p,. (13.83) in terms of the signal parameters and B, L, and 
fr. Assume that LIT, is an integer for simplicity. 

2. Consider the special case of (10.145) in which co, = 0, and define 

Express pr in terms of a”. 
3. We want to minimize PrbY choosing G properly. Formulate the optimization prob- 

alejel 

lems and derive the necessary equations. 
Problem 13.2.7. Repeat parts 2 and 3 of Problem 13.2.6 for the following special cases: 

1. We require 

co, = 0, n--l ,..., N, 

a, = 1, n= l,...,N. 

2. We require 

en = 0, n l,...,N, = 

an = 1 or 0, n l,...,N. = 

Problem 13.2.8. We want to estimate the range and Doppler of a nonfluctuating point 
target in the presence of reverberation. The conventional receiver in Section 10.2 is used 

Derive a bound on the variance of the range and Doppler estimation errors. 
Problem 13.2.9 In Section 12.3 we developed duality theory. These ideas are also useful 
in reverberation problems. Assume that a conventional receiver is used. 

Derive the dual of the result in (83). 

OPTIMUM RECEIVERS 

Problem 13.2.10. Consider the model in (lOl)-(107). One procedure for solving (107) is 
to approximate the integrals with finite sums. Carry out the details of this procedure 
and obtain a matrix equation specifying g(ti), i = 1, . . . , N. Discuss how you selected 
the sampling interval and the resulting computational requirements. 
Problem 13.2.11. Consider the model in (lOl)-(107). The complex envelope of the 
transmitted signal is given by (10.25), and the scattering function is given by (13.333). 
Assume that Q = cz)& = 0. 

1. Find a series solution to (107) by using Mehler’s expansion (e.g., [53] or [54].) 
2. Evaluate A,. 

Problem 13.2.13. One 
model ,!?,,{f, A} as a 

procedure for obtaining an 
piecewise constant function 

approximate solution to (107) is to 
and then replace the each piecewise 

constant segment by an impulse that is located at the center of the segment with the 
same volume as the segment. This reduces the problem to that in Section 10.5. 
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1. Discuss how one selects the grid dimensions. 
2. Carry out the details of the procedure. Use (10.202) to write an explicit solution 

to the approximate problem. Identify the various matrices explicitly. 
3. The performance is given by (10.203). We would like to choose f(t) to maximize 

A*. What constraints are necessary? Carry out the optimization. 

Problem 13.2.14. Assume that &&t - u, 3L) can be factored as 

l&)$&t - u, 2) = l!&(t - u&,(n). 

1. Evaluate &(t, u) in (104) for this case. 
2. We want to approximate &(t, u) by a separable kernel. What functions would 

minimize the approximation error? Discuss other choices that might be more practical. 
Consider, for example, 

&&(a = f  ~~w~(~) 
i=l 

as a preliminary expansion. 

Problem 13.2.15. In this problem we derive the optimum estimator equations in (116)- 
(121). 

1. The first step is to derive the generalization of (X-6.55). The linear operation is 

s t i(t, A) = i,(t, 7: h)?(r) dr. Ti (P.0 

We want to minimize the realizable MMSE error. Show that the optimum impulse 
response must satisfy 

E[Z(t, A)?*(u)] = 
s 

L 
h,(t, 7:;t)&(~, u) d7, Ti < u < t. (P.2) 

Ti 

2. Using (P.2) as a starting point, carry out an analysis parallel to that in Section 
6.3.2 to obtain (116)-(121). 

Problem 13.2.16. Consider the scattering function given in (53)-(63). Assume that 

elsewhere. 

Write out the optimum receiver equations (116)-(121) in detail for this case. 
Problem 13.2.17. Consider the model in (lOl)-(104) and assume that Td = ti!$ = 0. We 
use a receiver that computes 

s 

al 
Tm = ;*(t)?(t) dt 

-00 

and compares ITm12 with a threshold. The function c(t) is an arbitrary function that we 
want to choose. Do not confuse F(t) and?(t) in (106). The performance of this receiver 
is a monotonic function of Am, where 

[see (9.49)]. 
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1. Derive an expression for Ana. 

A 2. Find an equation that specifies the z(t) which maximizes Am. Call the solution 

3. In [32], this problem is studied from a different viewpoint. Stutt and Spafford 
define 

J = E[l~~~2 1 n”,.(t) only]. 
Prove that 

co 

J- 
Tss 

;*(t - A)f(t - 3’)RDR(t - u, A)J?“(u - a>‘;(~ - 2) dt du dA 
U 

-CO 

where e,,{*, l } is the cross-ambiguity function defined in (10.222). 
4. We want to minimize J subject to the constraints 

s 

co 
I;(t)12 dt = 1 

-CO 
and 

s 

aI 
f*(t);(t) dt = K, 

-CQ 
where 

a. Explain these constraints in the context of the result in part 1. 

b. Carry out the minimization using two Lagrange multipliers. Call the solution i2(t). 
c. Does 

&t) = &t) 
in general ? 

d. Verify that we can force 

i&t) = i&t) 

by choosing the two constraints appropriately. 

e. Read [32] and discuss why one might want to use i2(t) instead of &t). 
Comments: 

1. You should have solved part 2 by inspection, since &) must equal g”<t> in (106). 
2. The equation in part 3b is solved by a sampling approach in [32]. The same pro- 

cedures can be used to solve (106). 
Problem 13.2.18. Consider the model in Problem 13.2.17. 

1. Verify that Am can be written as 
2 

f(t);*(t) dt 
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2. We require i(t) to be of the form 

at) = $3(t) + c2f(t - T,), 

where Ts is a fixed constant and Z1 and $ are complex weightings. Choose & and ZS to 
maximize Am. Call these values i1 and i,. 

3. Now maximize A,&, &) as a function of T,. 
Problem 13.2.19. Consider the result in (P.l) in Problem 13.2.18. We would like to 
optimize f(t) and s*(t) jointly. We studied this problem for Doppler-spread reverbera- 
tion in Problem 11.2.14. Our procedure resulted in a set of nonlinear differential 
equations that we were unable to solve. The basic difficulty was that both the conven- 
tional and optimum receivers were related to f(t). 

We now try a new procedure. For simplicity we begin with Doppler-spread reverbera- 
tion, 

&-&f - u, 2) = K=(t - u) 6(A). 

We select an initial v(t) with unity 
following minimization : 

energy, which we denote as &(t). Now conduct the 

(i) Constrain 

(ii) Constrain 

and 

(iii) Constrain 

(iv) Minimize 

s 

T  
13(t>12dt = 1. 

0 

s 
m f 2 lp{,f}12 df = B2 

-CO 

3(O) =3(T) = 0. 

s 

T  

3(t)&) dt = K. 
0 

T  

J=N,+ 
ss 

~~(t)3W~& - u)~*(&(u) dt du, 

0 

subject to these constraints. 
1. Carry out the required minimization. Verify that the resulting equation is linear. 

Reduce the problems to a set of differential equations that specify the solution. Observe 
that these can be solved using Baggeroer’s algorithm [HI, [56]. Denote the solution as 
30 1t 

2. ‘Assume that&(t) is transmitted. Choose i?(t) to maximize Am. Denote the sohttion 
as iY2(t). Is there any difficulty in carrying out this procedure? 

3. Repeat part 1, using iY2(t). What is the difficulty with this procedure? 
4. Discuss the problems in extending this procedure to the doubly-spread case. 

Using the distributed state-variable model, derive a set of differential equations that 
specify the optimum signal as in part 1. 
Problem 13.2.20. The complex envelope of the transmitted signal is d?&t), where 

N 

3’( ) t *a - C( u”t - nT’.h (RI) 
n=l 
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with ii(t) defined as in (10.29). The desired target is located at the origin. Instead of 
correlating withf*(t), we correlate with 2*(t); 

N 
ii?(t) = 2 WnTsZ(t - nT,), 

n=l 

where Wn is an arbitrary complex number. Both f(t) and i?(t) are normalized to have 
unit energy. The receiver output is 

2 

zA - f(t)iz”(t) dt . 

1. Calculate A when the complex input is the signal plus complex white noise with 
spectral height No. 

2. Denote the complex weightings by the vector W. Choose W to maximize A. 
3. Calculate A for the case in which there is clutter that has a rectangular scattering 

function 

B, <flB,, L, rs A 5 L,, 

elsewhere. 
Write A in the form 

where 

A *tuw 

J%lN, -=fVt[NI+tC]ii” 

iiij = 1. 
Specify the other matrices. 

4. We want to choose W to maximize A. Carry out the maximization and find the 
equations specifying the optimum G. 
Comment: This problem and generalizations of it are studied in detail in [22], [24], and 
1341 
Pro&n 13.2.21. Consider the reverberation model in (132). From (136). 

where gGr{f } is specified by (124) and (132). We constrain the transmitted signal to be 
bandlimited with unit energy, 

$Ef> = 0, IfI2 w  
Find an equation specifying the optimum S'f{f } to maximize A,. 

Problem 13.2.22. Consider the reverberation model in (132). I f  the target is moving, then 

Repeat Problem 13.2.21 for this case. 
Problem 13.2.23. Consider the reverberation model in (132). Assume that 

3c 1 t = a$(t - iTpI, 
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where Z(e) is defined in (10.29)The desired target has a known velocity corresponding to 
a Doppler shift offd cps. 

1. Draw a block diagram of the optimum receiver and evaluate its performance. 
2. Now assume that we generate two random variables, ” 

s T, 
?(t);*(t) dt, 

0 

s Tp+Ts F(t)G*(t TP 
Derive a formula for the optimum operations on 
of the resulting receiver. 

3. Consider the receiver shown in Fig. P.13.3. 
range. Analyze the performance of this receiver 
Compare the results in parts 1, 2, and 3. 

- T,) dt. 

F1 and F2. Evaluate the performance 

The target is assumed to be at zero- 
as a function of E,, No, P,, and fd. 

Fig. P.13.3 

4. Read Steinberg’s discussion of MT1 (moving target indication) radars [57]. 
Compare his model and results with our model. Other interesting discussions of MT1 
systems are given in [ SS]-[60]. 

P.13.3 Detection of Doubly-Spread Targets 

DETECTION MODELS 

Problem 13.3.1. Consider the binary detection problem in which the complex envelopes 
of the received waveforms on the two hypotheses are 

F(t) = Z,(t) + w>, -co < t < WITI, 

F(t) = q)(t) + w, -- < t < WHO, 
where Z,(t), Z’#), and i+(t) are statistically independent complex Gaussian random 
processes with covariance functions. 

&,(t, u) = Et 
s 

m f(t - A)KDR o(t - u, A)f*(u - A) dA, , -a 

Go &,(t, u) = Et f(t - A>& I(t - u, A)f*(u - A) dil, 
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and 
g;(t, u) = NO&t - u). 

Derive the equations specifying the optimum receiver. 
Problem 13.3.2. Consider the model in Problem 13.3.1. Assume 

Derive the equations specifying the optimum receiver. 
Problem 13.3.3. The complex envelopes of the received waveforms on the two hypotheses 
are 

--a <t < m:Hl, 

-- < t < wHO. 

The process &t, 1) is characterized in (4). The random variable & is a complex Gaussian 
variable (E(1612) = 20,~) and is statistically independent of 6(t, 1). 

Derive the equations specifying the optimum receiver. 
Problem 13.3.4. Consider the statement below (176) regarding the statistical inde- 
pendence of the tap gain processes. Investigate the issue quantitatively. 
Problem 13.3.5. Consider the scattering function in Problem 13.1.6. Assume that we 
approximate it with the tapped-delay line in Fig. 13.18. 

1. Specify the spectrum of the tap gain processes. 
2. Find the cross-correlation (or cross-spectrum) of tap gain processes as a function 

of w,. 
3. Assume that we use three taps and that the tap gain processes are statistically 

independent. Write out the state equations specifying the model. 
4. Draw a block diagram of the optimum receiver for the detection model in (142)- 

(152). Write an expression for F(S). 
Problem 13.3.6 [61]. Assume that the transmitted signal is time-limited; that is, 

f(t) = 0, ItI >-T 
2’ 

Develop the dual of the tapped-delay line model. 
Problem 13.3.7. In the Doppler-spread case the SPLOT condition enabled us to obtain 
answers reasonably easily. Consider the doubly-spread problem in which f(t) is a time- 
limited rectangular pulse [0, T] and S “DR{f, A} is range-limited [0, L]. The observation 
interval is [- m, 001. 

1. Is the output signal process stationary? 
2. Is any time segment of the output signal process stationary? 
3. Consider the following procedure: 
(i) Analyze the SPLOT problem for the observation interval [L, T]. 
(ii) Analyze the SPLOT problem for the observation interval [O, L + T]. 
a. Will the performance 

actual system ? 
of the system in (i) underbound performance 
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b. Will the 
actual svstem ? 

performance of the system in (ii) overbound performance 

c. For what ranges of parameter values would this procedure be useful? 
Problem 13.3.8. The scattering function is 

&&f, a = 
4ka,2[1 - cos (2d/L)] 

L[(hf J2 + k21 ’ 
--GO<f<q O<il<L. 

We expand the channel using the general orthogonal signal model in (196)-(217). The 
transmit ted signal is a rectangular pulse [0, T]. The orthogonal functions are 

972(t) = J;cosf;), Ol;;lr;L, 

v&) = 

and so forth. 

&in(T), O<QL, 

Evaluate the various quantities needed to specify the model completely. Be careful 
about the intervals. 
Problem 13.3.9. Prove that the tapped-delay line model is a special case of the general 
orthogonal signal model. 
Problem 13.3.10. The scattering function is 

8kOb2 (1 - (2 I Q/L) 
s,J$f, a = - L (Gf I2 + k2) ’ --co<f<q pi < L/2. 

Repeat Problem 13.3.8. 
Problem 13.3.11. Consider the model in (224)-(228). Show that a direct orthogonal series 
expansion leads back to the model in Section 13.3.2.B. 
Problem 13.3.12. Consider the expression for c,,(t) in (233). 

1. Derive a set of differential equations that the iii(t) must satisfy. 
2. Compare the result in part 1 with that in Problem 13.3.11. Identify the impulsive 

term in (229). 
Problem 13.3.13. Consider the 
is correct. [Hint: Recall (47) .] 

decomposition in (229). Verify that the results in (230) 

BINARY COMMUNICATION 

Problem 13.3.14 [38]. Assume that 
B = 1 kcps 

and 
L = 250 psec. 

The power-to-noise ratio at the receiver is 

PR 

N, 
= 5 x lo5 (57 db). 

We require a probability of error of 10p3. 
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1. Show that the maximum achievable rate using a binary system with the above 
parameters in 15,000 bits/set. 

2. Design a simple system that achieves this rate. 
Problem 13.3.15. Consider the scattering function in Fig. 13.1.6 and assume that 

kL = 10. 

Design signals for a binary system to communicate effectively over this channel. 
Problem 13.3.16. Consider the model in (254)-(264) and (279). 

1. Find the terms in (277) for the case when K = 3. 
2. Repeat part 1 for K = 5. 

LEC CONDITIONS 

Comment: The next three problems develop some simple tests to verify the LEC 
condition. 
Problem 13.3.17 [5]. 

1. Prove that 
00 

&n,x I Et max I S(t)12 
s 

Wax &If, 11) d. (P.1) 
t --Co f 

2. Consider the special case in which f(t) is a constant. Prove that 

Tm,, < max ${f}. - 
f 

Problem 13.3.18 [5]. Derive the dual of the bound in (P.l) of Problem 13.3.17. Specif- 
ically, prove that 

co 
n,,, < wax IRf II21 * - 

s 
(max S&f, JH df- (P.0 

f --co A 

Problem 13.3.19 [5]. Prove that 

Problem 13.3.20. In this problem 

1. Prove that 

develop lower bounds 

Lx ’ - Z(t)&(t, u)?(u) dt du 

for any z(t) such that 

s Tf 
li(t)12 dt = 1. 

Ti 
2. Assume that Ti = - 00 and Tf = 00. Prove 

(P.0 

(P.2) 

(P.3) 

3. Give an example of an S -&f, A} in which (P.3) is satisfied with equality. 
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Problem 13.3.21. Consider the model in Section 13.3.4.A. 
1. Derive (292). 
2. Derive (293)-(295). 

Problem 13.3.22. Consider the signal in (10.44a) and the scattering function in Problem 
13.1.5 with mR = ?ng = 0. Evaluate fi(s) in (295). 
Problem 13.3.23. Consider a binary communication system operating under LEC 
conditions and using a rectangular pulse. Assume that T is fixed. 

1. Prove that 

+ b, 

where P,/N, is the received power-to-noise level ratio. Find a and b. 
2. Compare this result with (239). 

Problem 13.3.24. Consider the suboptimum receiver in (296). Set up the equations 
necessary to analyze its performance. 
Problem 13.3.25. Consider the suboptimum receiver in Fig. 13.31. Set up the equations 
necessary to analyze its performance. 
Problem 13.3.26. Consider the suboptimum receiver in Fig. 13.32. 

1. Set up the equations necessary to analyze its performance. 
2. Discuss the utility of the SPLOT approach suggested in Problem 13.3.7 for this 

particular problem. 
Problem 13.3.27. Consider the equivalent channel definition on page 523. Verify that the 
relations in Table 13.2 are correct. 
Problem 13.3.28. Consider the channel whose scattering function is shown in Fig. P.13.4. 
The height is 2ob2/BL in the shaded rectangle and zero elsewhere. Assume that 

BL = 0.01. 

f  

Fig. P.13.4 

Design a binary communication system that will operate over this channel with 

j&(# h/ -0.149. 

Specify both the transmitted signal and the optimum receiver. 
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Problem 13.3.29. Consider the degenerate scattering function 

S&J; A> = 2 T8{f-fi} d{n - &}. 
i=l 

P.1) 

1. Assume that N = 2. Prove that all channels with this scattering function are 
equivalent. 

2. Is this result true for N 2 3? 
Problem 13.3.30 [38]. Consider the system in Problem 13.3.15. We require a bit error 
rate of 10T3. 

1. Show that by using a system with four orthogonal signals we can achieve a rate of 
25,000 bits/set. (Hint: Use the results of Problem 5.1.4.) 

2. Design a system to achieve this rate. 

Problem 13.3.31 [ 3 71. Prove that all channels scattering functions have the form 

,&R(f, il:a,k,c) = SDR akA 
1 - kc Cf + --f'al - -;I- 

are equivalent for any values of c, k, and a. 

P.13.4 Parameter Estimation 

Problem 13.4.1. 
1. Derive the expression for ZR(A) in (306). 
2. Derive an expression for the elements of the information matrix J. DO not assume 

LEC conditions. 
Problem 13.4.2. Derive the expression for Z$$A) given in (3 17). 
Problem 13.4.3. Assume that the LEC condition is valid. Derive the result in (324). 
Problem 13.4.4. Consider the amplitude estimation problem in Section 13.4.2. 

1. Verify that a ,̂ [defined in (331)] is unbiased under all conditions (i.e., the LEC 
condition is not required). 

2. Find an exact expression for 

3. Verifv that 
b, a E[(b, - A)2]. 

J 

when the LEC condition holds. 
ho 

a J-l(A) 

Problem 13.4.5. Express the result in (332) in an alternative form that contains &{f, 2) 
instead of RDR(7, v>. 
Comment: Notice that the LEC assumption is not made in Problems 13.4.6-13.4.8. 
Problem 13.4.6. Consider the degenerate case of the amplitude estimation problem in 
which &, A) has a finite number of equal eigenvalues. Thus, 

&(t, u: A) = Ail, $ &t)+), -- <t,u< 00. 
i=l 

1. Find the receiver to generate d, and timl. 
2. Evaluate t,-0 and J(A). Verify that 8, is an efficient unbiased estimate. 
3. Constrain 

AN& = &. 
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Treat N as a continuous variable that is greater than or equal to 1. Find the value of N 
that minimizes &,,. Notice that the answer depends on A, the unknown parameter. How 
would you use this result in an actual system? (Hint: Is ldO sensitive to the exact choice 
of N?) Plot &, as a function of N. 
Problem 13.4.7. Consider the general amplitude estimation problem. Assume that 

&(t, u: A) = A&(t, u), --<t,u<oo. 

1. Express the Cramer-Rao bound of the variance of any unbiased estimate of A 
in terms of the eigenvalues of g3(t, u). 

2. Constrain 

s 

00 
A &(t, t) dt = E,. 

--co 

Find the eigenvalue distribution that minimizes the value of the bound in part 1. 
Compare your result with that in part 3 of Problem 13.4.6. 

3. Interpret the result in part 2 in the context of estimating the amplitude of an 
otherwise known scattering function. Notice that this gives a bound on the variance of 
an unbiased estimate of the amplitude that does not depend on the scattering function. 
Problem 13.4.8. Assume that 

&(f, AA) = f@&f, & 
where &(f, A> is known. We know that 

aJ 

A& AE, =- 
No No u 

&(f, A} df dl. = 20, 

-00 

and want to estimate A more exactly. 
1. Assume that 

L = 10 
and 

BL = 0.001. 

Design a signal f(t) that will result in an unbiased estimate whose variance is close to 
that in part 3 of Problem 13.4.7. Draw a block diagram of the optimum receiver. 

2. Repeat part 1 for the case in which 

and 
B = 10 

BL = 0.001. 

Problem 13.4.9. Consider the generalization of the example on page 531, in which the 
Gaussian pulse has a linear FM [see (10.44a)l and the scattering function has a skewed 
Gaussian shape. 

The LEC condition is assumed. 
1. Show that this can be reduced to an equivalent problem with a nonskewed Gaus- 

sian scattering function. 
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2. Evaluate the bound in (332). 
3. What linear sweep rate minimizes the variance bound? 

Problem 13.4.10. Consider the problem of estimating the scale of range axis under LEC 
conditions, 

where && 0) is known. 
1. Derive a lower bound on the variance of an unbiased estimate [62]. 
2. Consider the special case in which f(t) is given by (335) and $,&f, A} satisfies 

(333). Evaluate the bound in part 1. 
3. Choose T to minimize the bound. 

Problem 13.4.11. Consider the problem of estimating the frequency scale under LEC 
conditions, 

where s,l,l{., l } is known. 
1. Repeat Problem 13.4.10. 
2. Solve this problem by using duality theory and the results of Problem 13.4.10. 

Problem 13.4.12. Consider the generalization of the two previous problems in which 

a&r, v: A) = A~f$&,~,(f+, A,vl. 

1. Derive an expression for the element in the bound matrix, J(A) [62]. 
2. Evaluate the terms for the case in part 2 of Problem 13.4.10. 
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Discussion 

In this chapter we discuss three topics briefly. In Section 14.1, we sum- 
marize some of the major results of our radar-sonar discussion. In Section 
14.2, we outline the contents of Array Processirtg, the final volume of this 
series. In Section 14.3, we make some concluding comments on the 
over-all sequence. 

14.1 SUMMARY: SIGNAL PROCESSING IN RADAR AND SONAR 

SYSTEMS 

In Chapter 8 we introduced 
hierarchy of target and channel 

the radar-sonar problem 
models of interest. We th 

and discussed the 
,en detoured to the 
for narrow-band Appendix and developed a complex representation 

signals, systems, and processes. For signals, 

f(t) = $ Re [f(t)ej”““], (11 

where f(t) is the complex envelope. For systems, 

w, u) = 2 Re [&(t, U)eiwct], (2) 

where h”(t, u) is the complex impulse response. For random processes, 

n(t) = $ Re [fi(t)ej”ct], (3) 

where 6(t) is the complex envelope process. By restricting our attention to 
processes where 

E[ii(t)fi(u)] = 0, (4) 

we have a one-to-one relationship between the covariance function of the 
complex envelope process &#, u) and the covariance function of the 
actual process, 
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K,(t, u) = ,/z Re [&t, U)ejUc(t-u)]. (5) 
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This class of processes includes all stationary processes and the non- 
stationary processes that we encounter in practice. We also introduced 
complex state variables and developed their properties. The complex 
notation enabled us to see the important features in the problems more 
clearly. In addition, it simplified all of the analyses, because we could work 
with one complex quantity instead of two real quantities. 

In Chapter 9, we studied the problem of detecting the return from a 
slowly fluctuating point target in the presence of noise. The likelihood 
ratio test was 

where g(t) satisfies the integral equation 

r J(t) = s 
TfL1 K-,(4 u>g~~> du, Ti < t < Tf. - - 

Ti 

The performance was completely characterized by the quantity 

(6) 

(7) 

(8) 

This quantity could be used in (9.50) to determine the error probabilities. 
In addition, we specified the receiver and its performance in terms of a 
set of differential equations that could be readily solved using numerical 
techniques. Although we formulated the optimal signal design problem, 
we did not study it is detail. 

In Chapter 10 we discussed the problem of estimating the range and 
velocity of a slowly fluctuating point target in the presence of additive 
white noise. We found that the time-frequency correlation function, 

and the ambiguity function, 

played a key part in most of our discussion. When the estimation errors 
were small, the accuracy was directly related to the shape of the ambiguity 
function at the origin. However, if the ambiguity function had subsidiary 
peaks whose heights were close to unity, the probability of making a large 
error was increased. These two issues were related by the radar uncertainty 
principle, which said that the total volume under the ambiguity function 
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was unity for cony transmitted signal, co 
ss e{T,f} dT df = 1. 
-00 

It is important to re-emphasize that the ambiguity function is important 
because the receiver has been designed to be optimum in the presence of 
additive white Gaussian noise. We found that, in some environments, we 
want to use a different filter [e.g., C*(t)]. This function, fi*( t), could corre- 
spond to the g*(t) specified by (7), or it could be a function chosen for 
ease in receiver implementation. Now the cross-ambiguity function 

played the central role in our analyses. 
A particularly important problem is the resolution problem. In Section 

10.5, we considered resolution in a discrete environment. A typical situa- 
tion in which this type of problem arises is when we try to detect a target 
in the presence of decoys. Although we could always find the optimum 
receiver, the conventional matched-filter receiver was frequently used 
because of its simplicity. In this case, the degradation due to the interfer- 
ence was 

pr = 5 f$ ecri - rd, cr)i - cr)d). 
i=l () 

(13) 

Thus, if we could make the ambiguity function zero at those points in the 
7, u plane where the interfering targets were located, there would be no 
degradation. In general, this was not a practical solution, but it did 
provide some insight into the selection of good signals. Whenever pr was 
appreciable, we could improve the performance by using an optimum 
receiver. If there were no white noise, the optimum receiver would simply 
tune out the interference (this eliminates some of the signal energy also). 
In the presence of white noise the optimum receiver cannot eliminate all 
of the interference without affecting the detectability, and so the resulting 
filter is a compromise that maximizes A in (8). 

We continued our discussion of resolution in Section 13.2. The 
reverberation (or clutter) return was modeled as a dense, doubly-spread 
target. Once again we considered both conventional and optimum 
receivers. In the conventional matched-filter receiver the degradation due 
to the reverberation was given by the expression 

a3 
E, 

Pr = ; 
ss 

df dA LTDR{f, a>e(A - qj,fd -f )q 
f-l -00 
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Now the signal design problem consisted of minimizing the common 
volume 1 of the signal ambiguity function and target-scattering function. 
When pr was appreciable, some improvement was possible using an opti- 
mum receiver. In the general case we had to approximate the target by 
some orthogonal series model, such as the tapped-delay line of Fig. 13.18, 
in order actually to find the optimum receiver. Several suboptimum 
configurations for operation in a reverberation environment were developed 
in the problems. 

In Chapter 11 we discussed Doppler-spread point targets. The basic 
assumption in our model was that the reflection process was a stationary, 
zero-mean Gaussian process. The covariance function of the complex 
envelope of the received signal process was 

I?&, 24) = EJ(t - A)&(? - 24)f*(u - A), (15) 
where &(T) was the covariance function of the reflection process. Equi- 
valently, we could characterize the reflection process by the Doppler 
scattering function, 

&(f> = O” &r)eej2rfT dr. 
s -00 

(16) 

We saw that whenever the pulse length T was greater than the correlation 
time of the reflection process (E B-l), the target or channel caused time- 
selective fading. The optimum receiver problem was simply the bandpass 
version of the Gaussian signal in noise problem that we had studied in 
Chapters 2-4. Several classes of reflection processes allowed us to obtain 
complete solutions. In particular, whenever &{f} was rational or could 
be approximated by a rational function, we could obtain a complete 
solution for the optimum receiver and a good approximation to its per- 
formance. This rational-spectrum approximation includes most cases of 
interest. We also studied binary communication over Doppler-spread 
channels. We found that there is a bound on the probability of error, 

Pr (c) ,< i exp 
E 

-0.1488 z , 
No 

(17) 

that is independent of the shape of the scattering function. In addition, we 
were able to demonstrate systems using simple signals and receivers whose 
performance approached this bound. We found that the key to efficient 
performance was the use of either implicit or explicit diversity. In addition 
to being important in its own right, the communication problem gave us 
further insight into the general detection problem. 

In Chapter 12 we discussed dispersive (or range-spread) targets and 
channels. The basic assumptions in our model were that the return from 
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disjoint intervals in range were statistically independent and that the 
received signal was a sample function of a zero-mean Gaussian random 
process. The covariance function was 

s 

00 
&t, u) = E, f(t - a)S&)f*(u - a) da, (18) 

-cG 

where &(A) was the range-scattering function. Equivalently, we could 
characterize the target in terms of a two-frequency correlation function, 

(19) 

Whenever the bandwidth of the transmitted signal was greater than the 
reciprocal of the target length (L-l), we saw that the target caused fre- 
quency-selective fading. We next introduced the concept of time-frequency 
duality. Because the performance of a system is completely determined by 
the eigenvalues of the received process, we could analyze either a system or 
its dual. The duality theory enabled us to deal with a large class of range- 
spread targets that would be difficult to analyze directly. In addition, it 
offered new insights into the problem. The availability of efficient Fourier 
transform algorithms makes the synthesis of dual receivers practical. 

In Chapter 13 we discussed the final class of targets in our hierarchy, 
doubly-spread targets. Here we assumed that the reflection process from 
each incremental range element was a sample function from a stationary 
Gaussian process and that the reflections from disjoint intervals were 
statistically independent. The covariance function of the received signal 
was given by 

s al 
&t, u) = E, f(t Iy - Q&-&t - 24, 3L)f*(u - A) da, 

-03 
(20) 

where &(t - U, 1) is the covariance function of the received process as 
a function of 1. Equivalently, we could characterize the target by a range- 
Doppler scattering function, 

&{ f,  A} = 
s 

* R&T, jl)e-j2**’ dc 
--oo 

(21) 

If BL < 1, we could obtain flat fading by a suitable signal choice. On the 
other hand, for BL > 1, the target was overspread and the recei ved signal 
had to exhibit either time-selective or frequency-selective fading (or both). 

After discussing the reverberation problem, we considered the detection 
problem for doubly-spread targets. For the low-energy-coherence case 
the results were straightforward. For the general case we used an ortho- 
gonal series model for the channel. The most common model for this type 
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is the tapped-delay line model. In this case, if we could approximate the 
spectrum of the tap gain processes by rational functions, we could find a 
complex state-variable model for the entire system. This enabled us to 
specify the optimum receiver completely and obtain a good approximation 
to its performance. A second method of solving the doubly-spread channel 
problem relied on a differential-equation characterization of the channel. 
This method also led to a set of equations that could be solved numer- 
ically. Although the optimum receivers were complicated, we could 
obtain a good approximation to them in most situations. 

The final topic was the discussion of parameter estimation for doubly- 
spread targets. After deriving the likelihood function, we introduced the 
generalized spread ambiguity function in order to study the performance. 
Several specific estimation problems were studl’ed in detail. 

This concludes our discussion of signal processing in radar and sonar 
systems. In the next section we briefly discuss the contents of Array 
Processing. 

14.2 OPTIMUM ARRAY PROCESSING 

In the subsequent volume [l] we study the array-processing problem for 
sonar and seismic systems. The first topic is detection of known signals in 
noise. The basic derivation is just a special case of the results in Chapter 
I-4. The important problem is a study of the various issues that arise in a 
particular physical situation. To explore these issues, we first develop a 
model for spatially distributed noise fields. We then introduce the ideas 
of array gain, beam patterns, and distortionless filters, and demonstrate 
their utility in the signal-processing problem. 

The next topic is the detection of unknown signals in noise. This 
model is appropriate for the passive sonar and seismic problem. By 
exploiting the central role of the distortionless filter, we are able to 
develop a receiver whose basic structure does not depend on the detailed 
assumptions of the model. 

The final topic in [l] is the study of multivariable processes as en- 
countered in continuous receiving apertures. Although the basic results 
are a straightforward extension of the multidimensional results, we shall 
find that both new insight and simplified computational procedures can 
be obtained from this general approach. 

Just as in Parts II and III, we present a large number of new research 
results in the book. As in this volume, the result is a mixture of a research 
monograph and a graduate-level text. 
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14:3 EPILOGUE 

Because of the specialized nature of the material in Array Processing, 
many readers will stop at this point, and so a few comments about the 
over-all development are worthwhile. 

We hope that the reader appreciates the close relationships among the 
various problems that we have considered. A brief glance at the table of 
contents of the books indicates the wide range of physical situations that 
we have studied. By exploiting a few fundamental concepts, we were able 
to analyze them efficiently. An understanding of the relationships among 
the various areas is important, because it enables one to use results from 
other problems to solve the problem of current interest. 

A second point that the reader should appreciate is the utility of various 
techniques for solving problems. A standard course in communications 
theory is no longer adequate. One should understand the techniques and 
concepts used in control theory, information theory, and other disciplines 
in order to be an effective analyst. We may have “oversold” the use of 
state-variable techniques, because it is an item of current research interest 
to us. We do feel that it is certain to have an important influence on many 
sophisticated systems in the future. 

The reader should remember that we have been working with mathe- 
matical models of physical situations. More specifically, we have empha- 
sized Gaussian process models throughout our discussion. In many cases, 
they are adequate to describe the actual situation, and our predicted 
performance results can be confirmed experimentally. In other cases, more 
complicated models employing non-Gaussian processes must be used. 
There are still other cases in which experimental (or simulation) procedures 
provide the only feasible approach. These comments do not negate the 
value of a thorough study of the Gaussian problem, but serve to remind us 
of its limitations. 

Although it is not conventional, we feel that an appropriate final 
comment is to thank those readers who have followed us through this 
lengthy development. We hope that you have obtained an appreciation of 
Detection, Estimation, and Modulation Theory. 
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Appendix : 
Complex Representation of Bandpass 
Signals, Systems, and Processes 

In this appendix we develop complex representations for narrow-band 
signals, systems, and random processes. The idea of representing an actual 
signal as the real part of a complex signal is familiar to most electrical 
engineers. Specifically, the signal, 

cos qt = Re [ejwlt], (A4 

and the associated phasor diagram in Fig. A.1 are encountered in most 
introductory circuit courses. The actual signal is just the projection 
of the complex signal on the horizontal axis. The ideas in this appendix 
are generalizations of this familiar notation. 

In Section A.1, we consider bandpass deterministic signals. In Section 
A.2, we consider bandpass linear systems. In Section A.3, we study 
bandpass random processes. In Section A.4, we summarize the major 
results. Section A.5 contains some problems to demonstrate the applica- 
tion of the ideas discussed. 

Im 

Phasor rotates with 
frequency fl = 

Fig. A.1 Phasor diagram. 
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The treatment through Section A.3.1 is reasonably standard (e.g., 
[I]-[S]), and readers who are familiar with complex representation can skim 
these sections in order to learn our notation. The material in Section 
A.3.2 is less well known but. not new. The material in Section A.3.3 is 
original [9], and is probably not familiar to most readers. With the 
exception of Sections A.2.3 and A.3.3, the results are needed in order to 
understand Chapters 9-14. 

A.1 DETERMINISTIC SIGNALS 

In this section we consider deterministic finite-energy signals. We 
denote the signal by f(t), and its Fourier transform by F(jm). 

For simplicity, we assume that f(t) has unit energy. A typical signal of 
interest might have the Fourier transform shown in Fig. A.2. We see that 

R+‘(f)1 

Fig. A.2 Fourier transform of a bandpass signal. 

s 00 
t We also use the transform F(f) = f(t)e-jznft dt. The braces (0) imply this 
definition. -aI 
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the transform is bandlimited to frequencies within 5 UI’cps of the carrier 
fC. In practice, very few signals are strictly bandlimited. If the energy 
outside the band is negligible, it is convenient to neglect it. We refer to a 
signal that is essentially bandlimited around a carrier as a bandpass 
signal. Normally the bandwidth around the carrier is small compared to 

w3 and so we also refer to the signal as a narrow-band signal. A precise 
statement about how small the bandwidth must be in order for the signal 
to be considered narrow-band is not necessary for our present discussion. 

It is convenient to represent the signal in terms of two low-pass quad- 
rature components, *f,(t) and fs(t), 

The symbol [elLP denotes the operation of passing the argument through 
an ideal low-pass filter with unity gain. The low-pass waveforms fc(t) and 
f,(t) can be generated physically, as shown in the left of Fig. A.3. The 
transfer function of the ideal low-pass filters is shown in Fig. A.4. Given 

..a0 and f,(t), we could reconstructf(t) by multiplying cos CLQ and sin CU,~ 
and adding the result as shown in the right side of Fig. A.3. Thus, 

f(t) = Jz [f,(t) cos (qt) +f,(t) sill @@)I. W) 

One method of verifying that the representation in (AS) is valid is to 
follow the Fourier transforms through the various operations. A much 
easier procedure is to verify that the entire system in Fig. A.3 is identical 

. 
- &LP (7) . 

f&l I 
I 

I 
I 

fW 1 ecos o,t 
I 
I 
I 
I 

1 x 

9 

I! 

fi sin w,t 

Quadrature decomposition 

I P 
1 3E sin w,t 
I Reconstruction 

Fig. A.3 Generation of quadrature components and reconstruction of bandpass signal. 
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GIL, (fl 

Fig. A.4 Transfer function of ideal low-pass filter. 

with the ideal bandpass filter whose transfer function is shown in Fig. 
A.5.t To do this we put an impulse into the system and calculate its 
output. We denote the output due to an impulse at time t = 7 as g,(t). 

s 
Go g,(t) = JZ cos (cq) W - *)$ cos (WcU1)g~Lp(t - 24,) du, -co al 

+ JZ sin (q$) s a(t - 7)JZ sin (w2uZ)gILp(t - u2) du, -a3 
= %JP(t - T)[COs (qt) cos (cop) + sin (qt) sin (COJ)] 

= %IJFo - 7) cos [coc(t - T)]. (A4 

The transfer function is the Fourier transform of the impulse response, 

n co 
s 2g,,,(a) cos (cocb)e~iOO da 

--oo 

The right side of (A.7) is just the transfer function shown in Fig. AS, 
which. is the desired result. Therefore the system in Fig. A.3 is just an 
ideal bandpass filter and any bandlimited input will pass through it un- 
distorted. This verifies that our representation is valid. Notice that the 

GIBP rf 

Fig. A.5 Transfer function of overall system in Fig. A.3. 

-f This procedure is due to [lo, page 4971. 
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f 
m(f2(t) + j’;(t)) dt = 

-0Q s 
mf2(t) dt = 1. 

-co 
(A.8) 

We can represent the low pass waveforms more compactly by defining 
a complex signal, 

Equivalently, 

where 

(A-9) 

(A.10) 

and 
ml = JfC2(t> +f,“(t) (A. 11) 

$f(t) = tan-l Jj$ . 
( 1 c 

(A.12) 

Notice that we can also write 

(A.13) 

(A.14) 

f(t) = [f(t)& e-j°CtlLp. 

The actual bandpass signal is 

f(t) = dzt Re [f(t)e’oct] 

= J2E, If(t)1 ei(wct+4j(t))e 

Some typical signals are shown in Fig. A.6. Notice that the signals in 
Fig. A.6u-c are not strictly bandlimited but do have negligible energy 
outside a certain frequency band. We see that If(t)\ is the actual envelope 
of the narrow-band signal and +f( t) + w,t is the instantaneous phase. 
The function f(t) is commonly referred to as the complex envelope. 

The utility of the complex representation for a bandpass signal will 
become more apparent as we proceed. We shall find that the results of 
interest, can be derived and evaluated more easily in terms of the complex 
envelope. 

There are several properties and definitions that we shall find 
the sequel. All of the properties are straightforward to verify. 

useful in 

Property 1. Since the transmitted energy is unity, it follows from (AX) 
that 

s 

Go 
If(t dt = 1. (A.15) 

-Go 
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AL- 
(U) Rectangular 

It 
envelope, constant phase 

(b) Rectangular envelope, binary phase-modulation 

(c) Gaussian envelope, linear frequency sweep 

Fig. A.6 Typical signals. 

Property 2. The mean frequency of the envelope is defined as the first 
moment of the energy spectrum of the complex envelope, 

62 a0 
s 

aal 

-Go 
al IF(jaJ)l” 2, = 

s 

00 dcl> 
0$(4 Frn 9 

-00 

where &jo) is the Fourier transform of f(f), 

(A. 16) 

F(jw) = mjyt)e-+t dt. s (A. 17) 
-m 

In our model the actual signal is f(t) and is fixed. The complex envelope 
f(t) depends on what frequency we denote as the carrier. Since the carrier 
frequency is at our disposal, we may always choose it so that 

G=O (A.18) 

(see Problem A.l.l). Later we shall see that other considerations enter into 
the choice of the carrier frequency, so that (A. 18) may not apply in all 
cases. 
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Property 3. The mean time of the envelope is defined as the first moment 
of the squared magnitude of the complex envelope, 

s 00 fA - t If(t)I” dt = 0. (A. 19) 
-co 

Since the time origin is arbitrary, we may always choose it so that 

s 
co t’= t IJl(t)l” dt = 0. (A.20) 

-00 

The assumptions in (A. 18) and (A.20) will lead to algebraic simplifications 
in some cases. 

Property 4. There are several quadratic quantities that are useful in 
describing the signal. The first two are 

and 

(A.21a) 

o 2 A 2 - (6)” 
W- (A.21b) 

The latter quantity is called the mean-square bandwidth. It is an approxi- 
mate measure of the frequency spread of the signal. 

Similarly, we define 

-i t = 
s 

00 
t2 ml” dt (A.22a) 

--al 
and 

6t2 A P - (f)2. (A.22b) 

The latter quantity is called the mean-square duration and is an approxi- 
mate measure of the time spread of the signal. 

The definitions of the final quantities are 

s 

00 

cot 
df*(t) dr =Im - ?.fw 

--al dt 
(A.23a) 

and 
z - iijf Pot = - . (A.23b) 

%Pt 
These definitions are less obvious. Later we shall see that Pot is a measure 
of the frequency modulation in *f(t). 

The relations in (21)-(23) can be expressed in alternative ways using 
Fourier transform properties (see Problem A. 1.2). Other useful interpreta- 
tions are also developed in the problems. 
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Property 5. Consider two unit-energy bandpass signals fi(t) and fi(t). 
The correlation between the two signals is 

P- 
s 

m~md9 dt* (A.24) 
--al 

We now represent the two signals in terms of complex envelopes and the 
same carrier, u,. 

x(t) = rJZf,c t)esiwC2]Lp, i = 1, 2. (A.23 

The complex correlation p” is defined to be 

Then 

(A.26a) 

P = Re p. (A.26b) 

To verify this, we write p in terms of complex envelopes, perform the 
integration, and observe that the double frequency terms can be neglected. 

This concludes our discussion of the complex envelope of a deterministic 
bandpass signal. We now consider bandpass systems. 

A.2 BANDPASS LINEAR SYSTEMS 

We now develop a complex representation for bandpass linear systems. 
We first consider time-invariant systems and define a bandpass system in 
that context. 

A.2.1 Time-Invariant Systems 

Consider a time-invariant linear system with impulse response h(a) 
and transfer function H(&o). 

s 00 H(jai) = h(o)e-jwo da. 
-al 

(A.27) 

A typical transform of interest has the magnitude shown in Fig. A.7. 
We see that it is bandlimited to a region about the carrier cr),. We want to 
represent the bandpass impulse response in terms of two quadrature 
components. Because h(o) is deterministic, we may use the results of 
Section A. 1 directly. We define two low-pass functions, 

and 
h,(o) A [h(a) sin cu,61LP. (A.29) 
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Fig. A.7 Magnitude of the transfer function of a bandpass linear system. 

Then 
h(o) = 2&(a) cos (~,a) + 2&(a) sin (~0~0). (A.30) 

Defining a complex impulse response as 

we have the complex representation 

h(a) A Re [2&r)e30”“]. (A.32) 

The introduction of the factor & is for convenience only. 
We now derive an expression for the output of a bandpass linear system 

h(t) when the input to the system is a bandpass waveformf(t), 

f(t) = &Re [fl(t)ei”““]. (A.33) 

Notice that the carrier frequencies of the input signal and the system are 
identical. This common carrier frequency is implied in all our subsequent 
discussions. The output y(t) is obtained by convolvingf(t) and h(t). 

s 00 
Y(t) = W - a>m> da 

-00 

- - s 
00 Y vo - a)e3’co”[t-“’ + i;*Q - a)e-hoc(t-d] --oo 

Now we define 

i°C@ + J*(a)eejO”o 

1 
da . I- 

Al2 
(A.34) 

W - - a)f(a) dc 9 -oo<t<oo. (A.39 

Because h(t) and f(t) are low-pass, the two terms in (A.34) containing 
e*2icuca integrate to approximately zero and can be neglected. Using 
(A.35) in the other two terms, we have 

y(t) = J2 Re [y”(t)ei”“t]. (A.36) 
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This result shows that the complex envelope of the output of a bandpass 
system is obtained by convolving the complex envelope of the input with I- 
the complex impulse response. [The d2 was introduced in (A-21) so that 
(A.35) would have a familiar form.1 

J 

A.2.2 Time-Varying Systems 

For 
i;(t, 7) 

time-varying bandpass systems, the complex impulse response is 
and 

ho9 u) = Re [2h(t, zl)eiwc(t--u)]. (A.37) 

The complex envelope of the output is 

N 
y(t) = 

s 
O” h(t, u)y(u) du. (A.38) 

-00 
The actual bandpass output is given by (A.36). 

A.2.3 State-Variable Systems 

In our work in Chapters I-6,11-2, and 11-3, we encountered a number of 
problems in which a state-variable characterization of the system led to an 
efficient solution procedure. This is also true in the radar-sonar area. We 
now develop a procedure for characterizing bandpass systems using 
complex state variables.7 The complex input is f(t). The complex state 
equation is 

!y = F(t)Z(t) + 6(t)&), Ti < t, - 

with initial condition jz(T,). The observation equation is 

(A.39) 

g(t) = C(t)n(t). (A.40) 

The matrices F(t)? c(t), and C(t) are complex matrices. The complex 
state vector Z(t) and complex output y”(t) are low-pass compared to cc),. 
The complex block diagram is shown in Fig. A.8. 

We define a complex state transition matrix &(r, 7) such that 

(A.41) 

&t, t) = I. (A.42) 

t This discussion is based on our work, which originally appeared in [9]. It is worth- 
while emphasizing that most of the complex state-variable results are logical extensions 
of the real state-variable results. 
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Fig. A.8 State-variable model for a complex linear system. 

Then it is readily verified that 

g(t) = C(t) &t, T,)Z(Q + s t &(t, 7)G(T)f(T) dT 
Ti 1 . (A.43) 

The first term is the output due to the initial conditions, and the second 
term is the output due to f(l). The complex impulse response is obtained 
by letting the initial condition Z(TJ equal zero and TI = - 00. Then 

Recall from (A.38) that 

Thus, 

N 
Y(t) 

- - 
s 

cx3 44 Mb) d7, -Go<<. (A.49 
-0Q 

h(t, 7) = 
w$jk #(7), -a<<<<, 

(A.46) 
0, elsewhere. 

Notice that this is a realizable impulse response. Using (A.46) in (A.37) 
gives the actual bandpass impulse response, 

h(4 7) = Re [2h(t, r)e’wc(t-5)] 

Re [2e(t)&(t, ~)k(~)ej~~(~+)], - (;o < 7 < t, - - 
0, elsewhere. 

(A.47) 

There are two alternative procedures that we can use actually to implement 
the system shown in Fig. A.8. The first procedure is to construct a circuit 
that is essentially a bandpass analog computer. The second procedure is 
to perform the operations digitally using complex arithmetic. 

We now consider the problem of representing bandpass random 
processes. 
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A.3 BANDPASS RANDOM PROCESSES 

We would expect that an analogous complex representation could be 
obtained for bandpass random processes. In this section we discuss three 
classes of random processes : 

1. Stationary processes. 
2. Nonstationary processes. 
3. Finite state processes. 

Throughout our discussion we assume that the random processes have 
zero means. We begin our discussion with stationary processes. 

A.3.1 Stationary Processes 

A typical bandpass spectrum is shown in Fig. A.9. It is bandlimited to 
& UI’ cps about ct),. We want to represent n(t) as 

n(t) = 4&(t) cos (cu,t) + &z,(t) sin &t), (A.48) 

where nc(t) and n,(t) are low-pass functions that are generated as shown in 
the left side of Fig. A.lO. 

and 

72,(t) = [<A sin (@))n(t)lLp. (A.50) 

The over-all system, showing both the decomposition and reconstruction, 
is depicted in Fig. A.lO. In Section A.1 we showed that this system was 
just an ideal bandpass filter (see Fig. A.5). Thus, the representation is 
valid for all processes that are bandlimited to & JV cps around cc),. 

Alternatively, in complex notation, we define 

I w a %W -j4w 1 (A.51) 

Fig. A.9 Typical spectrum for bandpass process. 
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n(t) n(t) &cos w,t &cos w,t 
\ \ 

I I 
I I 

l l x x 

9 9 

1 6LP CT) 1 6LP CT) 

n,(t) 1 n,(t) 1 
I I : x : x 

c c 
I I 
I I 

&T sin w,t &T sin w,t 
P P 

q@ sin w,t q@ sin w,t 
Quadrature decomposition Quadrature decomposition Reconstruction Reconstruction 

Fig. A.10 10 Generation of quadrature components and reconstruction of bandpass Generation of quadrature components and reconstruction of bandpass Fig. A. process. 

or 

I ii(t) = EJ2 n( t)ewiwCt Lp 1 I (A.52) 

and write 

n(t) = & Re [C(t)eiUc’]. (A.53) 

We now derive the statistical properties of Z(t). 
The operation indicated in (A.52) corresponds to the block diagram in 

Fig. A.1 1. We first compute the covariance function of x”(t), 

R;(t ,  t  -  7) A E[Z(t)Z*(t -  7) ]  = E[Ji n(t)e-jwCt l Jz n( t  -  7)eioC’t-r’] 

The spectrum of Z(t) is 

= 2(E[n(t)n(t - 7)])e-j°Cr 

= 2Kn(7)e-jcucr. (A.54) 

s;,( ) co= s O” K$)&“’ & = 2 

= i4r4n(co + co&. s * Kn(7)eBj(w+oC)r & -a3 
(A.55) 

Now g(t) is related to Z(t) by an ideal low-pass filter. Thus, 

(A.56) 

& 
e -jW 

Fig. A.11 Generation of ii(t). 
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and 

s 

2nw 
E[n”(t)n”“(t - T)] a &) = 2 

do., 
S&B + coc)ejO’ - . (AZ) 

-2n FI’ 27r 

The next result of interest concerns the expectation without a conjugate 
on the second term. We shall prove that 

mwJw2)l = 0, for all t,, t2. (A.58) 

25 a n(xl)e-ioczlgIlp(tl - x,) dx, m n(x2)e-iWcz2gILp(t2 - 
s 

x2) dx2 
-co 

00 

= 2 K,(x, - xg)e-j”c’“1+“2)gILp( t1 - xl)gILP(t2 - x2) dx, dx, 

ca 

=2 
sss 

Uf >e isaf(zl-xz)--j5nfc(x1+22) 
hJP(h - XIkILP(f2 - x2) dx, dx2 df 

= 2J-:S,,( f) df/-~gILp(tl - xl)ei2az1(f-ft) dx, 

s 
al x gILp( t2 - x2)e-‘2rrz2(f+fc) dx, 

--oo 

= 2 
s 

O” S,( f ){ GILP( f - fc)GFLP( f + f,>> ej2nt1(f--fc)--j2xt2(f+fc’ df. (A.59) 
-aI 

Now the term in the braces is identically zero for all f iff, > W. Thus the 
integral is zero and (14.58) is valid. The property in (A.58) is important 
because it enables us to characterize the complex process in terms of a 
single covariance function. We can obtain the correlation function of the 
actual process from this single covariance function. 

K,(t, t - 7) = E[n(t)n(t - 7)] 

= E 42 fi( t)ejwct + Js c*(t)e-joct 
2 1 

x 

[ 

Js fi(t - T)eioc(t-T) + Ji fi*(t - 7)e-j%(t--r) 

2 I/ 
= Re [&(T)e30cr ] + Re {E[ii(t)ii(t - ~)]dwc(2t--r)Z. (A.60) 
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. 
k’,(7) = Re [K&)e3wc’ (A.61) 

In terms of spectra, 

or 

(A.62) 

S&) = %m - q) + $(-cl, - co,) 
9 

2 
(A.63) 

where we have used the fact that ,.!$(co) is a real function of CO. 
The relations in (A.61) and (A.63) enable us to obtain the statistics of 

the bandpass process from the complex process, and vice versa. In Fig. 
A. 12, we indicate this for some typical spectra. Notice that the spectrum 
of the complex process is even if and only if the bandpass process is 
symmetric about the carrier cr),. In Fig. A.13, we indicate the behavior for 
some typical pole-zero plots. We see that the pole-zero plots are always 
symmetric about the &-axis. This is because &(w) is real. The plots are 
not necessarily symmetric about the u-axis, because s;,(w) is not necessarily 
even. 

Although we shall normally work with the complex process, it is instruc- 
tive to discuss the statistics of the quadrature components briefly. These 
follow directly from (A.57) and (AS). 

E[fi(t)fi*(t - T)] = m%w + jn,(w%(r - 7) - jn,(t - T))] 

= E&T(T) (A.64) 
and 

E[Z(t)n”(t - T)] = m~,w + jn,W>(n,(t - 7) + jn,(t - T))] 
= &CT) - KS(T) +j[K,,(T) + &(T)] 

Therefore, 
= 0. (A.69 

4(7) = K(T) = *Re [&(T)] (A.66) 

and 

I Kc(T) = -&(T) = -K,,(---7) = Q Im [K&)1. (A.67) 



I -- No/2 1 
I 
I >w 

-WC a,-27rw +o, oc + 27rw 

I NO 

-27rw 2nw 
>w 

Fig. A.12 Representative spectra. 
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X X 

)o 

X X 

(4 

Fig. A.13 Possible pole-zero plots for spectra of complex processes. 

In terms of spectra, 

S&o) = S,(w) = i jw(Re [&(T)])e-jm’ dr 
-w 

1 m -  
-  

&(w) + s&--Lo) 

2 [ 1 9 
2 

(A.68) 

or 

= Wn(~ + ~AJPIEV, (A.69) 

where [*lEv denotes the operation of taking the even part. Similarly, 

s&J) = - i 
s 

w  Im [&(~)]e‘-i”’ dT 
-W 

(A.70) 
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Notice that S,,(W) is imaginary. [This is obvious from the asymmetry in 
(A.67).] From (A.70) we see that the quadrature processes are correlated 
unless the spectrum is even around the carrier. Notice that, at any single 
time instant, n&J and nS(tl) are uncorrelated. This is because (A.67) 
implies that 

K,,(O) = 0. (A.7 1) 

Complex White Processes. Before leaving our discussion of the second- 
moment characterization of complex processes, we define a particular 
process of interest. Consider the process WY(~) whose spectrum is shown in 
Fig. A.14. The complex envelope is 

G(t) = %W - jw,w (A.72) 

Using (A.69) and (A.70) gives 

(A.73) 

and 
b elsewhere, 

s,,?Jf > = 0. (A.74) 

The covariance function of i?(t) is 

&(t 21) 2 K&T) = 2K&) w ’ 

= N,(sin (Ew”), --<T<<. (A.75) 

Now, if W is larger than the other bandwidths in the system of interest, we 
can approximate (A.75) with an impulse. Letting IV-, 00 in (A.75) gives 

Fig. A.14 Spectrum of bandpass white noise. 
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We refer to G(t) as a complex white noise process. We refer to the actual 
process w(t) as a bandpass white noise process. Notice that, just as in the 
case of white noise, they are convenient approximations to the actual 
physical process. 

Complex Gaussian Processes. In many cases of interest to us the processes 
are Gaussian random processes. If n(t) is a stationary Gaussian process, 
then n&) and n,(t) are stationary jointly Gaussian processes, because they 
are obtained by linear operations on n(t). The complex envelope is 

so that we might logically refer to it as a stationary complex Gaussian 
random process. Since we shall use this idea frequently, an exact definition 
is worthwhile. 

Definition. Let nC(t) and n,(t) be two zero-mean stationary jointly 
Gaussian random processes with identical covariance functions. The 
process ii(t) is defined by (A.77). The relation 

E[A(t)li(t - T)] = 0, for all t and 7, (A.78) 

is satisfied. The process C(t) is a zero-mean stationary complex Gaussian 
random process. 

The modification to include a mean value function is straightforward. 
Notice that a complex process whose real and imaginary parts are both 
Gaussian processes is not necessarily Gaussian. The condition in (A.78) 
must be satisfied. This implies that the real part and imaginary part are 
Gaussian processes with identical characteristics that are related by the 
covariance function in (A.6’7). They are statistically independent if and 
only ifthe original spectrum is symmetric around the carrier. We also note 
that a real Gaussian process is not a special case of a complex Gaussian 
process. 

If we sample the complex envelope at time tl, we get a complex random 
variable ii&). To specify the density of a complex random variable, we 
need the joint density of the real part, n,( tJ, and the imaginary part, 
n&J. Since n&) and n,(tJ are samples of a jointly Gaussian process, 
they are jointly Gaussian random variables. Since (A.71) implies that they 
are uncorrelated, we know that they are statistically independent. 
Therefore, 

--<&A&< 00, 

(A.79) 
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where 

Equivalently, 
c ii 2 = K,(O) = K,(O) = g&(O)* (A.80) 

-oo<Re[fl],Im[R]< 00. 

(A.81) 

We define a complex Gaussian random variable as a random variable whose 
probability density has the form in (A.81). Notice that 

E(lii,J2) = 2cTR2. (A.82) 

Properties analogous to those for real Gaussian random variables and 
real Gaussian random processes follow easily (see Problems A.3.1-A.3.7). 
One property that we need corresponds to the definitions on page I-183. 
Define 

ij= 
s 

TP 
g(#)qu) du, (A.83) 

Tl% 
where g(u) is a function such that E[ly”12] < 00. If 2(u) is a complex Gaus- 
sian process, then d is a complex Gaussian random variable. This result 
follows immediately from the above definitions. 

A particular complex Gaussian process that we shall use frequently is 
the complex Gaussian white noise process G(t). It is a complex Gaussian 
process whose covariance function is given by (A-76). 

Two other probability densities are of interest. We can write n”(t) in 
terms of a magnitude and phase angle. 

i?(t) = Iii(t)1 ei4fV (A. 84) 

The magnitude corresponds to the envelope of the actual random process. 
It is easy to demonstrate that it is a Rayleigh random variable at any 
given time. The phase angle corresponds to the instantaneous phase of 
the actual random process minus c~)J, and is a uniform random variable 
that is independent of the envelope variable. Notice that the envelope 
and phase processes are not independent processes. 

We now turn our attention to nonstationary processes. 

A.3.2 Nonstationary Processes 

A physical situation in which we encounter nonstationary processes is 
the reflection of a deterministic signal from a fluctuating point target. 
We shall see that an appropriate model for the complex envelope of the 
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return is 

where f(t> is a complex deterministic signal and g(,) is a zero-mean 
stationary complex Gaussian process. We see that s’(t) is a zero-mean 
nonstationary process whose second-moment characteristics are 

and 
E[s”(t)i*(u)] =jyt)&t - u)f*(u) (A.86) 

E[qt)qu)] = f(t)E@(t$(u))]f*(u) = 0. (A.87) 

The condition in (A-87) corresponds to the result for stationary processes 
in (A.58) and enables us to characterize the complex process in terms of a 
single covariance function. Without this condition, the complex notation 
is less useful, and so we include it as a condition on the nonstationary 
processes that we study. Specifically, we consider processes that can be 
represented as 

n(t) A x/2 Re [fi(t)ei”c’], (A.88) 

where n(t) is a complex low-pass process such that 

and 
E[2(t)fi*(7)] = Kfi(r, 7) 

E[fi(t)ii*(7)] = 0, for all t and 7. 

(A.89) 

WQt 

For a nonstationary process to be low-pass, all of its eigenfunctions with 
non-negligible eigenvalues must be low-pass compared to cc),. This require- 
ment is analogous to the spectrum requirement for stationary processes. 

The covariance of the actual bandpass process is 

= mmO>l 
= E ‘ctje jat + e*(t)e-j%t 

J2 I[ 
qujeiwcu + fi*(u)e-jwcu 

J2 Ii 
= Re {&(t, u)ejoc(‘-+)} + Re {E[fi(t)Z(u)]8wc(t+u)). (A.91) 

The second term on the right-hand side is zero because of the assumption 
in (A.90). Thus, we have the desired one-to-one correspondence between 
the second-moment characteristics of the two processes n(t) and A(t). 
The assumption in (A.90) is not particularly restrictive, because most of 
the processes that we encounter in practice satisfy it. 

As before, the eigenvalues and eigenfunctions of a random process play 
an important role in many of our discussions. All of our discussion in 

t It is worthwhile emphasizing that (A.90) has to be true for the complex envelope of a 
stationary bandpass process, For nonstationary processes it is an additional assumption. 
Examples of nonstationary processes that do not satisfy (A.90) are given in [l 11 and [12]. 
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Chapter I-3 (page I-166) carries over to complex processes. The equation 
specifying the eigenvalues and eigenfunctions is 

We assume that the kernel is Hermitian, 

&<t, 4 = R;(u, t). (A.93) 

This is analogous to the symmetry requirement in the real case and is 
satisfied by all complex covariance functions. The eigenvalues of a Hermi- 
tian kernel are all real. We would expect this because the spectrum is real 
in the stationary case. We now look at the complex envelope process and 
the actual bandpass process and show how their eigenfunctions and 
eigenvalues are related. We first write the pertinent equations for the two 
processes and then show their relationship. 

For the bandpass random process, we have from Chapter I-3 that 

40 = 1.i.m. 5 n&(t), Ti < t < Tf, - - 

where the 4&t) satisfy 

and the coefficients are 

s 

Tf 
?2i = n(t)$i(t> dt* 

Ti 

This implies that 

and 

K,(t9 U) = 2 Ai+i(t)+i(U), Ti < t, u < Tfe - -. 
i=l 

Similarly, for the complex envelope random process, 

I< 
w = 1.i.m. 2 fii(Ji(t), Ti < t < Tf, - - 

I<+00 i=l 

(A.99) 

where the $i(t) satisfy the equation 

Ti < t < T,. - - (A. 100) 

(A.94) 

(A.95) 

(A.96) 

(A.97) 

(A.98) 
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The complex eigenfunctions are orthonormal, 

The coefficients are 
s 

T’$i(t)c&t) dt = t&j. 
Ti 

(A. 101) 

& = 
s 

0 
n”(t)@(t) dt. 

Ti 
(A. 102) 

We can then show that 

and 

E[iid ii,*] = XiSij, (A. 103) 

E[ninj] = 0, for all i and j, (A. 104) 

K<t~ u, = 2 XiJi(t)$T(u), Ti < t, U < Tfe - - 
i=l 

(A. 105) 

The processes are related by (A.88) and (A.91), 

n(t) = ,/z Re [G( t)eioct], 

K,(t, u) = Re [RJt, u)ejwc(t-u)]. 

To find how the eigenfunctions are related, we substitute 

+i(t) = JZ Re [$i(t)8’““t’e’], Ti < t < Tf - - 

into (A.95) and use (A.107). The result is 

;li[&t)ei’wt+e) + &ipje4(w”t+e)] 

(A. 106) 

(A. 107) 

(A. 108) 

Kg(t, u)$i(u) dtl + e-j(oct+e) 
s 

Tf.R;(t, u)&yu) nu 
Ti 

Equivalently, 
(A.109) 

Re &$i(t) - i s Tf N 
T KJt, U)$i(U) du (A.110) 

i 

If we require that CI 
a . a i’-- 
2a9 

(A. 1.11) 

then (A.109) will be satisfied for any 8. Because (A.109) is valid for any 8, 
each eigenvalue and eigenfunction of the complex process corresponds to 
an eigenvalue and a family of eigenfunctions of the bandpass process. 
Clearly, not more than two of these can be algebraically linearly inde- 
pendent. These can be chosen to be orthogonal by using 0 = 0 and 0 = 
-r/2. (Any two values of 8 that differ by 90’ are also satisfactory.) Thus, 
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Table A.1 

Complex process Actual bandpass process 

&<t > 

&d*(t) 

4 jl 
= 2 b1(t) = d2 Re [&(t)ej*ctl 

il 
n, = - 

d*(t) = 2/T Re [$l(t)ej(wct-n/2)] 

2 = 1/Z Im [&(t)eW] 

$3(t) = d2 Re [$2(t)ej%t] 

i 
A4 = 2 

2 
+J t ) = 42 Im [&(t)eiwct] 

we can index the eigenvalues and eigenfunctions as shown in Table A. 1. 
The result that the eigenvalues of the actual process occur in pairs is 
important in our succeeding work. It leads to a significant simplification 
in our analyses. 

The relationship between the coefficients in the Karhunen-Lo&e 
expansion follows by direct substitution : 

% = Re [&I, 

n2 = Im [&I, 

n3 = Re [521, (A.1 12) 

and so forth. 
n4 = Im [E2], 

From (A.89) and (A.90) we know that n,(t) and n,(t) have identical 
covariance functions. When they are uncorrelated processes, the eigen- 
values of E(t) are just twice the eigenvalues of n,(t). In the general case, 
there is no simple relationship between the eigenvalues of the complex 
envelope process and the eigenvalues of the quadrature process. 

Up to this point we have considered only second-moment characteristics. 
We frequently are interested in Gaussian processes. If n(t) is a non- 
stationary Gaussian process and (A.88)-(A.90) are true, we could define 
ii(t) to be a complex Gaussian random process. It is easier to define a 
complex Gaussian process directly. 

Definition. Let Z(t) be a random process defined over some interval 
[T,, T,] with a mean value 6&) and covariance function 

E[(qt) - ti&))(n”*(u) - fi;(u))l = 13,(4 49 (A. 113) 
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which has the property that 

E@(t) - @z&))@(U) - @z&l))] = 0, for all t and U. (A.1 14) 

If every complex linear functional of Z(t) is a complex Gaussian random 
variable, E(t) is a complex Gaussian random process. In other words, 
assume that 

s 

TP 
fj= g(w(u> du 9 (A.115) 

Ta 

where g’(u) is any function such that E[lg12] < 00. Then, in order for Z(U) 
to be a complex Gaussian random process, g must be a complex Gaussian 
random variable for every g’(u) in the above class. 

Notice that this definition is exactly parallel to the definition of a 
real Gaussian process on page I-183. Various properties of nonstationary 
Gaussian processes are derived in the problems. Since stationary com- 
plex Gaussian processes are a special case, they must satisfy the above 
definition. It is straightforward to show that the definition on page 
583 is equivalent to the above definition when the processes are stationary. 

Returning to the Karhunen-Loeve expansion, we observe that if Z(t) 
is a complex Gaussian random process, Ci is a complex Gaussian random 
variable whose density is given by (AH), with on2 = &/2, 

1 
-a < Re [&I, Im [&I < 00. 

(A.116) 

The complex Gaussian white noise process has the property that a 
series expansion using any set of orthonormal functions has statistically 
independent coefficients. Denoting the ith coefficient as @, we have 

- co < Re [wi], Im [F&l < 00. 

(A. 117) 

This completes our general discussion of nonstationary processes. 
We now consider complex processes with a finite state representation. 

A.3.3 Complex Finite-State Processest 

In our previous work we found that an important class of random 
processes consists of those which can be generated by exciting a finite- 
dimensional linear dynamic system with a white noise process. Instead of 

p This section is based on [9]. 
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working with the bandpass process, we shall work with the complex 
envelope process. We want to develop a class of complex processes that 
we can generate by exciting a finite-dimensional complex system with 
complex white noise. We define it in such a manner that its properties will 
be consistent with the properties of stationary processes when appro- 
priate. The complex state equation of interest is 

k(t) = IT( + G(t)ii(t). (,4.118) 

This is just a generalization of (A.39) to include a vector-driving function 
ii(t). The observation equation is 

YiO - = C(t)Z(t). (A.119) 

A block diagram of the system is shown in Fig. A.15. We assume that 
ii(t) is a complex vector white noise process with zero mean and covariance 
matrix 

E[qt)ii+(a)] = iqt, a) = ij sit - a), (A. 120) 
where 

ii+(t) L\ [a(t)*]T. (A. 121) 
We further assume that 

E[ii(t)iiT(o)] = 0, for all t and 0. (A. 122) 

This is just the vector analog to the assumption in (A.90). In terms of the 
quadrature components, 

ki4 4 = mucio - jw>>i%T(4 + ~u34~1 
= Ku (4 4 + Ku (4 4 + jIc, u (4 4 - jK, u (4 4 
= 0 b(t 

S c s s c 
- 4. (A. 123) 

The requirement in (A.122) implies that 

Ku,iG a) = Kus(t, 0) = 8 Re [G] d(t - o), (A. 124) 

K,,,,(t, 0) = -KUsuC(t, a) = 8 Im [o] s(t - a). (A. 125) 
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The covariance matrices for the two quadrature components are identical 
non-negative-definite matrices, and the cross-covariance matrix is a skew 
symmetric matrix (i.e., ctij = -ai,). This implies that Q is a Hermitian 
matrix with a non-negative-definite real part. 

Usually we do not need a correlation between the components of 5(t) 
(i.e., we can let E[u,(t)~,~(t)] = 0), since any correlation between the 
components of the state vector may be represented in the coefficient 
matrices F(t> and e(t). In this case Q is a real non-negative-definite 
symmetric matrix. 

The next issue that we want to consider is the initial conditions. In 
order that we be consistent with the concept of state, whatever symmetry 
assumptions we make regarding the state vector at the initial time Ti 
should be satisfied at an arbitrary time t (t 2 Ti). 

First, we shall assume that fi(Ti) is a complex random vector (we assume 
zero mean for simplicity). The complex covariance matrix for this random 
vector is 

Pi A R,(Tiy TJ = E[Z(Ti)Zt(Ti>] 

We assume that 
E[Z(&)2*(Ti)] = 0. (A.127) 

Notice that (A.126) and (A.127) are consistent with our earlier ideas. 
They imply that 

Kxc(Ti, Ti) = K, (Ti, Ti) = 4 Re [Pi], s (A.128) 

K,,s(Ti9 Ti) = -Kx,x,(r, 9 Ti) = ii Irn Cpi)* (A.129) 

Consequently, the complex covariance matrix of the initial condition is a 
Hermitian matrix with a non-negative-definite real part. 

Let us now consider what these assumptions imply about the co- 
variance of the state vector Z(t) and the observed signal y(t). Since we can 
relate the covariance of y(t) directly to that of the state vector, we shall 
consider K,(t, u) first. 

For real state-variable random processes, we can determine K,(t, CT) 
in terms of the state equation matrices, the matrix Q associated with the 
covariance of the excitation noise u(t), and the covariance K,(T,, Ti) of 
the initial state vector, X(Ti). The results for complex state variables are 
parallel. The only change is that the transpose operation is replaced by a 
conjugate transpose operation. Because of the similarity of the derivations, 
we shall only state the results (see Problem A.3.19). 
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The matrix &(t, t) is a Hermitian matrix that satisfies the linear matrix 
differential equation 

niC,(t, = F(t)ii,(t, t) + i&(t, t)P’(t) + @t)@?(t), (A.130) 
dt 

where the initial condition &(Ti, T$) is given as part of the system 
description. [This result is analogous to (I-6.279).] i(,(t, cr) is given by 

+<t, &&, 4, t > u, 
%,(t, 0) = (A.131) 

&(t, o+%, t>, 21 > t, 

where &t, a) is the complex transition matrix associated with p(t). 
(This result is analogous to that in Problem I-6.3.16.) In addition, 

K,(t, a) = iQ(o, t) (A.132) 
and 

E[%(t)fF(a)] = 0, for all t and CL (A. 133) 

Therefore the assumptions that we have made on the covariance of the 
initial state vector %(TJ are satisfied by the covariance of the state vector 
Z(t) for all t > T.* - 

Usually we are not concerned directly with the state vector of a system. 
The vector of interest is the observed signal, y(t), which is related to the 
state vector by (A.1 19). We can simply indicate the properties of the 
covariance R; (t, a>, since it is related directly to the covariance of 
the state vector by 

R,(t, 0) = C(t)R;;(t, &ycT). (A.134) 

Consequently, it is clear that & (t, t) is Hermitian. Similarly, from (A.133) 
we have the result that E[f(t)jfT(a)] is zero. 

The properties of the quadrature components follow easily: 

and 
HYc~t)Y,T(41 = ~[Y,(oYsT(o)l = 4 Re [qt, 41 (A.135) 

In this section we have introduced the idea of generating a complex 
random process by exciting a linear system having a complex state variable 
description with a complex white noise. We then showed how we could 
describe the second-order statistics of this process in terms of a complex 
covariance function, and we discussed how we could determine this 
function from the state-variable description of the system. The only 
assumptions that we made were on the second-order statistics of ii(t) 
and a(Ti). Our results were independent of the form of the coefficient 
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matrices P(t), G(t), and C(t). Our methods were exactly parallel to those 
for real state variables. It is easy to verify that all of the results are con- 
sistent with those derived in Sections A.1 and A.2 for stationary and 
nonstationary random processes. 

We now consider a simple example to illustrate some of the manipula- 
tions involved. 

Example 1. In this 
find the covariance 
in 
th 

which the process 
is system are 

example 
function 

is 

we consider a first-order (scalar) state equation. We shall 
for the nonstationary case and then look at the specia 1 case 

stationary, and find the spectrum. The equations that describe 

dz(t) - = -k(t) + ii(t), Ti 5 t (A.137) 
dt 

and 
g(t) = Z(t). (A.138) 

The assumptions on “u(t) and Z(T$ are 

and 
E[G(t)G*(o)] = 2 Re[z]P s(t - 0) 

E[iZ(Ti)12] = P,. 

(A.139) 

(A.140) 

Because we have a scalar process, both P and Pi must be real. In addition, we have 
again assumed zero means. 

First, we shall find K,(t, t). The differential equation (A.130) that it satisfies is 

d&t, t) -= 
dt -@dt, t> - i*&(t, t) + 2 Re [c]p 

= -2 Re [&?z(t, t) + 2 Re [ku]P, t 2 Tie (A.141) 

The solution to (A.141) is 

&cc t> = p - (p - pi)e-2Re [K](t-Ti), t 2 Tie (A.142) 

In order to find &(t, cr> by using (A.131), we need to find &t, G), the transition 
matrix for this system. This is 

tJ(t, 0) = e-Z(t-a), t > 0. (A.143) 

By substituting (A.142) and (A.143) into (A.131), we can find &t, a), which is also 
&<t, a) for this particular example. 

Let us now consider the stationary problem in more detail. This case arises when we 
observe a segment of a stationary process. To make Z(t) stationary, we let 

Pi = P. 

If  we perform the indicated substitutions and define T = t - u, we obtain 

This may be written as 

(A.144) 

(A.145) 

(A.146) 
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Fig. A.16 Pole location for stationary process generated by first-order system. 

The spectrum of the complex process is 

s&o> = 3gct.l) = 
2 Re [k]P 

(CL) + Im [$]J2 + (Re [E])2 ’ 
(A.147) 

From (A.147), we see that in the stationary case, the net effect of the complex pole c 
is that the complex spectrum has a frequency shift equal to the imaginary part of E. 
In the actual bandpass process, this corresponds to shifting the carrier frequency. This 
is obvious if we look at the pole-zero plot of S&B) as shown in Fig. A.16. 

Example 2. Consider the pole-zero plot shown in Fig. A.17. The spectrum is 

(A.148) 

We can generate this spectrum by driving a two-state system with complex white noise. 
The eigenvalues of the I? matrix must equal -El and -z2. If  we use the state representa- 
tion 

Q) = q(t) 

then the equations are 

x ---- ----)( 

x--------- ---------x 

(A.149) 

(A.150) 

u(t), (A.1 51) 

Fig. A.17 Pole location for a particular second-order spectrum. 
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and 

where we assume that 

qo 
g(t) = [l O] [ 1 Z&t) ’ 

Re &I > 0, 

(A.152) 

(A.153a) 

and 
Re [&I > 0, (A.153b) 

i, # i*. (A.1 53~) 

We can carry out the same type of analysis as in Example 1 (see Problem A.3.14). 

Our two examples emphasized stationary processes. The use of complex 
state variables is even more important when we must deal with non- 
stationary processes. Just as with real state variables, they enable us to 
obtain complete solutions to a large number of important problems in the 
areas of detection, estimation, and filtering theory. Many of these applica- 
tions arise logically in Chapters 9-13. There is one application that is 
easy to formulate, and so we include it here. 

Optimal Linear Filtering Theory. In many communication problems, 
we want to estimate the complex envelope of a narrow-band process. The 
efficiency of real state-variable techniques in finding estimator structures 
suggests that we can use our complex state variables to find estimates of 
the complex envelopes of narrow-band processes. In this section we shall 
indicate the structure of the realizable complex filter for estimating the 
complex envelope of a narrow-band process. We shall only quote the 
results of our derivation, since the methods used are exactly parallel to 
those for real state variables. The major difference is that the transpose 
operations are replaced by conjugate transpose operations. 

We consider complex random processes that have a finite-dimensional 
state representation. In the state-variable formulation of an optimal linear 
filtering problem, we want to estimate the state vector Z(t) of a linear 
system when we observe its output y(t) corrupted by additive white noise, 
g(t). Therefore, our received signal F(t) is given by 

f(t) = y(t) + G(t) 

where 
= @)W) + f+(t), Ti < t < Tr, - (A.154) 

E[qt)tv(T)] = R(t) s(t - 7). (A.155) 

We assume that B(t) is a positive-definite Hermitian matrix. 
In the realizable filtering problem, we estimate the state vector at the 

endpoint time of the observation interval, i.e., at Tf. This endpoint time, 
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however, is usually a variable that increases as the data are received. 
Consequently, we want to have our estimate Z(t) evolve as a function of 
the endpoint time of the observation interval [Ti, t]. We choose the esti- 
mate i(t) to minimize the mean-square error, 

We assume that k(t) is obtained by a linear filter. For complex Gaussian 
processes, this gives the best MMSE estimate without a linearity assump- 
tion. 

We can characterize the optimum realizable 
response k&, T), so that the optimal estimate 

P(t) = 

filter in terms of its impulse 
is given by 

t > Ti. (A.157) 

It is easy to show that this impulse response &,(t, 7) is the solution of the 
complex Wiener-Hopf integral equation, 

ii,(t, 7)et(7) = J L h,(t, a)K;(a, 7) do, & < 7 < t (A.158) 
Ti 

(see Problem A.3.15). In the state-variable formulation we find i(t) 
directly without finding the optimum impulse response explicitly. By 
paralleling the development for real state variables, we can implicitly specify 
P(t) as the solution of the differential equation 

f&L!! = F(t)i(t) + Z(t)[F(t) 
dt 

- ww~l, - Ti < t, 

where 
Z(t) = ii&, t) = &3(t)cyt)ik1(t). 

The covariance matrix &(t) is given by the nonlinear equation 

= F(t)&(t) + &(t)F’(t) - q t)W( t>zy t) + q t)Qe+( t), 

(A.159) 

(A.160) 

which can also be written as 
T < t, (A.161) 

dfi = F( t)&( t> + %,( t)F’( t) - f,( t>C’( t)R-l(t)C( t)&(t) + &(t>oc( t), 
dt 

Ti < t. (A.162) 



Complex Finite-State Processes 597 

The initial conditions reflect our a-priori information about the initial 
state of the system. 

m = E[wJl, (A.163) 

UT) = 1p,. (A.164) 

$(Ti) is an a-priori estimate of the initial state. (Often it is assumed to be 
zero for zero-mean processes.) Pi is the covariance of this a-priori estimate. 

As in the case of real variables, the variance equation may be computed 
independently of the estimator equation. In order to obtain solutions, it 
may be integrated numerically or the solution may be computed in terms 
of the transition matrix of an associated set of linear equations. Several 
interesting examples are discussed in the problems. 

A particular case of interest corresponds to a scalar received waveform. 
Then we can write 

R(t) = A$). (A.169 

We also observe that e(t) is a 1 x n matrix. In Fig. A.18 we show two 
pole-zero plots for the spectrum of y(t). We denote the modulations 
matrix of the two systems as C&) and C,(t), respectively. Clearly, we can 

x -------- X 

X --------s----x 
A 

>cr 

(cc) Pole locations in system A 

(b) Pole locations in system B 

Fig. A.18 Effect of carrier frequency shift on pole location. 
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use the same state equations for the two systems and let 

c (0 b = emj*‘Z‘,( t). (A. 166) 

Using (A.165) and (A.166) in (A.162), we see that &p(t) is not a function of 
A. Since A corresponds to a carrier frequency shift in the actual bandpass 
problem, this result is just what we would expect. Notice that &(t> is also 
invariant to an arbitrary phase modulation on C,(t), 

c 0 n. 
= (p(qt). (A. 167) 

This result is less obvious intuitively, but follows easily from (A.162). 
The results in (A.157)-(A. 164) are valid for nonstationary processes and 

arbitrary observation intervals. For stationary processes and semi-infinite 
observation intervals, the problem is equivalent to the complex version 
of the Wiener filtering problem. All of the techniques carry over with 
obvious modifications (see Problem A.3.15). 

Our discussion has considered the MMSE estimate of a complex random 
process. As we would expect from our work in Chapters 2 and 3, we shall 
encounter the problem of estimating a complex Gaussian random process 
in the detection problem. 

A.4 SUMMARY 

In this appendix we have developed a complex representation for band- 
pass signals, systems, and processes. Several important ideas should be 
re-emphasized at this point. The first idea is that of a complex envelope, 
f(t>. It is a low-pass function whose magnitude is the actual envelope and 
whose phase is the phase modulation of the carrier. We shall find that the 
complex envelope plays the same role as the signal itself did in our earlier 
discussions. The second idea is that of a complex. Gaussian random process. 
It plays the same role in the bandpass problem that the real Gaussian 
random process played previously. The third idea is that of complex state 
variables. They play the same role as real state variables did earlier. 

We have spent a fair amount of time developing the complex notation. 
As we proceed through Chapters 9-14, we shall find that it was time well 
spent, because of the efficiency and insight it adds to the development. 

A.5 PROBLEMS 

P.A.1 Complex Signals 

Problem A.l.l. The mean frequency c~i is defined in (A.16). Prove that we can always 
choose the carrier frequency so that 

co = - 0. 
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Problem A.1.2. Derive the following expressions: 

-.i s 
O” d!W co= --oo 7 3W dt, 

s * dF(jw) ‘y* . dco 
f=j ----- 

dco F (‘“‘2x’ -~ 

cut s * dF(jc0) dcu 
= h-n w 7 F*(jd G. 

-00 
Problem A.1.3 [18]. Write 

f(t) A A(t)ejpft), 
where 

is the signal envelope. Assume that 

1. Prove that 
co= - f=O. 

s 

co 
p= t2A2(t) dt,. 

--co 
(P.1) 

Notice that the first term in (P.2) is the frequency spread due to amplitude modulation 
and the second term is the frequency spread due to frequency modulation. 

2. Derive an expression for z in terms of A(t) and v(t). Interpret the result. 
Problem A.l.4 [2]. 

1. Prove that 

and therefore 

Re f(t) d’*(t) dt 1 ’ =- 
dt 2’ 

s 

a2 
t3w 7 

d3*(0 dt 1 

-a3 
=z+jGi. 

2. Use the Schwarz inequality on (P.2) to prove 
-- 
Cost2 - (rt)2 2 5, 

assuming 
cc)= - f-0. 

This can also be written as 

3. Prove that 

(P.1) 

(P-2) 

(P.3) 

(P.4) 

(P* 5) 
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An alternative way of stating (P.5) is to define 

The relation in (P.5) and (P.6) is called the uncertainty relation. 
Problem A-1.5. Assume that 

f(t)= (--$rexp [-(A-jb)t2]. 

Find 02 9 fi 9 and z 
Problem A.l.6. In Chapter 10 we define a function 

@(7,4 PCfit - f) f*(t + fje-““dt. 

Evaluate cU2, at2, and z - c~ji in terms of derivatives of +(7, CD) evaluated at 
7= co 0. = 

P.A.3 Complex Processes 

Problem A.3.1. Consider a complex Gaussian random variable whose density is given 
by (A.81 ). The characteristic function of a complex random variable is defined as 

1. Find i@g( j;) for a complex Gaussian random variable. 
2. How are the moments of Q related to mg(jv”) in general (i.e., g is not necessarily 

complex Gaussian) ? 
Problem A.32 Consider the N-dimensional complex random vector Z, where 

E[3] = 0, 

and 
E[SZt] a 2ii,, 

E[%$T] = 0. 

We define jz to be a complex Gaussian vector if 

1 m-l- 
pd3 = (2r)Nl~nl exp e-ma, Jo, 

--co<ReE]<co, --oo<Im-[k]<oo. 

We refer to the components of ji. as joint complex Gaussian random variables. 
The characteristic function of a complex random vector is defined as 
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Prove that 

for a complex Gaussian random vector. 
Problem A.3.3. A complex Gaussian random variable is defined in (A.81). Define 

If d is a complex Gaussian random variable for every finite g, we say 
Gaussian random vector. Prove that this definition is equivalent to 
A.3.2. 

that j3 is a complex 
the one in Problem 

Problem A.3.4. Assume that g is a complex Gaussian random variable. Prove that 

E[lg12”] = n! (E(lg12y. 

Problem A.35 Assume that d1 and g2 are joint complex Gaussian random variables. 
Prove that 

E[(ij,ij$)n] = n ! [E(81fi$l”. 

Problem A.3.6. Assume 
variables. Prove that 

that !7p 82, !73, and g4 are joint complex Gaussian random 

(This result is given in [ 161.) 
Problem A.3.7 [8]. Derive the “factoring-of-moments” property for complex Gaussian 
random processes. (Recall Problem I-3.3.12.) 
Problem A.3.8. Consider the problem outlined on pages 161-165 of [15]. Reformulate 
this problem using complex notation and solve it. Compare the efficiency of the two 
procedures. 
Problem A.3.9. In Problem I-6.2.1, we developed the properties of power density spectra 
of real random processes. 

Let n(t) be a stationary narrow-band process with a rational spectra S,(o). Denote 
the complex envelope process by h(t), and its spectrum by s-,(0>. 

1. Derive properties similar to those in Problem I-6.2.1. 
2. Sketch the pole-zero plots of some typical complex spectra. 

Problem A.3.10. The definition of a complex Gaussian process is given on page 588. 
Derive the complex versions of Properties 1 through 4 on pages I-183-1-185. 
Problem A.3.11. Prove that the eigenvalues of a complex envelope process are invariant 
to the choice of the carrier frequency. 
Problem A.3.12. Consider the results in (A.99)-(A.105). 

1. Verify that one gets identical results by working with a real vector process, 

n(t) = 
n,(t) [ 1 n , ( t )  l 

[Review Section 3.7 and observe that K,(t, u) has certain properties because of the 
assumption in (A.90).] 

2. What is the advantage of working with the complex process instead of n(t)? 
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Problem A.3.13 [14]. Consider the process described by (A.118)-(A.122) with 

G(t) = 1, 

jbt2 
i?(t) = a - y--- ) 

C(t) = 1. 

1. Find the covariance function of k(t). 
2. Demonstrate that g(t) has the same covariance as the output of a Doppler-spread 

channel with a one-pole fading spectrum and input signal given by (10.52). 
Problem A.3.14. Consider the process described by (A.148)-(A.153). 

1. Find the covariance function of g(t). 
2. Calculate E[ 17J12]. 

Problem A.3.15. Consider the linear filtering model in (A.1 54)-(A.156). 
1. Derive the Wiener-Hopf equation in (A.1 58). 
2. Derive the complex Kalman-Bucy equations in (A.1 59)-(A.164). 
3. Assume that Ti = - 00 and b(t) is stationary. Give an explicit solution to (A.158) 

by using spectrum factorization. 
4. Prove that, with a complex Gaussian assumption, a linear filter is the optimum 

MMSE processor. 
Problem A.3.16. The complex envelope of the received waveform is 

F(u) = rrs(u) + h4, --<l&t, 

where z(u) 
spectra 

and w(u) are statistically independent complex Gaussian processes with 

i7&0) = 
Re [k,]P k2P 

(~0 + Im [&])2 + Re [&])2 
+- 

co2 + kz2 ’ 

1. Find the minimum mean-square realizable estimate of i(t). 
2. Evaluate the minimum mean-square error. 

Problem A.3.17. The complex envelope of the received waveform is 

‘;(u) = i(u) + h,(u) + b(u), --co<u<t, 

where i(u), i?,(u), and G(u) are statistically independent Gaussian processes with 
spectra 

S&o) = 
2 Re [&]P, 

(cc, + Im [k*13)2 + (Re [k112) ’ 

s,- (cu) = 
2 Re [“k,]P, 

C co2 + (Re [&])2 ’ 

and 

s,(w) = No, 

respectively. 
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1. Find the minimum mean-square realizable estimate of g(t). 
2. Evaluate the minimum mean-square error. Do your results behave correctly as 

Im [i;l] --+ 00 ? 
Problem A.3.18. Consider the system shown in Fig. P.A.1. The input u(t) is a sample 
function of a real white Gaussian process. 

J 

Fig. P.A.1 

1. Compute &.(o), S+X), and SZ Z (w). 
2. Under what conditions is Z(t) ascomplex Gaussian process (according to our 

definition)? 
3. Let K&m) and K&m) be arbitrary transfer functions. We observe that 

at) = z(t) + C;(t), 

where G(t) is a sample function of a complex white Gaussian process with spectral 
height N,. Find the minimum mean-square unrealizable estimate of 2(t). 

(This type of problem is discussed in [12] and [17].) 
Problem A.3.19. Verify the results in (A.130)-(A.133). 
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Glossary 

In this section we discuss the conventions, abbreviations, and symbols 
used in the book. 

CONVENTIONS 

The fol lowin g conventions have been used: 

1. Boldface roman denotes a v fector or ma trix. 
2. The sym bol ] 1 means the magnitude of the vector or scalar con- 

tained within. 
3. The determinant of a square matrix A is denoted by IAl or det A. 
4. The script letters P(e) and Y(e) denote the Fourier transform and 

Laplace transform respectively. 
5. Multiple integrals are frequently written as, 

1 drf(r)J dtg(t9 7) A [fW (s dlgo) d7, 

that is, an integral is inside all integrals to its left unless a multiplication is 
specifically indicated by parentheses. 

6. E[*] denotes the statistical expectation of the quantity in the bracket. 
The overbar x is also used infrequently to denote expectation. 

7. The symbol @ denotes convolution. 

s 

CD 
x(t) @ y(t) A x(t - 7)YW d7 

-a3 

8. Random variables are lower case (e.g., x and x). Values of random 
variables and nonrandom parameters are capita1 (e.g., X and X). In some 
estimation theory problems much of the discussion is valid for both ran- 
dom and nonrandom parameters. Here we depart from the above con- 
ventions to avoid repeating each equation. 
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9. The probability density of x is denoted by p,() and the probability 
distribution by I?&). The probability of an event A is denoted by Pr [A]. 
The probability density of x, given that the random variable a has a value 
A, is denoted by I&(X 1 A). When a probability density depends on non- 
random parameter A we also use the notation P,,,(X 1 A). (This is non- 
standard but convenient for the same reasons as 8.) 

10. A vertical line in an expression means “such that” or “given that”; 
that is Pr [A 1 x ,< X] is the probability that event A occurs given that the 
random variable x is less than or equal to the value of X. 

11. Fourier transforms are denoted by both F(jcu) and F(co). The latter 
is used when we want to emphasize that the transform is a real-valued 
function of o. The form used should always be clear from 

12. Some common mathematical symbols used include, 

0) = 
(ii) t - T- 
(iii) A + B A A u B 
(iv) 1.i.m. 

()I 
33 

V dR 
--co 

(vi) A T  

(vii) A-l 
(viii) 0 

(ix) 

( 1 x 2 

dR 

proportional to 
f approaches T from below 
A or B or both 
limit in the mean 

the context. 

an integral 
vector 

over the same dimension as the 

transpose of A 
inverse of A 
matrix with all zero elements 

binomial coefficient 
N! 

= 
k! (N - k)! 

defined as 

integral over the set Q 

ABBREVIATIONS 

Some abbreviations used in the text are: 

ML maximum likelihood 
MAP maximum a posteriori probability 
PFM pulse frequency modulation 
PAM pulse amplitude modulation 
FM frequency modulation 
DSB-SC-AM double-sideband-suppressed carrier-amplitude modula- 

tion 



DSB-AM 
PM 
NLNM 
FM/FM 
MMSE 
ERB 
UMP 
ROC 
LRT 
LEC 
SPLOT 
SK 
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double sideband-amplitude modulation 
phase modulation 
nonlinear no-memory 
two-level frequency modulation 
minimum mean-square error 
equivalent rectangular bandwidth 
uniformly most powerful 
receiver operating characteristic 
likelihood ratio test 
low energy coherence 
stationary process-long observation time 
separable kernel 

SYMBOLS 

The principal symbols used are defined below. In many cases the vector 
symbol is an obvious modification of the scalar symbol and is not included. 
Similarly, if the complex symbol is an obvious modification of the real 
symbol, it may be omitted. 

bd4 

class of detection problem 
actual value of parameter 
sample at ti 
class of detection problem, white noise present 
solution to likelihood equation 
minimum absolute error estimate of a 
maximum a posteriori probability estimate of a 
maximum likelihood estimate of A 
minimum mean-square estimate of a 
amplitude weighting of specular component in Rician 
channel 
constant bias 
Bhattacharyya distance (equals -p( l/2)) 
class of detection problem 
signal bandwidth 
bias that is a function of A 
class of detection problem, white noise present 
random variable describing target or channel reflection 
complex Gaussian process describing reflection from 
Doppler-spread target 
complex Gaussian process describing reflection from 
range-spread target 
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BdW 
P 
c 
C(G) 
G 
cij 
c ill 
0 
C(t:Z(t, I)) 
c 
C(t) 
C,(t) 
CM (0 
c,(t) 
x 
Xa 
x9 
x2 
D(QJ”) 
&4*) 
D min 

D opt 
Do 
d 
d 

40 A 
d(t) A 
d (0 0 

d w E 

6 

A 
A dg 

A 
0 

A 0 
A r 
A 

V 

matrix in state equation for desired signal 
parameter in PFM and angle modulation 
channel capacity 
cost of an estimation error, a, 
cost of a false alarm (say HI when Ho is true) 
cost of saying Hi is true when Hj is true 
cost of a miss (say HO when H, is true) 
channel capacity, infinite bandwidth 
modulation functional 
velocity of propagation 
modulation (or observation) matrix 
observation matrix, desired signal 
message modulation matrix 
noise modulation matrix 
parameter space 
parameter space for a 
parameter space for 
chi-square (descripti 

8 
on of a probability density) 

denominator of spectrum 
Fredholm determinant 
minimum diversity 
optimum diversity 
optimum diversity 
desired function of parameter 
performance index parameter 
problems 
desired signal 
estimate of desired signal 
optimum MMSE estimate 
error in desired point estimate 

on ROC for Gaussian 

phase of specular component (Rician channel) 
performance measure (9.49) 
performance degradation due to colored noise 
performance measure in optimum receiver 
width of Doppler cell 
length of range cell 
performance measure in suboptimum test 
performance measure in “white-optimum” receiver 
mean difference vector (i.e., vector denoting the dif- 
ference 
matrix 

between two mean vectors) 
denoting difference between two inverse co- 

variance matrices 
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energy (no subscript when there is only one energy in 
the problem) 
expectation over the random variable n only 
energy in interfering signal 
energy on ith hypothesis 
expected value of received energy 
transmitted energy 
energy in y(t) 
energy of signals on H, and Ho respectively 
exponent in M-ary error bound 
energy in error signal (sensitivity context) 
error waveform 
interval error 
total error 
error function (conventional) 
error function (as defined in text) 
complement of error function (conventional) 
complement of error function (as defined in text) 
(eta) threshold in likelihood ratio test 

expectation operation (also denoted by c) infrequently) 
function to minimize or maximize that includes 
Lagrange multiplier 
complex envelope of signal 
complex envelope of signal returned from desired 
target 
oscillator frequency (cL)~ = 2nfc) 
matrix in differential equation 
time-varying matrix in differential equation 
factor of S&O) that has all of the poles and zeros in 
LHP (and $ of the zeros on jm-axis). Its transform is . 
zero for negative time. 
general binary detection problem 
function in colored noise correlator 
function in problem of estimating A (or A) in colored 
noise 
a function of an eigenvalue 
impulse response of ideal low-pass filter 
efficiency factor for diversity system 
homogeneous solution 
filter in loop 
impulse response and transfer function optimum loop 
filter 
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Ya 

h,(r, u: t) 
hF12’( t, -2) 

hsub (4 

unrealizable post-loop filter 
optimum unrealizable post-l oop filter 
impulse solution 
difference function in colored noise correlator 
a weighted sum of g(&) 
infinite interval solution 
complex function for optimum colored noise correlator 
matrix in differential equation 
time-varying matrix in differential equation 
linear transformation describing desired vector d 
matrix in differential equation for desired signal 
function for vector correlator 
nonlinear transformation describing desired vector d 
Gamma function 

parameter (y = kJ1 + A) 
threshold for arbitrary test (frequently various constants 
absorbed in y) 
factor in nonlinear modulation problem which controls 
the error variance 
gate function 
hypotheses in decision problem 
ith coefficient in orthogonal expansion of h( t, u) 
nth order Hermite polynomial 
impulse response of time-varying filter (output at t due 
to impulse input at u) 
optimum unrealizable filter when white noise spectral 
height is x 
optimum filter for [O? t] interval 
functional square root of h,(t, z) 
filter using asymptotic approximation 
filter to give delayed unrealizable MMSE estimate 
channel impulse response 
filter in Canonical Realization No. 3 
realizable filter in Canonical Realization NO. 3 
unrealizable filter in Canonical Realization No. 3 
optimum linear filter 
optimum processor on whitened signal: impulse 
response and transfer function, respectively 
optimum realizable linear filter for estimating s(t) 
optimum unrealizable filter (impulse response and 
transfer function) 
suboptimum filter 
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h.u(t9 4 
h,,,(t, 4 
k&9 4 
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J(A) 
Jii 

J-‘(t, u) 

Jij 
Jk(tv d 

J 

&)&9 u:s) 

K&9 4 
&.(t7 4 
K$;i21( t, u) 
K&9 4 

l V 

whitening filter 
filter whose output is white on H, 
filter corresponding to difference between inverse 
kernels on two hypotheses (3.31) 
complex envelope of impulse response of bandpass 
filter 
complex realizable whitening filter 
linear matrix transformation 
optimum linear matrix filter 
modified Bessel function of 1st kind and order zero 
integrals involved in Edgeworth series expansion 
(defined by (2.160)) 
integrals 
incomplete Gamma function 
identity matrix 
function in variance bound 
elements in J-l 
inverse information kernel 
elements in information matrix 
kth term approximation to information kernel 
information matrix (Fisher’s) 
covariance function of composite signal (3.59) 
covariance function of signal 
covariance of r(t) on ith hypothesis 
functional square root of Kgol’(t, u) 
covariance function of x(t) 
correlation function of Doppler process 
target correlation function 
two-frequency correlation function 
covariance matrix 
covariance function of %(t) 
linear transformation of x(t) 
nth order Laguerre polynomial 
sufficient statistic 
likelihood function 
bias term in log likelihood ratio 
term in log likehhood ratio due to deterministic input 
term on log likelihood ratio due to random input 
actual sufficient statistic (sensitivity problem) 
sufficient statistics corresponds to cosine and sine 
components 
correlator output in suboptimum test 
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f wo 
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A ef 

A g 
A m  

A 3db 
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a ma2i 
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In A(A) 

P(s) 
pBP@) 

,u,&> 

pD@) 

pLE&) 

PLPW 

tLnb> 

Pm(S) 

output of correlator in “white-optimum” receiver 
a parameter which frequently corresponds to a signal- 
to-noise ratio in message ERB 
likelihood ratio 
likelihood ratio 
likelihood function 
signal-to-noise ratio in reference bandwidth for 
Butterworth spectra 
effective signal-to-noise ratio 
generalized likelihood ratio 
parameter in phase probability density 
signal-to-noise ratio in 3-db bandwidth 
covariance matrix of vector x 
covariance matrix of state vector (= Kx(t, t)) 
Lagrange multiplier 
maximum eigenvalue 
eigenvalue of matrix or integral equation 
ith eigenvalue, given A 
eigenvalues of channel quad 
eigenvalue of signal process 
total eigenvalue 
eigenvalues of y, (t ) 

ratic form 

natural logarithm 
log likelihood function 
logarithm to the base a 
characteristic function of random variable x (or x) 
generating function of I on H, 
mean Doppler shift 
ith coefficient in expansion of m(t) 
mean delay 
mean-value function of process 
difference between mean-value functions 
matrix used in colored noise derivation 
mean vector 

‘ogarit’~m of 41 (RI, Ho(s) 
,u(s) for bandpass problem 
,u(s) for binary symmetric problem 
component of p(s) due to deterministic signal 
,u(s) for low energy coherence case 
,u(s) for low-pass problem 
component of ,u(s) due to random signal 
p(s) for simple binary problem 
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,u(s) for separable kernel case 
asymptotic form of p(s) 
complex version of p(s) 
dimension of observation space 
number of coefficients in series expansion 
Gaussian (or Normal) density with mean m and stand- 
ard deviation 0 
numerator of spectrum 
spectral height (joules) 
noise random process 
colored noise (does not contain white noise) 
ith noise component 
noise component at output of whitening filter 
MMSE realizable estimate of colored noise component 
MMSE unrealizable estimate of colored noise com- 
ponent 
complex envelope of noise process 
noise correlation (matrix numbers) 
noise random variable (or vector variable) 
Cramer-Rao bound 
elements in error covariance matrix 
variance of ML interval estimate 
expected value of reaZizaO/e point estimation error 

minimum mean-square realizable filtering error of s(t) 
in the presence of white noise with spectral height NJ2 
variance of error of point estimate of ith signal 
normalized realizable point estimation error 
expected value of point estimation error, statistical 
steady state 
optimum unrealizable error 
normalized optimum unrealizable error 
covariance matrix in estimating d(t) 
steady-state error covariance matrix 

function in optimum receiver equations (9.90) . 
distributed error covariance function matrix 
power 
probability of error 
probability of error for binary FSK system 
probability of error for binary PSK system 
power in bandpass problem 
probability of detection (a conditional probability) 
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w - 4)) a 444 
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QI& 4 

Q,k 4 
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Q' 
Q,(u, 2) 

R ’ 
R(t) 
R&Y u) 
i?,&, u} 
St 
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effective power 
probability of false alarm (a conditional probability) 
a priori probability of ith hypothesis 
power in low-pass problem 
probability of a miss (a conditional probability) 
one-term approximation to PA,I 
received power 
transmitted power 
transform of &{ f, A} 
probability density of r, given that Hi is true 
eigenfunction 
Gaussian density, N(0, 1) 
ith coordinate function, ith eigenfunction 
moment generating function of I(R), given Ho 
moment generating function of random variable x 
phase of signal 
time-frequency correlation function 
time-frequency cross-correlation function 
low pass phase function 
spread cross-ambiguity function 
cross-correlation matrix between input to message 
generator and additive channel noise 
state transition matrix, time-varying system 
state transition matrix, time-invariant system 
probability of event 
bandwidth constrain 

in brackets or parentheses 
.t 

carrier frequency (radians/second) 
Doppler shift 
mean frequency 
Marcum’s Q function 
inverse kernel on ith hypothesis 
inverse kernel 
height of scalar white noise drive 
covariance matrix of vector white noise drive 
inverse matrix kernel 
transmission rate 
target range 
correlation function 
two-frequency correlation function 
Bayes risk 
received waveform (denotes both the random process 
and a sample function of the process) 
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combined received signal 
output when inverse kernel filter operates on r(t) 
K term approximation 
output of whitening filter 
output of S,(m) filter (equivalent to cascading two 
whitening filters) 
complex envelope of signal process 
normalized correlation si( t) and sj(t) (normalized 
signals) 
normalized covariance between two random variables 
target skewness 
degradation due to interference 
covariance matrix of vector white noise w(t) 
observation vector 
Fourier transform of s(t) 
spectrum of colored noise 
Fourier transform of Q(T) 
power density spectrum of received signal 
power density spectrum 
transform of optimum error signal 
Doppler scattering function 
scatteri ng function 
uniform Doppler profile 
spectrum of reverberation return 
range scattering function 
signal component in r(t), no subscript when only one 
signal 
signal depending on A 
modulated signal 
actual s(t) (sensitivity context) 
composite signal process (3.58) 
coefficient in expansion of s(t) 
ith signal component 
random component of signal 
received signal 
realizable MMSE estimate of s(t) 
signal transmitted 
signal on HO 
signal on HI 
signal with unwanted parameters 
random signal 
signal component at output of whitening filter 
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complex covariance matrix (= f&t)) 
variance 
variance on H,, HO 
mean-square Doppler spread 
mean-square bandwidth 
mean-square delay spread 
mean-square durati on 
vector signal 
pulse duration 
initial observat ion time (same as Ti) 
duration of pulse sequence 
final observation time 
initial observation time 
pulse 
mean 

repetition interval 
(arrival) time 

round-trip delay time 
unwanted parameter 
generalized ambiguity function 
signal ambiguity function 
cross-ambiguity function 
generalized spread ambiguity function 
Doppler-spread ambiguity function 
phase 
phase 

estimate 
of channel response 

estimate of 8, 
transition matrix 
transpose 
conjugate 

of matrix 
transpose of matrix 

unit step function 
input to system 
elementary rectangular signal 
variable in piecewise approximation to Vch(t) 
envelope of channel response 
target velocity 
bandwidth parameter (cps) 
transfer function of whitening filter 
channel bandwidth (cps) single-sided 

of ing filter transform of inverse 
white noise process 
impulse response of whitening filter 
complex white noise process 
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a matrix operation whose output vector has a diagonal 
covariance matrix 
input to modulator 
random process 
estimate of random process 
random vector 
state vector 
augmented state vector 
state vector for desired 
prefil tered state vector 
state vecto r, message 

operation 

state vector, noise 
distributed complex state variable 
kernel in singularity discussion (3.15 1) 
output of differential equation 
transmitted signal 
observation space 
subspace of observation space 
output of whitening filter 
gain matrix in state-variable filter (dh,(t, t)) 
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