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Preface 

I know what you are asking yourself--‘there are a lot of books available 
about DSP, is this book the one for me?’ Well that depends on who you 
are. If 

l you are interested in doing research and development in one of the 
many state-of-the-art applications of DSP, such as speech compression, 
speech recognition, or modem design, 

0 your main proficiency 
or science rather than 

is in computer science, abstract mathematics, 
electronics or electrical engineering, 

l your math ematical background is relatively strong (flip back now to 
the appendix-you should be comfortable with about half of what you 
see there), 

then you are definitely in the target group of this book. If in addition 

l you don’t mind a challenge and maybe even enjoy tackling brain- 
teasers, 

l you’re looking for one comprehensive text in all aspects of DSP (even 
if you don’t intend reading all of it now) and don’t want to have to 
study several different books with inconsistent notations, in order to 
become competent in the subject, 

l you enjoy and learn more from texts with a light style (such as have 
become common for computer science texts) rather than formal, dry 
tomes that introduce principles and thereafter endlessly derive corol- 
laries thereof, 

then this is probably the book you have been waiting for. 
This book is the direct result of a chain of events, the first link of which 

took place in mid-1995. I had been working at a high-tech company in Tel 

xv 
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Aviv that was a subsidiary of a New York company. In Tel Aviv it was rela- 
tively easy to locate and hire people knowledgeable in all aspects of DSP, in- 
cluding speech processing, digital communications, biomedical applications, 
and digital signal processor programming. Then, in 1995, I relocated to a 
different subsidiary of the same company, located on Long Island, New York. 
One of my first priorities was to locate and hire competent DSP software 
personnel, for work on speech and modem signal processing. 

A year-long search turned up next to no-one. Assignment agencies were 
uncertain as to what DSP was, advertisements in major New York area 
newspapers brought irrelevant responses (digital design engineers, database 
programmers), and, for some inexplicable reason, attempts to persuade more 
appropriate people from Silicon Valley to leave the California climate, for 
one of the worst winters New York has ever seen, failed. 

It struck me as rather odd that there was no indigenous DSP population 
to speak of, in an area noted for its multitude of universities and diversity 
of high-tech industries. I soon found out that DSP was not taught at under- 
graduate level at the local universities, and that even graduate-level courses 
were not universally available. Courses that ulere offered were Electrical En- 
gineering courses, with Computer Science students never learning about the 
subject at all. Since I was searching for people with algorithm development 
and coding experience, preferably strong enough in software engineering to 
be able to work on large, complex software systems, CS graduates seemed to 
be more appropriate than EEs. The ideal candidate would be knowledgeable 
in DSP and would in the target group mentioned‘above. 

Soon after my move to New York I had started teaching graduate level 
courses, in Artificial Intelligence and Neural Networks, at the Computer 
and Informations Sciences department of Polytechnic University. I inquired 
of the department head as to why a DSP course was not offered to Computer 
Science undergraduates (it was being offered as an elective to Electrical En- 
gineering graduate students). He replied that the main reason was lack of 
a suitable teacher, a deficiency that could be easily remedied by my volun- 
teering. 

I thus found myself ‘volunteered’ to teach a new Computer Science un- 
dergraduate elective course in DSP. My first task was to decide on course 
goals and to flesh out a syllabus. It was clear to me that there would be lit- 
tle overlap between the CS undergraduate course and the EE graduate-level 
course. I tried to visualize the ideal candidate for the positions I needed to 
fill at my company, and set the course objectives in order to train the perfect 
candidate. The objectives were thus: 



PREFACE xvii 

l to give the student a basic understanding of the theory and practice 
of DSP, at a level sufficient for reading journal articles and conference 

PaPer% 

l to cover the fundamental algorithms and structures used in DSP com- 
putation, in order to enable the student to correctly design and effi- 
ciently code DSP applications in a high-level language, 

a to explain the principles of digital signal processors and the differences 
between them and conventional CPUs, laying the framework for the 
later in-depth study of assembly languages of specific processors, 

l to review the background and special algorithms used in several impor- 
tant areas of state-of-the-art DSP research and development, including 
speech compression/recognition, and digital communications, 

l to enable the student who completes the course to easily fit in and 
contribute to a high-tech R&D team. 

Objectives defined, the next task was to choose a textbook for the course. 
I perused web sites, visited libraries, spoke with publisher representatives at 
conferences, and ordered new books. I discovered that the extant DSP texts 
fall into three, almost mutually exclusive, categories. 

About 75% of the available texts target the EE student. These books 
assume familiarity with advanced calculus (including complex variables and 
ordinary differential equations), linear system theory, and perhaps even 
stochastic processes. The major part of such a text deals with semirigor- 
ous proofs of theorems, and the flavor and terminology of these texts would 
certainly completely alienate most of my target group. The CS student, for 
example, has a good basic understanding of derivatives and integrals, knows 
a little linear algebra and probably a bit of probability, but has little need 
for long, involved proofs, is singularly uninterested in poles in the complex 
plane, and is apt to view too many integral signs as just so many snakes, 
and flee in terror from them. 

In addition, these type-one texts ignore those very aspects of the subject 
that most interest our target students, namely algorithm design, compu- 
tational efficiency and special computational architectures, and advanced 
applications. The MAC instruction and Harvard architecture, arguably the 
defining features of digital signal processors, are generally not even men- 
tioned in passing. Generally only the FFT, and perhaps the Levinson-Durbin 
recursion, are presented as algorithms, and even here the terminology is of- 
ten alien to the CS student’s ear, with no attention paid to their relation 
with other problems well known to the computer scientist. The exercises 
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generally involve extending proofs or dealing with simplistic signals that 
can be handled analytically; computer assignments are rare. 

Finally, due perhaps to the depth of their coverage, the type-one texts 
tend to cover only the most basic theory, and no applications. In other words, 
these books finish before getting to the really interesting topics. Some cover 
the rudiments of speech processing, e.g. LPC and cepstral coefficients, but all 
consider speech compression and modem design beyond their scope, More 
advanced or specific texts are thus absolutely necessary before real-world 
applications can be tackled. These texts thus do not achieve our goal of 
preparing the student for participation in a real R&D team. 

The next category, counting for about 20% of the texts, do target people 
who are more at home with the computer. Type-two texts tend to be ‘recipe 
books’, often accompanied by a diskette or CD. The newer trend is to replace 
the book with interactive instruction and experimentation software. These 
books usually contain between fifty and one hundred black box routines that 
can be called from a high-level language (e.g. C or MATLAB). The bulk of 
the text consists of instructions for calling these routines, with discussion of 
the underlying theory kept to a minimum. 

While very useful for the computer professional who on odd occasions 
has need for some DSP procedures, these books do not instill a deep unified 
comprehension of the subject. Admittedly these books often explain algo- 
rithms in greater depth than type-one texts, but our target readers would 
benefit even more from a combination of type-one depth with type-two em- 
phasis. 

Of course there is nothing wrong with obtaining a well tested program 
or routine that fulfills the purpose at hand. Indeed it would not be prudent 
for the implementor to reinvent wheels in places where tire shops abound, 
However, due to their generality, library routines are often inefficient and 
may even be impractical for specific purposes. I wanted to enable my stu- 
dents to meet specific DSP needs by evaluating existing programs and library 
routines, or by writing original, tailored DSP code as required. The reader 
should also be able to port libraries to a new platform, understanding both 
the algorithm and the platform idiosyncrasies. 

Finally, there are type-three texts, often written by DSP processor man- 
ufacturers. They emphasize the architecture, programming language, and 
programming tools of the manufacturer’s line of digital signal processors, 
and while they may explain some theory, they mostly assume prior knowl- 
edge or claim that such knowledge is not really required for the comprehen- 
sion of the subject matter. The programming techniques developed, usually 
in lengthy detail, may be applicable to some extent to other manufacturers’ 
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processors, but considerable adaptation would normally be required. Type- 
three texts tend to stress FIR and IIR filter structures, the radix 2 FFT 

algorithms, the LMS and perhaps Viterbi algorithms, and often describe 
various practical applications of these in great depth. 

Due to their lack of mathematical sophistication, these books do not 
attempt to seriously treat DSP theory. Such critical topics as the sampling 
theorem, filtering, and adaptive systems are only trivially covered; true ex- 
planation of noise, filtering, and Fourier transforms are replaced by historical 
accounts, and algorithms are displayed in pseudocode fait accompli rather 
than derived. On the other hand, the manufacturers apparently feel that the 
typical reader will be lacking in CS background, and thus overly stress such 
obvious features as loops and numeric representation. 

I thus reached the conclusion that none of the available DSP texts was 
truly suitable for the course, and was compelled to create my own course ma- 
terials. These became the corner-stone of the present book. Often I found 
myself rethinking my own understanding of the subject matter, and fre- 
quently connections with other computer science subjects would only be- 
come clear during lecture preparation, or even during the lecture itself. I 
also found that the elimination of the conventional mathematical apparatus 
and rigorous proofs not only did not deplete the subject matter of meaning, 
but actually enriched it. 

The topics included in this text may, at first, surprise the reader who is 
used to more conventional DSP texts. Subjects such as the matched filters, 
adaptive algorithms, the CORDIC algorithm, the Viterbi algorithm, speech 
compression, and modern modem theory are normally considered too com- 
plex and specialized for presentation at this level. I have found that these 
advanced topics are no more difficult for the newcomer to grasp than filter 
design or limit cycles, and perhaps more interesting and relevant. However, 
in order to keep the book size moderate, some of the more classical subjects 
had to be curtailed. These subjects are adequately covered in traditional 
texts, which may be consulted to supplement the present one. 

Even so, the present book contains more material than can be actually 
taught in a single-semester course. A first course in DSP could cover most 
of the material in the early chapters, with the instructor then selecting 
algorithms and applications according to personal preference. The remaining 
subjects may be relegated to a more advanced course, or be assigned as self- 
study topics. My initial course went through the basic theory at break-neck 
speed, in order to rapidly get to speech compression and recognition. A 
second attempt emphasized modems and DSP for data communications. 
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Every section ends with a number of exercises that are designed to be en- 
tertaining and enriching. Some of these should not be difficult for the reader 
who understands the section, being designed to reinforce basic understand- 
ing of the material. Many are somewhat challenging, complementing the 
text, extending the theory, or presenting actual applications of the subject 
studied. Some are only loosely defined; for these one can give a quick an- 
swer, or develop them into a term project. Others introduce new material 
that will ease the understanding of the following sections, as well as widening 
the reader’s DSP horizons. 

I purposely avoid taking sides on the divisive issue of programming lan- 
guage and environment for algorithm design and test on general-purpose 
computers. Realizing that C, MATLAB, SPW, Mathematics and the like 
will all have their staunch supporters, and all have their strengths and 
weaknesses, I leave it to the student or instructor to select that language 
with which they are the most comfortable. Every seasoned programmer is 
most effective in his or her native language, and although some languages 
are obviously better DSP ‘environments’ than others, the difference can be 
minimized by the use of appropriate libraries. 

Although the book was written to serve as a course textbook, it may be 
used by non-students as well. DSP practitioners are like master craftsmen; 
when they are called upon to construct some object they must exploit their 
box of tools. Novices have only a few such tools, and even these may not 
be sufficiently sharp. With time more tools are acquired, but almost all 
craftsmen tend to continue using those tools with which they have the most 
experience. The purpose of this book is to fill the toolbox with tools, and to 
help the DSP professional become more proficient in their proper use. Even 
people working in the field several years will probably find here new tools 
and new ways of using tools already acquired. 

I would like to thank my students, who had to suffer through courses 
with no textbook and with continually changing syllabus, for their com- 
ments; my colleagues, particularly Yair Karelic, Mauro Caputi, and Tony 
Grgas, for their conscientious proofreading and insights; my wife Ethel for 
her encouragement (even allowing me untold late-night sessions banging 
away at the keyboard, although she had long ago banished all computers 
from the house); and our two girls, Hanna and Noga, who (now that this 
book is complete) will have their father back. 

Jonathan (Y) Stein 
Jerusalem, Israel 

31 December 1999 



Introductions 

The reader is already an expert in signal processing, although possibly un- 
aware of it. We are all remarkably complex signal processing systems, adap- 
tively processing intricate audio and video signals every moment of our lives. 
While awake we input intricate signals from our environment, extract high- 
level representations of information carried by these signals, make decisions 
based on this information, record some of the information for later recall 
and processing, and produce new signals to change our environment in real 
time. Even while sleeping, although most of the input has been removed, we 
unconsciously continue the processing ojj%ne; we reintroduce recently in- 
put signals in order to correlate them with previously stored signals, decide 
which signals should be stored for long periods of time, and generally per- 
fect our signal processing performance. Due to this signal processing we are 
extremely good at understanding speech and immediately reacting based on 
what has been said. We scarcely think about our ability to recognize faces 
and greet (or avoid) their owners. We take our proficiency at reading hand- 
writing for granted, except when admiring the pharmacist’s even greater 
competency when presented with a physician’s scrawl. 

It is therefore extremely frustrating to discover how difficult it is to design 
artificial devices that can perform as well. After decades of research, devices 
that can understand unconstrained human speech are still extremely primi- 
tive, and even speech synthesis is still to be considered a nontrivial problem. 
Machine recognition of human faces is possible only in severely restricted 
environments, and even our limited capabilities are not yet commonplace 
due to being prohibitively expensive. While optical character recognition of 
high quality printed fonts has been perfected, acceptable machine reading 
of handwriting has yet to be attained. 

These three examples- speech understanding, face recognition, and read- 
ing of handwriting- are typical of a long list of tasks which we find almost 
trivial, but which have turned out to be extremely difficult for machines. 
It is only due to our meager attempts at designing machines to perform 
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2 INTRODUCTIONS 

these functions that we have come to grasp their extreme complexity. Due 
to this inherent complexity, researchers and implementors attempting to 
mechanize these functions have turned to the strongest and most intelligent 
devices available. The most sophisticated and capable invention humankind 
has devised to date is the digital computer. For this reason it is natural 
that much of the state-of-the-art signal processing is performed digitally. In 
this, the first chapter, we introduce signal processing, and more specifically 
Digital Signal Processing, which from now on we shall call DSP. 

In order to acquaint the reader with the concept of using digital technol- 
ogy in order to process signals, we will first trace the early history of signal 
processing. We then jump ahead to a survey of state-of-the-art applications, 
in order to convince the reader that the problem is still alive and interesting. 
Next we introduce the concept of signal processing by demonstrating analog 
signal processing on a simple example. Finally we present the basic ideas 
behind the use of computers in signal processing. 

1.1 Prehistory of DSP 

The first major accomplishments of humankind involved mastering the pro- 
cessing of material objects, and indeed humankind is often defined as the 
animal who fashions tools. Lower forms of animals do not, in general, change 
naturally occurring objects in order to adapt them to their needs. When hu- 
mankind discovered that one could take stones and bones and by relatively 
simple processing convert them into arrows, knives, needles, fire-making im- 
plements, and the like, the species transcended all those that had come be- 
fore it. More and more complex processing algorithms were then developed. 
For example, humans learned to till the soil, plant wheat seeds, water and 
fertilize them, harvest the wheat, separate the chaff from the grain, ground 
the grain into flour, mix the flour with water and yeast, and bake the dough 
to make bread. This represents a highly developed culture of material object 
processing. 

The next stage in humankind’s development involved the processing of 
signals. Signals, like materials, are real physical objects, but are intangible. 
Humankind learned to adapt a mouth (originally developed for eating) and 
an ear (designed for hearing predators approach) into a highly flexible acous- 
tic communications system. The medium for this communications exchange 
was pressure waves in air, and to some extent visual clues conveyed via 
light. Primitive peoples also developed techniques for communications over 
distances, such as tom-tom drums and smoke signals. Then came the de- 
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velopment of the telegraph and telephone, which used the electrical signals, 
and radio, which used electromagnetic waves. The objects being manipu- 
lated remain physically existing quantities, although they became less and 
less tangible. 

The final stage (so far) in humankind’s development entailed learning 
to process information. Unlike material objects and signals, information is 
entirely abstract and cannot really be said to exist in the physical world. 
Information is like ideas, and while it can be quantified it is not held back 
by physical limitations. The seeds of information-processing were sown with 
the invention of writing and arithmetic, philosophy and algebra, art and 
logic, but were brought to full fruition with the invention of the digital 
computer. The computer can transcend nature by predicting physical phe- 
nomena before they occur, simulating worlds that cannot exist, and creating 
new information where none was before. 

The marriage of the last two developments in mankind’s history, i.e., uti- 
lizing digital computation for the purpose of processing of signals in the real 
world, is the objective of DSP. While perhaps not a major milestone in the 
history of humankind, DSP is a significant enough endeavor to warrant study 
by all interested in manipulating their world using information-processing 
techniques. 

EXERCISES 

1.1 .l Does Digital Signal Processing mean ‘the processing of digital signals’ or ‘the 
digital processing of signals’ ? 

1.1.2 What possible relationships might there be between DSP and the following 
computer science fields? 

1. Numerical Analysis 
2. Compiler Design 
3. Operating Systems 
4. Database Programming 
5. Artificial Intelligence 

1.1.3 Listen to an extremely weak station on an AM radio. Can you understand 
what is being said? Would you be able to understand were the language 
spoken to be one in which you are not completely proficient? What happens 
if there are interference and whistles? Other radio stations? Does the same 
happen with an FM radio station ? Repeat the above experiment with a 
shortwave radio. Find stations using SSB modulation. What happens if you 
do not tune the signal in properly? Sit in a cocktail party where many groups 
of people are talking. Focus on one conversation after another. How well can 
you separate out voices? What have you learned from this exercise? 
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1.2 Some Applications of Signal Processing 

So what exactly is signal processing and why do we want to do it? Sig- 
nal processing is the discipline of detecting, manipulating, and extracting 
information from physical quantities that vary in time (signals). 

The only way to really understand what we mean by this definition is to 
consider examples of signal processing applications. 

Voice communications, processing, and store-and-forward. The 
main means of communications between humans is speech. One human 
broadcasts information as an acoustic signal that can be detected by other 
humans. When the persons desiring to converse are not colocated, we must 
provide a mechanism to transfer the signal from place to place. When they 
are not available simultaneously, we need to record this acoustic signal for 
later playback. Digital forwarding and recording of speech have certain ad- 
vantages, as we shall discuss later. In order to use digital transfer and stor- 
age we require a method for making a digital representation of the acoustic 
signal, as well as algorithms for Automatic Gain Control (AGC), Voice 
Activity Detection (VAD), and perhaps compressing the digital represen- 
tation in order to preserve disk space or communications bandwidth. Ad- 
ditional processing entails enhancing the quality of speech in noise, and 
acceleration/deceleration of the playback speed without distortion. More 
complex processing algorithms are required for separation of one voice from 
others (cocktail-party effect), machine-synthesized speech (text to speech), 
speech recognition and speaker identification. 

Music synthesis, recording, and playback. Much of what we said 
about speech holds for ‘wider bandwidth’ acoustic signals, such as music. 
Here the emphasis is on high-quality transfer (e.g., broadcast), compres- 
sion (e.g., MPEG files), storage (e.g., compact disks), and noise reduction, 
(for example, restoration of old recordings). However, there are also pro- 
cesses specific to music such as accurate recreation of the original sound in 
different acoustic environments (equalization), digital simulation of musi- 
cal instruments (synthesizers, keyboard organs, MIDI), and special effects 
(mixing, echo, reverberation). 

Data communications on voice-grade channels. Another exten- 
sion of voice processing is the adding of data bearing signals to channels 
originally designed for voice use. Touch-tone dialing (technically known as 
DTMF) has become almost universal for dialing and for menu selection. 
Facsimile machines that transmit documents over public telephone circuitry 
have also become commonplace, and high speed modems enable computers 
to interconnect over this medium. It is also useful to convert the audio itself 
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to digital form, for example, to enable several conversations to share one 
telephone line, or for the purposes of secure communications (encryption). 

Automobile Industry. A conventional muffler reduces noise by passing 
exhaust gases through a series of baffles that reduce their velocity. Unfortu- 
nately this same process requires the engine to waste energy forcing these 
gases through the muffler, energy that would otherwise have been used to 
increase horsepower and fuel efficiency. The electronic muffler uses active 
noise cancellation instead; the noise is sensed by a microphone, and iden- 
tical noise is added 180’ out of phase. This same technique can be utilized 
to add out-of-phase vibration to the mounts of the engine on the chassis. 
Acoustic DSP can also be used to diagnose and control engine faults. 

Industrial Applications. The measurement of vibrational modes and 
the discovery of their underlying causes and mechanical structural problems 
they may indicate is a well-known industrial application of signal processing. 
Chemical process control relies heavily on instrumentation that employs ad- 
vanced signal processing. Robots on assembly lines receive signals from sen- 
sors and adaptively act upon them by moving their mechanical appendages. 
Other applications include the diagnosis of electric motor faults from current 
signatures, the rapid and precise measurement of fluid flow, the control of 
welding and smelting apparatus, and pump wear monitoring. 

Biomedical engineering. The human brain is a massively parallel com- 
puter containing about lOlo processing units called neurons. These neurons 
fire electric impulses that are not externally observable, but by placing elec- 
trodes at various positions on the scalp, voltages that represent sums of many 
neurons are detectable. These recordings are known as electroencephalo- 
grams (EEG) and after proper processing they can be used for diagnosis of 
sleep disorders, epilepsy, and brain disease. The electric activity of the heart 
can also be monitored, using the electrocardiogram (ECG). Processing this 
signal aids the physician in diagnosing heart problems. Monitoring during 
labor involves continual display of fetal heart rate as well as uterine muscular 
activity. These signals require removal of hum introduced from the electric 
power source and extensive real-time preprocessing. 

Radar and sonar processing. The purpose of radar and sonar is to 
locate bodies in space and optionally to determine their speeds. Well-known 
radar applications include air traffic control, aircraft radar, smart-missiles, 
weather satellite radar, and police speed traps. The distance determination 
relies on the sensitive detection and accurate timing of return signals; elec- 
tromagnetic signals for radar and acoustic signals in water for sonar. This 
processing relies on matched filtering and high resolution spectral analysis. 
Doppler radar speed measurement requires precise frequency measurement. 
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Radar signals usually have very high bandwidths, and consequently require 
very fast processing rates. Sonar bandwidths are much lower than those 
of radar, but the processing power required is high due to the interference 
being stronger, and the return signals being weaker and more distorted. 
Multipath reception complicates the location effort and often arrays of sen- 
sors are employed and beamforming used. Electronic intelligence (ELINT) 
and electronic warfare (EW) exploit interception of radar signals in order to 
detect/identify and to deceive/defeat the radar system, respectively. 

Seismology. Seismic signal analysis is used by the oil and gas industries 
in the exploration of subsurface hydrocarbon reserves; by government agen- 
cies for nuclear detonation detection; and by long-term planning authorities 
for investigation of subsurface geological formations and their significance 
to architecture and urban development. Signals passively collected during 
naturally occurring seismic events such as earthquakes and volcanic erup- 
tions may aid in their detection, epicenter location, and prediction. During 
active exploration such seismic disturbances must be initiated, for example, 
by setting off high-energy charges (although environmental considerations 
may mandate the use of lower energy sources such as acoustic speakers). The 
seismic waves are scattered by interfaces between different geological strata, 
and collected at the earth’s surface by an array of seismometers. Thus multi- 
ple seismic signals must be digitized and processed to lead to source location 
or mapping of the geological strata. 

EXERCISES 

1.2.1 

1.2.2 

What other areas utilize signal processing? List several applications not on 
the above list. Research at a library or search the Internet. 

What areas may potentially benefit from signal processing, 
using it? Write up a detailed description and submit to the 

but are not Yet 
patent office. 

1.2.3 Consider a mobile robot able only to avoid obstacles, and to locate an electric 
outlet when its batteries are low. What technologies would be needed to 
implement such a robot? Where is DSP needed? Now give the robot the 
ability to receive verbal commands, to retrieve objects, and to keep its owner 
informed. What DSP is needed now? 

1.2.4 Dual Tone Multi Frequency (DTMF) tones consists of two frequencies. The 
same is true for dial tone and ring-back tone. What simple tunes can you play 
recognizably using DTMF? Who answers the phone when you do? Why are 
two different frequencies used-wouldn’t it be easier to use only one? (Hint: 
Take the expense of incorrectly routed calls into account.) 
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1.2.5 Using a computer with multimedia capabilities, record some naturally spoken 
speech and observe its waveform graphically. Does this picture contain all the 
information we can obtain from listening to the speech? You can easily find 
long silences and tell the difference between whispering and screaming. Try to 
tell where the words begin and end. Can you differentiate between male and 
female voices? Can you guess what is being said? Assuming you answered in 
the affirmative to the first question, where exactly is the information? 

1.2.6 You are given the job of saving the several megabytes of information from 
an old computer, about to be discarded. The computer has no serial output 
ports or modem, but does have an analog output that can produce 256 dif- 
ferent voltage levels. What is the simplest encoding method for outputting 
information? How can you decode and store the information (you can use 
any readily available computer or peripheral)? How fast can you go? Do you 
think it can be decoded this fast? What are the real limitations? What hap- 
pens if background noise is recorded along with the signal? This is the basic 
idea behind the download path of the so-called PCM modem that achieves 
56 Kb/s over telephone lines. 

1.2.7 Same problem but this time the computer has an internal speaker and can 
generate tones of different frequencies (all of the same amplitude). You may 
decide to convert the data to be saved, byte by byte, into one of 256 tones, and 
to record the tones onto an audio cassette. Design a transmitter (modulator) 
for this case (try writing a program). What do you need to decode this 
information (demodulator)? How fast can you go? Perhaps you decide to 
convert the data to be saved, bit by bit, into one of only two tones. What 
do the modulator and demodulator look like now? This is the FSK modem, 
capable of 300 b/s on phone lines. 

1.3 Analog Signal Processing 

Signal processing is the discipline of detecting, manipulating and extracting 
information from physical quantities that vary in time. Now that we have 
seen why we want to do it, we can begin to discuss how to do it. DSP 
processes signals digitally, that is, by programming, rather than by building 
analog electronic circuits. However, before we jump into digital processing, 
a brief discussion of analog processing is in order. 

It is clear that signals can be processed using analog circuits such as 
amplifiers and filters. These devices take analog signals as inputs and re- 
turn analog signals as outputs. Electronic engineers know how to design 
these circuits to obtain specific processing characteristics (obtaining certain 
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voltage levels, amplifying certain frequency ranges while eliminating others, 
etc.). Quite complex systems can be designed, for example, receivers that 
are sensitive only to very specific waveforms. In-depth explanation of the 
techniques that have been developed in this field is beyond the scope of our 
book, and for our purposes it is sufficient to analyze a simple example. 

Assume that wish to input a sine wave of arbitrary frequency, offset and 
amplitude (within bounds of course) and output a train of narrow pulses of 
equal frequency. One can observe the input and desired output as ‘X’ and 
‘Y’ in Figure 1.2. Why would one want to perform this operation? There 
may be a number of reasons. For example, one may want to measure the 
frequency of the sine wave using a digital counter that increments upon 
receiving a narrow pulse. Or one may need the pulse as a synchronization 
signal for some process that should be locked in time with the sine wave. 
could 
some 

be that we need 
other instrument 

to generate a pulse for triggering an oscilloscope 
It 
or 

\ 

DELAY 
l 

Figure 1.1: Diagram of an analog sine to pulse converter. 

One way of producing the desired effect is depicted in Figure 1.1, with 
the input, intermediate signals, and output drawn in Figure 1.2. The first 
step is to pass the signal (waveform X) through a capacitor that acts as a 
DC blocker. This ensures that the signal values are centered around zero 
voltage (waveform A). Next we put the signal through a hard limiter. This is 
an amplifier driven to its maximum amplification, so that its output will be 
+v max for any positive input, and -Vmax for any negative input (waveform 
B). Next we split the signal so that it traverses two paths, one slightly de- 
layed with respect to the other (this delay determines the width of the pulse 
to be obtained). The delayed signal is now subtracted from the nondelayed 
version, producing an output that is almost always zero (waveform C). The 
subtraction is performed, once again, using an amplifier, this time a difer- 
ential amplifier that has noninverting and inverting inputs. The amplifier’s 
output is nonzero and positive at the leading edge of the square wave (since 
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Figure 1.2: Analog signals from the sine to pulse converter. 

there we have +I(,,, - -V,,,) and nonzero and negative one half-cycle 
later. This latter artifact is eliminated by the use of a half-wave rectifier, 
a component that only passes positive voltages, suppressing negative ones. 
The final result (waveform Y) is a narrow positive pulse locked to the leading 
edge of the original sine, as required. 

EXERCISES 

1.3.1 The above example assumes the existence of a delay element, which may be 
quite difficult to implement. For high-frequency signals, a long piece of cable 
may be used, relying on the finite speed of propagation of the signal through 
the cable to introduce the time delay. For low frequencies, even extremely 
long lengths of cable introduce delays that are insignificant fractions of the 
period. Assume you have an analog differentiator, a device whose output is 
the derivative of its input. How would you use it in our sine to pulse converter? 
What would the output pulse look like? 

1.3.2 The device we described above is basically a zero crossing detector, a device 
that determines when the signal goes through zero voltage. We can avoid the 
need for a rectifier if we employ a peak picker, which outputs pulses at the 
maxima of the input signal. How can a peak picker be implemented given a 
differential amplifier and a reference voltage source? 

1.3.3 How can an integrator (a device whose output is the integral of its input) be 
used to solve our problem? 
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1.3.4 Assume you have a digital representation of the input; that is, a sequence of 
voltage measurements uniformly spaced in time. Write software routines for 
the zero crossing detector and the peak picker, assuming that the sine wave 
is sampled very densely (many equally-spaced samples per cycle). Will your 
routines work if the sampling rate is much lower, for example, eight samples 
per cycle? Four samples per cycle? 

1.4 Digital Signal Processing 

In the previous section we saw an example of how signals can be processed 
using analog circuits. How can we similarly process analog signals digitally? 
A very general scheme is depicted in Figure 1.3. 

antialiasing 

A/D = DSP Processor = WA = 
reconstruction 

- filter - filter ’ r 

Figure 1.3: Generic DSP scenario. 

The purpose of the filters will only become clear later on (see Sec- 
tion 2.10). The blocks marked A/D and D/A represent devices that convert 
Analog signals into Digital ones, and vice versa. These devices allow us to 
translate signals in the physical world into sequences of numbers that com- 
puters can accept as input and process, and to convert sequences of numbers 
output by computers back into physical signals. 

The heart of the system is the digital signal processor, which we shall 
usually just call the DSP. (This double use of the acronym DSP should not 
be confusing, with the differentiation between the processor and process- 
ing being easily understood from context.) You may think of the DSP as 
basically a computer that performs the needed computation. It may be a 
general-purpose computer, such as a desktop workstation, readily available 
and easily programmed. Or it may be special purpose digital hardware de- 
signed specifically for the task at hand. Intermediate between these extremes 
is a general-purpose programmable digital signal processor. These DSP chips 
are similar to microprocessors, with arithmetic capabilities, memory access, 
input and output ports, etc. However, as we shall discuss in Chapter 17, 
they are augmented with special commands and architecture extensions in 
order to make them particularly efficient for computations of the type most 
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prevalent in DSP applications. While programming DSPs in high-level lan- 
guages is becoming popular, their special architectures can be best exploited 
by low-level (assembly) programming. 

At this point you are probably asking yourself whether DSP is truly 
superior to analog signal processing. Why should we replace a handful of 
electronic components with two filters, an A/D and a D/A, and an expensive 
and hard-to-program DSP? The main reasons to favor digital techniques over 
analog ones, are: 

0 greater functionality, 

l accuracy and reproducibility, 

l modularity and flexibility, 

l increased price/performance, and 

l reduced time-to-market. 

The greater functionality derives from the possibility of implementing 
processes that would be extremely difficult and/or expensive to build in 
analog circuitry. In particular, arbitrary time delays, noncausal response, 
linear-phase (see Chapter 6), and adaptivity (see Chapter 10) are simple to 
implement in DSP, while practically impossible in analog. 

Accuracy and reproducibility are characteristics of digital numbers in 
contrast to analog voltages. Precision is a function of the number of bits used 
in computation, and digital numbers can be protected against inaccuracy 
by error-correcting codes. A copy of a copy of a copy of a digital recording 
is identical to the original, with no added noise and no ‘drift’ caused by 
temperature or aging. 

The modularity and flexibility are byproducts of programmability; DSP 
code can readily be reused and modified. DSP code, like all software, can 
be made generic and placed into libraries with little sacrifice. Last minute 
changes are a hardware engineer’s worst nightmare, while field debugging is 
commonplace in the software arena. 

In recent years significant advances have been achieved in digital tech- 
nology, including the development of smaller, faster, more power efficient 
and less expensive digital processors. For these reasons digital technology 
is finding its way into almost every facet of our lives. Once the process can 
be performed digitally, it usually takes only a very short time until it is 
profitable to do so. 
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There are, admittedly, a few drawbacks associated with the use of DSP. 
The most notable of these are: 

l limited speed of general-purpose DSPs, 

l finite word-length problems, compounding of round-off errors, and ‘sta- 
bility ’ , as well as 

l the need for specialized algorithms and programming. 

As a result of the first problem many applications, for example, those dealing 
with real-time processing of high bandwidth signals, cannot yet be handled 
digitally. The second shortcoming is more a hindrance than a true impedi- 
ment, compelling us to analyze our numeric algorithms more cautiously. The 
third drawback is actually a favorable opportunity for students of DSP. It 
ensures a steady demand for competent DSP personnel for many years to 
come. 

EXERCISES 

1.4.1 

1.4.2 

1.4.3 

1.4.4 

1.4.5 

1.4.6 

‘Some DSP practitioners rarely deal with DSP theory at all, rather are 
experts at programming DSPs for control and general algorithmic applica- 
tions, rather than as a DSP.’ The acronym DSP appears four times in this 
sentence. Explain which of the various meanings (processing, block diagram 
function, programmable processor) best matches each. 

Figure 1.3 depicts a situation with exactly one input signal and one output 
signal. Describe an application with no inputs and one analog output. Two 
analog inputs and one output. One input and two outputs. Can there be 
useful applications with no outputs? 

An amplifier increases the magnitude of a signal, while an attenuator de- 
creases the magnitude. An inverter inverts the polarity of a signal, while 
a clipper limits the magnitude of a signal. A DC blocker shifts the average 
to zero. What mathematical functions are performed by these components? 
Code a routine for each. 

What differences do you expect to find between DSPs and conventional 
CPUS? 

Are there functions that can be performed in analog electronics, but cannot 
be performed in DSP? 

Compare digital Compact Disc (CD) technology with the older Long Playing 
(LP) records. Explain why CD technology has totally replaced LPs by con- 
sidering sound quality, playing duration, noise, stereo separation, the effect 
of aging: media, and the ability to make copies. 
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Signal Analysis 
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Signals 

We are now ready to commence our study of signals and signal processing 
systems, the former to be treated in Part I of this book and the latter in Part 
II. Part III extends the knowledge thus gained by presentation of specific 
algorithms and computational architectures, and Part IV applies all we will 
have learned to communications and speech signal processing. 

At times one wants to emphasize signals as basic entities, and to consider 
systems as devices to manipulate them or to measure their parameters. The 
resulting discipline may then be called signal analysis. At other times it is 
more natural to consider systems as the more fundamental ingredients, with 
signals merely inputs and outputs to such systems. The consequence of this 
viewpoint is called signal processing. This term is also most commonly used 
when it is not clear which aspect one wishes to stress. 

In this chapter we introduce the concept of a signal. We will see that 
there are analog signals and digital signals, and that under certain conditions 
we can convert one type into the other. We will learn that signals can be 
described in terms of either their time or frequency characteristics, and that 
here too there are ways to transform one description into the other. We 
present some of the simplest signals, and discover that arbitrary signals can 
be represented in terms of simple ones. On the way we learn how to perform 
arithmetic on signals, and about the connection between signals and vectors. 

2.1 Signal Defined 

The first question we must ask when approaching the subject of signal anal- 
ysis is ‘What exactly do we mean by signal?’ The reader may understand 
intuitively that a signal is some function of time that is derived from the 
physical world. However, in scientific and technological disciplines it is cus- 
tomary to provide formal mathematical definitions for the main concepts, 
and it would be foolish to oppose this tradition. In order to answer the ques- 
tion satisfactorily, we must differentiate between analog and digital signals. 

15 
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Definition: signal 
An analog signal s is a finite real-valued function s(t) of a continuous variable 
t (called time), defined for all times on the interval -oo < t < +oo. A digital 
signal s is a bounded discrete-valued sequence sn with a single index n (called 
discrete time), defined for all times n = -oo . . . + 00. n 

The requirement that analog signals be real-valued, rather than integer or 
complex, has its origin in the notion that real-world signals, such as speeds, 
voltages, and acoustic pressures, are simple continuous variables. Complex 
numbers are usually considered purely mathematical inventions that can 
never appear in nature. Digital signals are constrained more by the require- 
ment of representability in a digital computer than by physical realizability. 
What we mean here by ‘discrete’ is that the possible values are quantized to 
discrete values, such as integers or all multiples of 2-b. ‘Bounded’ means that 
there are only a finite number of possible signal values. Bounded discrete 
values are exactly the kinds of numbers represented by computer words with 
some finite number of bits. 

Finiteness is another physical requirement, and comes in three vari- 
eties, namely finite signal value, finite energy, and finite bandwidth. Finite- 
valuedness simply means that the function desiring to be a signal must never 
diverge or become mathematically singular. We are quite confident that true 
physical quantities never become infinite since such behavior would require 
infinite energy or force or expense of one type or another. Digital signals are 
necessarily bounded in order to be representable, and so are always finite 
valued. The range over which a signal varies is called its dynamic range. 
Finite energy and finite bandwidth constraints are similarly grounded, but 
the concepts of energy and bandwidth require a little more explanation for 
the uninitiated. 

Energy is a measure of the sixe of a signal, invented to enable the analyst 
to compare the infinitely many possible signals. One way to define such a 
measure might be to use the highest value the signal attains (and thus finite 
energy would imply finite signal value). This would be unsatisfactory because 
a generally small signal that attains a high value at one isolated point in time 
would be regarded as larger than a second signal that is almost always higher 
than the first. We would certainly prefer a measure that takes all times into 
account. Were signals to have only positive values we could possibly use the 
average signal value, but since they are not the average is ineffectual as many 
seemingly large signals (e.g., Asin with large A) have zero average due 
to positive and negative contributions cancelling. The simplest satisfactory 
measure is given by the following definition. 
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Definition: energy 
The energy of an analog or digital signal s is defined to be 

E, = 
s 

O” 2 s (t)dt A D E, = 5 s; (24 --oo 7X=--00 

the sum (or integral for the analog case) of the signal’s values squared. 

This measure is analogous to the squared length of multidimensional 
vectors, and is proportional to the physical quantity known as energy when 
the signal is a velocity, voltage, or current. The energy we have just defined 
is also directly related to the expense involved in producing the signal; this 
being the basis for the physical requirement of finite energy. The square root 
of the energy defines a kind of average signal value, called the Root Mean 
Squared (RMS) value. 

Bandwidth is a measure not of size but of speed, the full discussion of 
which we must postpone until after the notion of spectrum has been properly 
introduced. A signal that fluctuates rapidly has higher bandwidth than one 
that only varies slowly. Requiring finite bandwidth imposes a smoothness 
constraint, disallowing sudden jump discontinuities and sharp corners. Once 
again such functions violate what we believe nature considers good taste. 
Physical bodies do not disappear from one place and appear in another 
without traveling through all points in between. A vehicle’s velocity does 
not go from zero to some large value without smoothly accelerating through 
intermediate speeds. Even seemingly instantaneous ricochets are not truly 
discontinuous; filming such an event with a high-speed camera would reveal 
intermediate speeds and directions. 

Finally, the provision for all times really means for all times of interest, 
and is imposed in order to disallow various pathological cases. Certainly a 
body no longer has a velocity once destroyed, and a voltage is meaningless 
once the experimental apparatus is taken apart and stored. However, we 
want the experimental values to settle down before we start observing, and 
wish our phenomena to exist for a reasonable amount of time after we stop 
tending to them. 

Now that we fully understand the definition of signal, we perceive that 
it is quite precise, and seemingly inoffensive. It gives us clear-cut criteria 
for determining which functions or sequences are signals and which are not, 
all such criteria being simple physical requirements that we would not wish 
to forgo. Alas this definition is more honored in the breach than the obser- 
vance. We shall often relax its injunctions in the interests of mathematical 
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simplicity, and we permit ourselves to transgress its decrees knowing full 
well that the ‘signals’ we employ could never really exist. 

For example, although the definition requires signals to be real-valued 
functions, we often use complex values in order to simplify the algebra. 
What we really mean is that the ‘real’ signal is the real part of this complex 
signal. This use of an ‘imaginary’ complex signal doesn’t overly bother us 
for we know that we could reach the same conclusions using real values, but 
it would take us longer and we would be more apt to make mistakes. We 
even allow entities that aren’t actually functions at all, when it saves us a 
few lines of proof text or program code! 

Our definition relies on the existence of a time variable. At times the 
above definition is extended to functions of other time-like independent 
variables, and even to functions of more than one variable. In particular, 
image processing, that deals with functions of two spatial coordinates, in- 
vokes many signal processing concepts. However, in most of this book we 
will not consider image processing to be part of signal processing. Although 
certain basic ideas, notably filtering and spectral analysis, are common to 
both image and signal processing, the truly strong techniques of each are 
actually quite different. 

We tend to scoff at the requirement for finite-valuedness and smooth- 
ness, routinely utilizing such nonphysical constructs as tangents and square 
waves, that possess an infinite number of discontinuities! Once again the 
reader should understand that real-world signals can only approximate such 
behavior, and that such refractory functions are introduced as mathematical 
scaffolding. 

Of course signals are defined over an infinite range of times, and conse- 
quently for a signal’s energy to be finite the signal must be zero over most 
times, or at least decay to zero sufficiently rapidly. Strictly requiring finite 
energy would rule out such useful signals as constants and periodic functions. 
Accordingly this requirement too is usually relaxed, with the understanding 
that outside the interval of time we observe the signal, it may well be set to 
zero. Alternatively, we may allow signals to be nonzero over infinite times, 
but to have finite power. Power is the energy per time 

P,(T) = $imO + JTL’ s2(t) dt 
1 
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which is time-dependent in general. 
Hence although the definition we gave for signal is of good intent, its 

dictates go unheeded; there is scarcely a single clause in the definition that 
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we shan’t violate at some time or other. In practice entities are more often 
considered signals because of the utility in so doing, rather than based on 
their obeying the requirements of this definition (or any other). 

In addition to all its possibly ignorable requirements, our definition also 
leaves something out. It is quiet about any possible connection between ana- 
log and digital signals. It turns out that a digital signal can be obtained from 
an analog signal by Analog to Digital conversion (the ‘A/D’ of Figure 1.3) 
also known as sampling and digitizing. When the sampling is properly car- 
ried out, the digital signal is somehow equivalent to the analog one. An 
analog signal can be obtained from a digital signal by Digital to Analog 
conversion (the ‘D/A’ block), that surprisingly suffers from a dearth of al- 
ternative names. Similar remarks can be made about equivalence. A/D and 
D/A conversion will be considered more fully in Section 2.7. 

EXERCISES 

2.1.1 Which of the following are signals? Explain which requirement of the def- 
inition is possibly violated and why it is acceptable or unacceptable to do 
so. 

1. the height of Mount Everest 

2. (eit + ewi”> 

3. the price of a slice of pizza 

4. the ‘sin? function F 

5. Euler’s totient function 4(n), the number of positive integers less than 
n having no proper divisors in common with n 

6. the water level in a toilet’s holding tank 

7. [tJ the greatest integer not exceeding t 

8. the position of the tip of a mosquito’s wing 

9. fi 

10. the Dow Jones Industrial Average 

11. sin($) 

12. the size of water drops from a leaky faucet 

13. the sequence of values zn in the interval [0 . . . l] defined by the logistics 
recursion zn+l = Xx, (1 - xn) for 0 5 X 5 4 

2.1.2 What is the power of s(t) = Asin( The RMS value? 

2.1.3 A signal’s peak factor is defined to be the ratio between its highest value and 
its RMS value. What is the peak factor for s(t) = Asin( The sum of N 
sinusoids of different frequencies? 
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2.1.4 Define a size measure M for signals diRerent from the energy (or RMS value). 
This measure should have the following properties. 

l The zero signal must have zero measure MO = 0, and no other signal 
should have zero measure. 

l If signal y is identical to signal x shifted in time then M3, = M,. 
0 If yn = CYX~ for all times, then Mg > Mz if cy > 1 and My < M, if 

cy < 1. 

l If yn > x,., almost all of the time, then My > M,. 

What advantages and disadvantages does your measure have in comparison 
with the energy? 

2.2 The Simplest Signals 

Let us now present a few signals, ones that will be useful throughout our 
studies. The simplest signal is the unit constunt, that is, s(t) = 1 in analog 

time or sn = 1 in digital time. 

s(t) = 1 A D sn = 1 (2 3) . 

Although this is the simplest signal we can imagine, it has infinite energy, 
and therefore violates one of the finiteness constraints. Hence technically it 
isn’t really a signal at all! Arbitrary constant signals can be obtained by 
multiplying the unit constant signal by appropriate values. The constant 
signal, depicted in Figure 2.1, although admittedly trivial, can still be use- 
ful. We will often call it Direct Current (DC), one of the many electronics 

--i- I-- 
Figure 2.1: The constant signal. In (A) we depict the analog constant and in (B) the 
digital constant. 
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Figure 2.2: The unit step signal. In (A) we depict the analog step u(t) and in (B) the 
digital step un. 

terms imported into signal processing. The gist is that a battery’s voltage 
is constant, w(t) = VO, and consequently induces a current that always flows 
in one direction. In contrast the voltage from a wall outlet is sinusoidal, 
w(t) = VO sin(&), and induces an Alternating Current (AC). 

We cannot learn much more from this signal, which although technically 
a ‘function of time’ in reality is not time dependent at all. Arguably the 
simplest time-dependent signal is the unit step, which changes value at only 
one point in time (see Figure 2.2). Mathematically, the analog and digital 
unit step signals are: 

A D y E;: (2.4) 
- 

respectively. In some of the literature the step function is called Heaviside’s 
step function. Once again the finite energy requirement is unheeded, and 
in the analog version we have a jump discontinuity as well. Here we have 
set our clocks by this discontinuity, that is, we arranged for the change to 
occur at time zero. It is a simple matter to translate the transition to any 
other time; u(t - T) has its discontinuity at t = T and U,-N has its step 
at n = N. It is also not difficult to make step functions of different sizes 
Au(t) and Au,, and even with any two levels Au(t) + B and Au, + B. The 
unit step is often used to model phenomena that are ‘switched on’ at some 
specific time. 

By subtracting a digital unit step shifted one to the right from the un- 
shifted digital unit step we obtain the digital unit impulse. This signal, 
depicted in Figure 2.3.B, is zero everywhere except at time zero, where it 
is unity. This is our first true signal, conforming to all the requirements of 
our definition. In Chapter 6 we will see that the unit impulse is an invalu- 
able tool in the study of systems. Rather than invent a new mathematical 
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Figure 2.3: The unit impulse. In (A) we depict an analog impulse of unity width. In (B) 
the digital unit impulse 6,,0. 

symbol for this signal, we utilize one known as the Kronecker delta 6n,m. 
This doubly indexed entity is defined to be one, if and only if its indices are 
equal; otherwise it is zero. In terms of the Kronecker delta, the digital unit 
impulse is sn = &a. 

The full Kronecker delta corresponds to a Shifted Unit Impulse (SUI) 

Sn = 6 n,rn (2 5) . 

that is zero for all times except for time n = m, when it equals one. The 
importance of the set of all SUIs will become clear in Section 2.5. 

One might similarly define an analog unit impulse by subtracting analog 
unit steps, obtaining the Figure 2.3.A. This analog signal flagrantly displays 
two jump discontinuities, but by now that should not make us feel uncom- 
fortable. However, this is not the signal usually referred to as the analog unit 
impulse. There is no profound meaning to the width of this signal, since in 
the analog world the meaning of a unit time interval depends on the time 
units! What is meaningful is the energy of the impulse, which is its ampli- 
tude squared times its width. There are good reasons to expect that once 
the width is small enough (i.e., small compared to all significant times in 
the problem) all impulses with the same energy will have basically the same 
effect on systems. Accordingly, when one speaks of a ‘unit impulse’ in the 
analog domain, conventionally this alludes to a ‘unit energy’ impulse. Of 
course the unit width impulse in Figure 2.3 is a unit impulse in this sense; 
but so are all the others in Figure 2.4. 

The unit energy impulses in the figure are given by: 

I(t) = 
{ 

0 (tl>T 

& Itl < T 
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Figure 2.4: Analog unit energy impulses. Since all of these signals have the same energy, 
the height increases as the width decreases. The vertical arrow is a symbolic way of 
designating Dirac’s delta function. 

where T is the width. In the limit T + 0 we obtain a mathematical entity 
called Dirac’s delta function s(t), first used by P.A.M. Dirac in his mathe- 
matical description of quantum physics. The name delta is purposely utilized 
to emphasize that this is the ‘analog analog’ of Kronecker’s delta. The word 
function is a misnomer, since Dirac’s delta is not a true function at all. 
Indeed, Dirac’s delta is defined by the two properties: 

l 6(t) is zero everywhere except at the origin t = 0 

l the integral of the delta function is unity Jr&, G(t)& = 1 

and clearly there can be no such function! However, Dirac’s delta is such an 
extremely useful abstraction, and since its use can be justified mathemati- 
cally, we shall accept it without further question. Indeed, Dirac’s delta is so 
useful, that when one refers without further qualification to the analog unit 
impulse, one normally means b(t). 

s(t) = 6(t) A D sn = 6,,. (2 6) . 

The next signal we wish to discuss is the square wave 0 (t), depicted in 
Figure 2.5.A. It takes on only two values, 33, but switches back and forth 
between these values periodically. One mathematical definition of the analog 
square wave is 

q (t) = 
14 is even 

11 1tJ is odd (2 7) . 



24 SIGNALS 

Figure 2.5: Three periodic analog signals. In (A) we depict the square wave, in (B) the 
triangle wave and in (C) the sawtooth. 

where LtJ (pronounced ‘floor’ of t) is the greatest integer less than or equal 
to the real number t. We have already mentioned that this signal has an 
infinite number of jump discontinuities, and it has infinite energy as well! 
Once again we can stretch and offset this signal to obtain any two levels, 
and we can also change its period from unity to T by employing q (t/T). 
We can further generalize the square wave to a rectangular wave by having 
it spend more time in one state than the other. In this case the percentage 
of the time in the higher level is called the duty cycle, the standard square 
wave having a 50% duty cycle. For digital signals the minimal duty cycle 
signal that is not a constant has a single high sample and all the rest low. 
This is the periodic unit impulse 

(2 8) . 

where the period is P samples. 
Similarly we can define the analog triangle wave n(t) of Figure 2.5.B 

and the sawtooth 7(t) of Figure 2.5.C. Both, although continuous, have 
slope discontinuities. We leave the mathematical definitions of these, as well 
as the plotting of their digital versions, to the reader. These signals pop 
up again and again in applications. The square wave and its close brethren 
are useful for triggering comparators and counters, the triangle is utilized 
when constant slope is required, and the sawtooth is vital as the ‘time base’ 
of oscilloscopes and the ‘raster scan’ in television. Equipment known as 
‘function generators’ are used to generate these signals. 
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Figure 2.6: Sinusoidal signals. In (A) we depict the analog sinusoid with given amplitude, 
frequency and phase. In (B) the digital sinusoid is shown. 

Of course the most famous periodic signal is none of these, but the sine 
and cosine functions, either of which we call a sinusoid. 

s(t) = sin(2nft) A D sn = sin(27rfd n) (2 9) . 

The connection between the frequency f of an analog sinusoid and its period 
T can be made clear by recalling that the sine function completes a full cycle 
after 27r radians. Accordingly, the frequency is the reciprocal of the period 

f f 
=- 

and its units must be fu2l cycles per second, also known as Hertz or Hz. 
The period represents the number of seconds per cycle while the frequency 
in Hz describes the number of full cycles per second. Since discrete time n 
carries no units, the digital frequency fd will be essentially a pure number. 
The periodicity of digital sinusoids will be discussed later. 

In order to avoid factors of 2n we often rewrite equation 2.9 as follows. 

49 = sin(wt) A D sn = sin(w, n) (2.10) 

Since the argument of a trigonometric function must be in radians (or de- 
grees), the units of the angular frequency w = 2nf must be radians per 
second, and those of the digital angular frequency wd = 2n fd simply radians. 
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In many respects sin(t) is very similar to n(t) or n(t), but it possesses 
a major benefit, its smoothness. Sinusoids have neither jump nor slope dis- 
continuities, elegantly oscillating back and forth (see Figure 2.6.A). More 
general sinusoids can be obtained by appropriate mathematical manipula- 
tion 

A sin&t + 4) + B 

where A is called the amplitude, w the frequency, 6 the phase, and B the 
DC component. Sines of infinite time duration have infinite energy, but are 
otherwise eminent members of the signal community. Sinusoidal signals are 
used extensively in all facets of signal processing; communications are carried 
by them, music is modeled as combinations of them, mechanical vibrations 
are analyzed in terms of them, clocks are set by comparing to them, and so 
forth. 

Although the signals sin(wt) and cos(wt) look exactly the same when 
viewed separately, when several signals are involved the relative phases be- 
come critical. For example, adding the signal sin(wt) to another sin(wt) 
produces 2 sin(wt); adding sin(wt) to cos(wt) creates fisin(wt + 2); but 
adding sin(wt) to sin(wt + 7r) = - sin(wt) results in zero. We can conclude 
that when adding sinusoids 1 + 1 doesn’t necessarily equal 2; rather it can be 
anything between 0 and 2 depending on the phases. This addition operation 
is analogous to the addition of vectors in the plane, and many authors define 
phasors in order to reduce sinusoid summation to the more easily visualized 
vector addition. We will not need to do so, but instead caution the reader 
to take phase into account whenever more than one signal is present. 

Another basic mathematical function with a free parameter that is com- 
monly employed in signal processing is the exponential signal 

s(t) = eht A D sn = eAdn 

depicted in Figure 2.7 for negative A. For positive A and any finite time this 
function is finite, and so technically it is a well-behaved signal. In practice 
the function explodes violently for even moderately sized negative times, 
and unless somehow restricted does not correspond to anything we actually 
see in nature. Mathematically the exponent has unique qualities that make 
it ideal for studying signal processing systems. 

We shall now do something new; for the first time we will allow complex- 
valued functions. We do this by allowing the constant in the argument of the 
exponential to be a pure imaginary number A = iw, thus radically chang- 
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Figure 2.7: Exponentially decreasing signals. In (A) we depict the analog exponential, 
in (B) the digital. 

ing the character of the signal. Recalling the remarkable identity (equa- 
tion (A.7)) 

eicp = cos(cp) + isin 

we see that exponentials with imaginary coefficients are complex sinusoids. 

AeiWt = A cos(wt) + iA sin(&) 

When we deal with complex signals like s(t) = AeiWt, what we really mean 
is that the real-world signal is the real part 

s(t) = Rs(t) = A cos(wt) 

while the imaginary part is just that-imaginary. Since the imaginary part 
is 90” (one quarter of a cycle) out of phase with the real signal, it is called 
the quadrature component. Hence the complex signal is composed of in-phase 
(real) and quadrature (imaginary) components. 

At first it would seem that using complex signals makes things more 
complex but often the opposite is the case. To demonstrate this, consider 
what happens when we multiply two sinusoidal signals s1 (t) = sin(wl t) and 

$2 v> = sin(o2t). The resulting signal is 

s(t) = Sr (t)sg(t) = sin(&) cos(w2t) + cos(wr t) sin(w2t) 

which is somewhat bewildering. Were we to use complex signals, the product 
would be easy 

s(t) = sl(t)s2(t) = eiwlt$Qt = &(wl+w2)t 
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due to the symmetries of the exponential function. The apparent contradic- 
tion between these two results is taken up in the exercises. 

A further variation on the exponential is to allow the constant in the 
argument of the exponential to be a complex number with both real and 
imaginary parts A = X + iw. This results in 

@) = Ae@+i‘+ = AeXt cos(wt) + iAeXt sin(&) (2.11) 

corresponding to the real signal 

s(t) = AeXt cos(wt) (2.12) 

which combines the exponential with the sinusoid. For negative X, this is a 
damped sinusoid, while for positive X it is an exponentially growing one. 

Summarizing, we have seen the following archetypical simple signals: 

unit constant s(t) = 1 S -1 n- 
unit step s(t) = u(t) Sn = Un 

unit impulse s(t) = d(t) Sn = 6,,0 
square wave s(t) = q (C3t) Sn = q l(W,n) 
sinusoid s(t) = Asin(wt + 4) sn = A sin(wdn + 4) 
damped sinusoid s(t) = Aevxt sin(wt + 4) sn = Aa+ sin(wdn + 4) 
real exponential s(t) = AeXt Sn = Cy n 

complex sinusoid s(t) = Ae1(Wt+4) S n = Ae%W++> 

damped complex sinusoid s(t) = Ae(x+lw)t sn = Ae@+iwd>n 

EXERCISES 

2.2.1 Thomas Alva Edison didn’t believe that AC electricity was useful, since the 
current first went one way and then returned. It was Nikola Tesla who claimed 
that AC was actually better than DC. Why was Edison wrong (hint: energy) 
and Tesla right (hint: ‘transformers’)? 

2.2.2 In the text we depicted digital signals graphically by placing dots at signal 
values. We will usually use such dot gruphs, but other formats are prevalent 
as well. A comb gruph uses lines from the time axis to the signal point; a slint 
graph (straight line interpolation) simply connects successive signal values; 
comb-dot and slint-dot combinations are useful when the signal takes on zero 
values. These formats are depicted in Figure 2.8. Write general routines for 
plotting digital signals in these formats in whatever computer programming 
language you usually use. Depending on your programming language you 
may first have to prepare low-level primitives. Plot the digital sinusoidal 
signal sn = sin(w,n) for various frequencies CJ in all of these formats. Decide 
which you like the best. You may use this format from now on. 
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Figure 2.8: Different formats for graphical representation of digital signals. In (A) we 
depict a signal using our usual dot gruph. In (B) th e same signal is plotted as a comb graph. 
In (C) it is graphed as a Ant graph. (D) and (E) are comb-dot and slint-dot representations 
respectively. 

2.2.3 Give mathematical definitions for the analog triangle signal A(t) of Fig- 
ure 2.5.B and for the analog sawtooth saw(t) of Figure 2.5.C. 

2.2.4 What is the integral of the square wave signal? What is its derivative? 

2.2.5 Using your favorite graphic format 
and sawtooth, for various periods. 

plot the digital square wave, triangle wave 

2.2.6 Perform the following experiment (you will need an assistant). Darken the 
room and have your assistant turn on a pen-flashlight and draw large circles 
in the air. Observe the light from the side, so that you see a point of light 
moving up and down. Now have the assistant start walking while still drawing 
circles. Concentrate on the vertical and horizontal motion of the point of light, 
disregarding the depth sensation. You should see a sinusoidal signal. Prove 
this. What happens when you rotate your hand in the opposite direction? 
What can you infer regarding negative frequency sinusoids? 

2.2.7 Dirac’s delta function can be obtained as the limit of sequences of functions 
other than those depicted in Figure 2.4. For example, 

0 t<o 

asymmetric unit impulses ZT@) = & O<t<T 

0 t>T 

Gaussian functions Gu (4 

Sine functions $sinc,(t) 
sin(wt) =- 

7rt 

Lorentzian functions 

Graph these functions for decreasing T, E and increasing 0, w, graphically 
showing the appearance of the Dirac delta. What new features appear? Show 
that in the proper limit these functions approach zero for all nonzero times. 

2.2.8 The integral of the analog impulse d(t) is the unit step u(t), and conversely 
the derivative of u(t) is d(t). Explain these facts and depict graphically. 
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2.2.9 Explain the following representation of Dirac’s delta. 

d(t) = &I 
2.2.10 Show that 

J 
O” f(t)b(t - t’)dt = f(t’) 

-CO 

both graphically and by using basic calculus. From this result show that J(t) 
must be zero for all nonzero arguments. Compare the above relation with the 
Fourier identity 

WI =- 2’, J* du J" dtf(t)ei"(t-t') --oo -C-Xl 
and derive an integral representation for the Dirac delta. What meaning can 
be given to the derivative of the Dirac delta? 

2.2.11 Plot the analog complex exponential. You will need to simultaneously plot 
two sinusoids in such fashion that one is able to differentiate between them. 
Extend the routines you wrote in the previous exercise to handle the digital 
complex exponential. 

2.2.12 Explain why the real signal corresponding to the product of two complex 
exponentials is not the same as the product of the two real sinusoids. 

2.3 Characteristics of Signals 

Now that we have some experience with signals, let us discuss some general 
characteristic signals can have. Signals are characterized as being: 

l deterministic or stochastic 

l if deterministic: periodic or nonperiodic 

l if stochastic: stationary or nonstationary 

l of finite or infinite time duration 

l of finite bandwidth or of full spectrum 

Perhaps the most significant characteristic of a signal is whether it is de- 
terministic or stochastic. Deterministic signals are those that are generated 
by some nonprobabilistic algorithm. They are thus reproducible, predictable 



2.3. CHARACTERISTICS OF SIGNALS 31 

(at least over short time scales-but see Section 5.5) and well-behaved math- 
ematically. Stochastic signals are generated by systems that contain random- 
ness (see Section 5.6). At any particular time the signal is a random variable, 
(see Appendix A.13), which may have well defined average and variance, but 
is not completely defined in value. Any particular sequence of measurements 
of the signal’s values at various times captures a specific instantiation of the 
stochastic signal, but different sequence of measurements under the same 
conditions would retrieve somewhat different values. 

In practice we never see a purely deterministic signal, since even the 
purest of deterministic signals will inevitably become contaminated with 
noise. ‘Pure noise’ is the name we give to a quintessential stochastic signal, 
one that has only probabilistic elements and no deterministic ones. When a 
deterministic signal becomes contaminated with additive noise, as depicted 
in Figure 2.9, 

dt> = dt> + n(t) 

we can quantify its ‘noisiness’ by the Signal to Noise Ratio (SNR). The 
SNR is defined as the ratio of the signal energy to the noise energy, and is 
normally measured in dB. (equation (A.16)) 

J% SNR(dB) = 10loglo z;r = IO (log,a & - loglo En) (2.13) 

Figure 2.9: Deterministic signal (simple sine) with gradually increasing additive noise. 
In (A) the deterministic signal is much stronger than the noise, while in (D) the opposite 
is the case. 
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When measuring in, we usually talk about the signal as being above the 
noise by SNR(dB). 

Not all the signals we encounter are stochastic due solely to contami- 
nation by additive noise. Some signals, for example speech, are inherently 
stochastic. Were we to pronounce a single vowel for an extended period of 
time the acoustic signal would be roughly deterministic; but true speech is 
random because of its changing content. Speech is also stochastic for an- 
other reason. Unvoiced sounds such as s and f are made by constricting air 
passages at the teeth and lips and are close to being pure noise. The h sound 
starts as noise produced in the throat, but is subsequently filtered by the 
mouth cavity; it is therefore partially random and partially deterministic. 

Deterministic signals can be periodic, meaning that they exactly repeat 
themselves after a time known as the period. The falling exponential is not 
periodic, while the analog sine Asin(2rft), as we discussed above, is peri- 
odic with period T = $. The electric voltage supplied to our houses and the 
acoustic pressure waves from a flute are both nearly perfect sinusoids and 
hence periodic. The frequency of the AC supplied by the electric company 
is 60 Hz (sixty cycles per second) in the United States, and 50 Hz (fifty 
cycles per second) in Europe; the periods are thus 16; and 20 milliseconds 
respectively. The transverse flutes used in orchestral music can produce fre- 
quencies from middle C (524 Hz) to about three and a half octaves, or over 
ten times, higher! 

While the analog sinusoid is always periodic the digital counterpart is 
not. Consider an analog signal with a period of 2 seconds. If we create a 
digital sinusoid by ‘sampling’ it 10 times per second, the digital signal will 
be periodic with digital period 20. However, if we sample at 10.5 times per 
second, after 2 seconds we are a half-second out of phase; only after four 
seconds, (i.e., 21 samples) does the digital signal coincide with its previous 
values. Were we to sample at some other rate it would take even longer for 
the digital version to precisely duplicate itself; and if ratio of the period to 
the sampling interval is not rational this precise duplication will never occur. 

Stochastic signals may be stationary, which means that their probabilis- 
tic description does not change with time. This implies that all the signal’s 
statistics, such as the mean and variance, are constant. If a stochastic signal 
gets stronger or weaker or somehow noisier with time, it is not stationary. For 
example, speech is a stochastic signal that is highly nonstationary; indeed 
it is by changing the statistics that we convey information. However, over 
short enough time intervals, say 30 milliseconds, speech seems stationary 
because we can’t move our mouth and tongue this fast. 
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A signal, analog or digital, can be of infinite or finite time duration. We 
required that signals be defined for all times -oo < t < 00 or n = -m,=J, 
but not that they be nonzero for all times. Real physical signals are of finite 
energy, and hence are often zero for times much before or after their peak. 

In like fashion,.signals, analog or digital, can be of infinite or finite band- 
width. According to our original definition an analog signal should be finite 
bandwidth, but noise and signals with discontinuities are full spectrum. The 
interpretation of this concept for digital signals must be postponed until 
after clarification of the sampling theorem, in the Section 2.8. 

EXERCISES 

2.3.1 Look closely at the graphs of the digital sinusoid sn = sin(wn) that you 
prepared in exercise 2.2.2. When is the digital sinusoid periodic? Under what 
conditions is the period the same as that of the analog sinusoid? Verify the 
statement in the text regarding nonperiodic digital sinusoids. 

2.3.2 The purpose of this exercise is to examine the periodicity of the sum of two 
analog sines. For example, the sum of a sine of period 4 seconds and one of 
period 6 seconds is periodic with period 12 seconds. This is due to the first 
sine completing three full periods while the second competes two full periods 
in 12 seconds. Give an example of a sum that is not periodic. Give a general 
rule for the periodicity. What can be said about cases when the sum is not 
exactly periodic? 

2.3.3 Plot analog signals composed of the sum of two sinusoids with identical am- 
plitudes and frequencies jr and f2. Note that when the frequencies are close 
the resultant seems to have two periods, one short and one long. What are 
the frequencies corresponding to these periods? Prove your assertion using 
the trigonometric identities. 

2.4 Signal Arithmetic 

Some of the requirements in our definition of signal were constraints on signal 
values s(t) or sn, while some dealt with the signal as a whole. For example, 
finite valuedness is a constraint on every signal value separately, while finite 
energy and finite bandwidth requirements mix all the signal values together 
into one inequality. However, even the former type of requirement is most 
concisely viewed as a single requirement on the signal s, rather than an 
infinite number of requirements on the values. 
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This is one of the economies of notation that make it advantageous to 
define signals in the first place. This is similar to what is done when one de- 
fines complex numbers or n-dimensional vectors (n-vectors); in one concise 
equation one represents two or even n equations. With a similar motiva- 
tion of economy we define arithmetic operations on signals, thus enabling 
us to write single equations rather than a (possibly nondenumerable) infi- 
nite number! Hence in some ways signals are just like n-vectors of infinite 
dimension. 

First let us define the multiplication of a signal by a real number 

Y = ax Y = ax 
means AD means (2.14) 

y(t) = ax(t) Vt yn = ax, Vn 

that is, we individually multiply every signal value by the real number. 
It might seem overly trivial even to define this operation, but it really is 
important to do so. A signal is not merely a large collection of values, it is 
an entity in its own right. Think of a vector in three-dimensional space (a 
3-vector). Of course it is composed of three real numbers and accordingly 
doubling its size can be accomplished by multiplying each of these numbers 
by two; yet the effect is that of creating a new 3-vector whose direction is the 
same as the original vector but whose length is doubled. We can visualize 
this operation as stretching the 3-vector along its own direction, without 
thinking of the individual components. In a similar fashion amplification 
of the signal should be visualized as a transformation of the signal as a 
whole, even though we may accomplish this by multiplying each signal value 
separately. 

We already know that multiplication of a signal by a real number can 
represent an amplification or an attenuation. It can also perform an inversion 

Y = -X Y = -X 

means AD means (2.15) 

Y(t) = -x(t) vt Yn = -57-t h 

if we take the real number to be a = - 1 Here the minus sign is an ‘operator’, 
transforming a signal into another, related, signal. The inverted signal has 
the same energy and bandwidth as the original, and we shall see later on 
has the same power spectrum. Nevertheless, every time the original signal 
increases, the inverted one decreases; when the signal attains its maximum, 
the inverted signal attains its minimum. 

There is another way to make a signal of the same energy and power 
spectrum as the original, but somehow backwards. We can reverse a signal 
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using the operator Rev 

y=Revz y = Revz 
means AD means (2.16) 

Y(t) = x(-t) vt Yn =X-n Vn 

which makes it run backwards in time. If you whistle a constant note it will 
sound the same when reversed, but if you whistle with ascending pitch the 
reversed signal will have descending pitch. This operation has no counterpart 
for n-vectors. 

Frequently we will need to add two signals, 

z =x+y 2 =x+y 
means AD means (2.17) 

z(t) = x(t) + y(t) v’t zn = Xn +yn Vn 

one simply adds the values. This is the familiar addition of two n-vectors, 
and is the similar to the addition of complex numbers as well. Signal addition 
is commutative (x + y = y + x) and associative (x + (y + Z) = (x + y) + Z) 
and adding a signal to its inversion yields the zero signal. Hence signals, like 
real numbers, complex numbers, and n-vectors, obey all the normal rules of 
arithmetic. 

We will also need to multiply two signals, and you have probably already 
guessed that 

x = xy x=xy 
means AD means (2.18) 

z(t) = x(t) y(t) vt Xn=Xnyn Vn 

one simply multiplies value by value. Multiplication of a signal by a num- 
ber is consistent with this definition of multiplication-just think of the 
number as a constant signal. However, this multiplication is different from 
multiplication of 3-vectors or complex numbers. The usual ‘dot product’ 
multiplication of two 3-vectors yields a scalar and not a 3-vector. There is 
a cross or vector product kind of multiplication that yields a vector, but it 
doesn’t generalize to n-vectors and it isn’t even commutative. Multiplication 
of complex numbers yields a complex number, but there 

2 =xy does not mean !I?, = Rx %y and Sz = 9x Qy 

which is quite different from value by value multiplication of signals. 
Although value by value multiplication of signals can be very useful, 

for instance in ‘mixing’ of signals (see Section 8.5), there is another type 
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of multiplication, known as dot product, that is more important yet. This 
product is analogous to the usual scalar product of n-vectors, and it yields 
a real number that depends on the entire signal. 

r=x-y r =x:‘y 
means AD means (2.19) 

r = JZ& x(t)y(t)dt r = C~iLcoXnYn 

This is the proper definition for real signals; although it can be extended for 
complex signals. The energy of a signal is the dot product of the signal with 
itself, while the dot product of two different signals measures their similarity 
(see Chapter 9). Signals for which the dot product vanishes are said to be 
orthogonal, while those for which it is large are said to be strongly correlated. 

For digital signals there is another operator known as the time advance 
operator z, 

Y = 2x means Yn = G-b+1 Vn (2.20) 

which would certainly be meaningless for vectors in space. What meaning 
could there possibly be for an operator that transforms the x coordinate 
of a vector into the y coordinate? However, signals are not static vectors; 
they are dynamic entities. The time variable is not a dummy variable or 
index; it is physical time. We can always renumber the axes of a vector, 
thus scrambling the order of elements, and still understand that the same 
physical vector is described. For signals such an action is unthinkable. This 
is the reason that Rev(x) had no vector counterpart. This is the reason that 
our original definition of signal emphasized that the independent variable or 
index was time. 

You can think of z as the ‘just wait a little while and see what happens’ 
operator. For digital signals the natural amount of time to wait is one unit, 
from n to n + 1. If we wish to peek further forward in time, we can do so. 
For example, we can jump forward two units of time by first advancing one 
unit and then one more 

Y =zzx=z2x means Yn = xn+2 Qn 

and so on. 
We may also wish to go backwards in time. This doesn’t require us to 

invent a time machine, it just means that we wish to recall the value a 
signal had a moment ago. A little reflection leads us to define the time delay 
operator z-l 

y = z-lx means Yn = Xn-1 Vn (2.21) 
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so that z z-l x = z-l z x = x. The operator z-l will turn out to be even more 
useful than z, since it is usually easier to remember what just happened than 
to predict what is about to occur. The standard method for implementing 
the digital delay of L units of time is through a FIFO buffer of length L. 
A signal value that enters the FIFO at time n exits at time n + L, and so 
the output of the FIFO is delayed exactly L time units with respect to its 
input. When used in this fashion the FIFO is called a delay line. 

We can make these operators more concrete with a simple example. In 
exercise 2.1.1.13 we introduced a family of recursively defined signals, often 
called the logistics signals 

Xn+l = %L( 1 - 2,) (2.22) 

where the xn are all in the range 0 2 X~ 5 1. In order to enforce this last 
restriction we must restrict X to be in the range 0 5 X < 4. A particular 
signal in this family is determined by giving x0 and X. It is most instructive 
to generate and plot values for various x0 and X, and the reader will be 
requested to do so as an exercise. In this case the operation of the time 
advance operator can be simply specified 

zx = Xx(1 - 2) 

which should be understood as an equation in signals. This stands for an 
infinite number of equations of the form (2.22), one for each n. However, we 
needn’t return to these equations to understand it. We start with l-x, which 
really means 1 + (-2). (-2) is the inversion of the signal x; we add to it the 
signal 1 that is the constant signal whose value is 1 for all times. Addition 
between signals is value by value of course. Next we multiply this signal 
by the original signal, using signal multiplication, value by value. Finally we 
multiply this resulting signal by a real number X. So for this special case, the 
time advance operator can be specified in terms of simple signal arithmetic. 

Operators can be combined to create new operators. The finite difference 
operator A is defined as 

A E 1 - z-l (2.23) 

that is, for any digital signal s, the following holds for all time n. 

As, = sn - s~-~ 

The finite difference operator for digital signals is vaguely similar to the dif- 
ferentiation operator for continuous signals. Common characteristics include 
linearity and the fact that they are identically zero only for a constant. A is a 
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linear operator since for any two signals II: and y, A@+ y) = AZ+ Ay and for 
any number c and signal 2, Acx = cAx. As = 0 (the zero signal) if and only 
if the signal is constant. In other ways finite differences are similar to, but 
not identical to derivatives. For example, A(xy) = xAy + Ax z-l y. In some 
things finite differences are completely different, e.g., Aan = o?( 1 - CV-l). 

This last example leads us to an important property of the time delay 
operator. For the exponential signal sn = enn it is easy to see that 

Sn-1 = e N-1) = e-heAn = e-A 
Sn 

so that 
z-is = eBAs 

i.e., the operation of time delay on the exponential signal is equivalent to 
multiplication of the signal by a number. In linear algebra when the effect 
of an operator on a vector is to multiply it by a scalar, we call that vector 
an ‘eigenvector’ of the operator. Similarly we can say that the exponential 
signal is an eigensignal of the time delay operator, with eigenvalue e-* 

The fact that the exponential is an eigensignal of the time delay operator 
will turn out to be very useful. It would have been even nicer were the 
sinusoid to have been an eigensignal of time delay, but alas equation (A.23) 
tells us that 

h-1 = sin 
( 
w(n - 

4 
= sin(wn) cos(w) - cos(wn) sin(w) 

which mixes in phase-shifted versions of the original signal. The sinusoid 
is the eigensignal of a more complex operator, one that contains two time 
delays; this derives from the fact that sinusoids obey second-order differen- 
tial equations rather than first-order ones like the exponential. Nonetheless, 
there is a trick that saves the day, one that we have mentioned before. We 
simply work with complex exponentials, which are eigensignals of time de- 
lay, remembering at the end to take the real part. This tactic is perhaps the 
main reason for the use of complex signals in DSP. 

EXERCISES 

2.4.1 Show that the exponential signal s, = AeAn is an eigensignal of the time 
advance operator. What is its eigenvalue? The real sinusoid sn = A sin(wn+qb) 
is the eigensignal of an operator that contains z-l and zV2. Can you find this 
operator? 

2.4.2 What is the effect of the time advance operator on the unit impulse? Express 
the general SUI Sn,m in terms of Sn,a and the time delay operator. 
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2.4.3 Compare the energy of a time delayed, advanced, or reversed signal with 
that of the original signal. What is the energy of y = ax in terms of that 
of x? What can be said about the energy of the sum of two signals? For 
example, consider summing two sinusoids of the same frequency but different 
amplitudes and phases. What about two sinusoids of different frequencies? 
Why is there a difference between these two cases? 

2.4.4 Plot the logistics signal of equation (2.22) using several different x0 for each 
X. Try X = 0.75 and various x0---what happens after a while? Next try 
X = 1.5,2.0, and 2.75. How is the long time behavior different? Can you 
predict the behavior as a function of X? Are there any starting points where 
the previous behavior is still observed? Next try X = 3.2,3.5,3.55,3.5675, 
and 3.75. What is the asymptotic behavior (for almost all x0)? 

2.4.5 Using the program from the previous exercise try X = 3.826,3.625 and 3.7373. 
What is the asymptotic behavior? Try X = 4. How is this different? 

2.4.6 Canons are musical compositions composed of several related voices heard 
together. The ‘canonical’ relations require the voices to repeat the theme of 
the first voice: 

time offset: after a time delay, 

key shift: in a different key, 

diminution: at twice normal speed, 

augmentation: at half normal speed, 

inversion: with high and low tones interchanged, 

crab order: time reversed, 

or with combinations of these. Describe the signal processing operators that 
transform the basic theme into the various voices. In order for the resulting 
canon to sound pleasing, at (almost) every instant of time the voices must 
be harmonically related. Can you write a program that composes canons? 

2.4.7 In the text we discussed the usefulness of considering a signal as a single 
entity. This exercise deals with the usefulness of considering a signal as a col- 
lection of values. A streaming signal is a digital signal that is made available 
as time progresses. When the signal is not being streamed one must wait for 
the signal to be completely prepared and placed into a file before processing. 
Explain the usefulness of streaming digital audio. In certain computer lan- 
guages a stream is defined to be a sequentially accessed file. Compare this 
use of ‘stream’ with the previous one. 
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2.5 The Vector Space of All Possible Signals 

In Section 2.2 we presented the simplest of signals; in this section we are 
going to introduce you to all the rest. Of course there are an infinite number 
of different signals, but that doesn’t mean that it will take a long time to 
introduce them all. How can this be? Well, there are an infinite number 
of points in the plane, but we can concisely describe every one using just 
two real numbers, the z and y coordinates. There are an infinite number 
of places on earth, but all can be located using longitude and latitude. 
Similarly there are an infinite number of different colors, but three numbers 
suffice to describe them all; for example, in the RGB system we give red, 
green, and blue components. All events that have already taken place or 
will ever take place in the entire universe can be located using just four 
numbers (three spatial coordinates and the time). These concise descriptions 
are made possible by identifying basis elements, and describing all others as 
weighted sums of these. When we do so we have introduced a vector space 
(see Appendix A.14). The points in the plane and in space are well known 
to be two-dimensional and three-dimensional vector spaces, respectively. 

In the case of places on earth, it is conventional to start at the point 
where the equator meets the prime meridian, and describe how to reach 
any point by traveling first north and then east. However, we could just as 
well travel west first and then south, or northeast and then southwest. The 
choice of basic directions is arbitrary, as long as the second is not the same 
as the first or its reverse. Similarly the choice of x and y directions in the 
plane is arbitrary; instead of RGB we can use CMY (cyan, magenta, and 
yellow), or HSV (h ue, saturation, and value); and it is up to us to choose 
the directions in space to arrive at any point in the universe (although the 
direction in time is not arbitrary). 

Can all possible signals be described in terms of some set of basic signals? 
We will now convince you that the answer is affirmative by introducing 
the vector space of signals. It might seem strange to you that signals form 
a vector space; they don’t seem to be magnitudes and directions like the 
vectors you may be used to. However, the colors also form a vector space, 
and they aren’t obviously magnitudes and directions either. The proper way 
to dispel our skepticism is to verify that signals obey the basic axioms of 
vector spaces (presented in Appendix A.14). We will now show that not only 
do signals (both the analog and digital types) form a vector space, but this 
space has an inner product and norm as well! The fact that signals form a 
vector space gives them algebraic structure that will enable us to efficiently 
describe them. 
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Addition: Signal addition s = sr + s2 according to equation (2.17), 

Zero: The constant signal s, = 0 for all times n, 

Inverse: The inversion -s according to equation (2.15), 

Multiplication: Multiplication by a real number as in equation (2.14), 

Inner Product: The dot product of equation (2.19), 

Norm: The energy as defined in equation (2.1), 

Metric: The energy of the difference signal obeys all the requirements. 

Since signals form a vector space, the theorems of linear algebra guar- 
antee that there is a basis {vk}, i.e., a set of signals in terms of which any 
signal s can be expanded. 

S = 
c ckvk (2.24) 

k 

The use of the summation sigma assumes that there are a finite or denu- 
merable number of basis signals; when a nondenumerable infinity of basis 
signals is required the sum must be replaced by integration. 

s = 
s 

c(k)v(k) dk (2.25) 

From linear algebra we can show that every vector space has a basis, but 
in general this basis is not unique. For example, in two-dimensional space 
we have the natural basis of unit vectors along the horizontal ‘z’ axis and 
vertical ‘y’ axis; but we could have easily chosen any two perpendicular direc- 
tions. In fact we can use any two nonparallel vectors, although orthonormal 
vectors have advantages (equation (A.85)). Similarly, for the vector space of 
signals there is a lot of flexibility in the choice of basis; the most common 
choices are based on signals we have already met, namely the SUIs and the 
sinusoids. When we represent a signal by expanding it in the basis of SUIs 
we say that the signal is in the time domain; when we the basis of sinusoids 
is used we say that the signal is in the frequency domain. 

We are not yet ready to prove that the sinusoids are a basis; this will be 
shown in Chapters 3 and 4. In this section we demonstrate that the SUIs are 
a basis, i.e., that arbitrary signals can be uniquely constructed from SUIs. 
We start with an example, depicted in Figure 2.10, of a digital signal that 
is nonzero only between times n = 0 and n = 8. We build up this signal 
by first taking the unit impulse 6,,0, multiplying it by the first signal value 
SO, thereby obtaining a signal that conforms with the desired signal at time 
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Figure 2.10: Comb-dot graph depicting building up a digital signal from shifted unit 
impulses. 

n = 0 but which is zero elsewhere. Next we take the shifted unit impulse 
6 n,l, which is nonzero only for n = 1, and multiply it by ~1, thus obtaining a 
signal that agrees with sn for n = 1 but is otherwise zero. Adding together 
these two signals we obtain a signal that is identical to the desired signal 
both at time n = 0 and at time n = 1 but otherwise zero. We proceed in a 
similar fashion to build up a signal that is identical to the desired signal for 
all times. 

In a similar fashion we can expand any digital signal in terms of SUIs 

cm 

Sn = 
c %-n&,7-n 

n=--00 
(2.26) 

thus proving that these signals span the entire space. Now, it is obvious that 
no two SUIs overlap, and so the SUIs are orthogonal and linearly indepen- 
dent (no 6n,m can be expanded in terms of others). Therefore the SUIs are a 
linearly independent set that spans the entire space, and so they are a basis. 

Hence we see that the SUIs form a basis of the vector space of digital 
signals. Since there are (denumerably) infinite signals in the basis, we see 
that the vector space of signals is of infinite dimension. Similar statements 
are true for analog signals as well. In Figure 2.11 we demonstrate approxi- 
mating a function using shifted unit width analog impulses. We leave it for 
the reader to complete the argument to show that any analog signal can be 
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Figure 2.11: Building up an analog signal from shifted unit width impulses. 

expanded in terms of shifted Dirac deltas. Dirac deltas are consequently a 
basis of a vector space of (nondenumerably) infinite dimension. The deltas 
(whether Kronecker or Dirac) form a basis that induces the time domain 
representation of the signal. 

EXERCISES 

2.5.1 Show that the triangle inequality is obeyed for signals. 

cc Sl, - s3J2 2 (X 81, - 52J2 + cc s2, - s3J2 

2.5.2 Show that the set of digital signals of finite time duration is a finite dimension 
vector space. 

2.5.3 Express a general digital signal x, as a sum involving only the impulse at 
time zero and time delay operators. 

2.5.4 Let’s try to approximate the S-vector v = (v,, vy, v,) by a vector parallel to 
the x axis a,?. The best such approxrmation requires that the error vector 
e=v-cxa, 2 l!k of minimal squared length. Show that this criterion leads to 
a Z = v, acd that the error vector lies entirely in the y-z plane. Similarly, 
show that best approximation of v by a vector in the x-y plane a, 2 + oy$, 
requires cyZ = vZ and or, = vy , a<d for the error vector must be parallel co 
the z axis. When can the error become zero? 
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2.5.5 The previous exercise leads us to define the coefficients vi as those real num- 
bers that minimize the approximation error. Use this same approach to find 
the expansion of a given signal s(t) in terms of a set of normalized signals 
vk(t), by requiring the error signal to be of minimal energy. Show that this 
approach demystifies the use of equation (2.19) as the dot product for signals. 

2.5.6 Show how to expand analog signals in terms of shifted Dirac delta functions, 
by starting with Figure 2.11 and sending the impulse width to zero. 

2.5.7 Explain why the set of all analog signals forms a vector space. What new 
features are there? What is the dimensionality of this vector space? In what 
sense are there more analog signals than digital ones? 

2.5.8 Show that the set of all analog periodic signals with the same period is a 
vector space. Is it denumerably or nondenumerably infinite in dimension? 

2.6 Time and Frequency Domains 

According to our definition a signal is a function of a signal variable, or a 
singly-indexed sequence. Doesn’t that mean that digital signal processing is 
some subset of mathematics, similar to analysis (calculus)? 

Technically yes, of course, but in a deeper sense not at all. The first 
requirement for a signal was for it to be a physical quantity; a requirement 
that imparts a special flavor to signal processing, quite distinct from the 
seasonings with which mathematical treatments of analysis are spiced. 

The differential calculus was originally invented to help in the abstract 
mathematical treatment of the kinematics of ideal bodies. As such, the em- 
phasis is on derivatives and the basic functions used are polynomials. Con- 
sider the kinematical quantity s = SO + wet + $t2-this function is not a 
physically plausible signal as it stands, since although continuous, for large 
times it diverges! Physically realizable functions should remain bounded for 
all times, which rules out all polynomials except constants. 

The fundamental law of differential calculus states that any function 
(well not any function, but we won’t worry about that now) can be described 
in the following way. First pick some time of interest, which we will call 
to. Find the value of the function at that point, f (to). Close enough to to 
the function is always approximately f(to) due to continuity constraints. 
To go a little further away from to we need the first derivative. The first 
derivative describes what the function looks like close enough to to since all 
well-behaved functions are approximately linear over a small enough interval 
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f(t) x f(to) + $Ito(t - to). If Y ou want to know what the function does even 
further away, find the second derivative evaluated at to, and then the third 
derivative, etc. Higher and higher derivatives allow one to stray further and 
further from the original point in time. Knowing all derivatives at any one 
point in time is equivalent to knowing the function’s values at all times. This 
law is called Taylor’s Theorem and is the very fabric of the classical analysis 
way of looking at functions. It approximates functions using polynomials as 
the basis for the vector space of functions. 

The fundamental law of signal processing proclaims a different way of 
representing signals. ‘Real-world’ signals have finite energy and occupy some 
finite bandwidth. Hence polynomials are not a natural basis for describing 
them. The signal processing approximation is global rather that local, i.e., 
for any finite order is about as good (or bad) simultaneously for all times 
- 00 < t < +oc . Rather than using derivatives and polynomials, the signal 
processing way of looking at the world emphasizes spectrum and its basic sig- 
nals are sinusoids. The signal processing law (the Fourier transform) states 
that all signals can be approximated by summing together basic sinusoids. 

Because of this unique way of representing signals, signal processing 
tends to be quite schizophrenic. One has to continuously jump back and 
forth between the time domain representation, which gives the value of the 
signal for all times, and the frequency domain representation, where the 
harmonic content of the signal at every frequency is given. 

Spectrum is simply a shorter way of saying ‘frequency domain represen- 
tation’, and the idea is probably not new to you. You surely realize that 
the operation of a prism on white light consists of its decomposition into 
different frequencies (colors). You certainly have tuned in a station on the 
radio by changing the center frequency being demodulated. You may even 
have an audio system with a graphic equalizer enables amplifying certain 
component acoustic frequencies more than others. 

The spectrum of a signal that consists of a pure sine wave has a single 
line at the frequency of this sine. The sum of two sines corresponds to two 
lines in the frequency domain. If the sum is weighted the relative heights of 
these lines will reflect this. In general, any signal that can be constructed 
by weighted combination of a finite number of sines will have a discrete 
spectrum with lines corresponding to all the frequencies and weights. 

Not all signals have spectra comprised of discrete lines. For example, 
the analog unit width impulse has a sine-shaped spectrum, where the sine 
function 

w&f > 
sine(f) = f 
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A I 

c 
Figure 2.12: The unit width analog impulse and its spectrum. In (A) we depict the 
unit width impulse in the time domain, and in (B) its (sine-function) frequency domain 
representation. The latter is the raw spectrum including negative frequencies. 

(see Figure 2.12). The meaning of negative spectral values and negative fre- 
quencies will become clear later on. The spectrum has a strong DC compo- 
nent because the impulse is nonnegative. In order to make the infinitesimally 
sharp corners of the impulse, an infinite range of frequencies is required. So 
although this spectrum decreases with increasing frequency, it never be- 
comes zero. Its bandwidth, defined as the spectral width wherein mast of 
the energy is contained, is finite. 

Signal processing stresses the dual nature of signals-signals have time 
domain and frequency domain (spectral) characteristics. Although the signal 
(time domain) and its Fourier transform (frequency domain) contain exactly 
the same information, and indeed either can be constructed from the other, 
some signal processing algorithms are more natural in one domain than in 
the other. This dual way of looking at signals is what makes signal processing 
different from mathematical analysis. 

EXERCISES 

2.6.1 Experiment with plotting signals composed of several sinusoids with various 
frequencies and amplitudes. Can you recognize the original frequencies in 
the resulting waveform? What do you observe when one sinusoid is much 
stronger than the others? When all the frequencies are multiples of a common 
frequency? When the frequencies are very close together? When they are well 
separated? When does the signal seem unpredictable? 

2.6.2 Taylor expand a sine wave (you can do this by hand since you only need to 
know the derivatives of sinusoids). Fourier expand a parabola (it will probably 
be easiest to use numeric Fourier transform software). What can you say 
about the compactness of these descriptions? 
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2.6.3 The Taylor expansion can be interpreted as the expansion of arbitrary contin- 
uous functions in a basis of polynomials. Are the functions fo(s) = 1, fl(z) = 
z, f&c) = x2, f&T) = 53,. . . a basis? Are they an orthonormal basis? 

2.6.4 Let’s examine a more complex signal with a discrete line spectrum. The V.34 
probe signal is composed of 21 sinusoids sin(2nft + 4) with frequencies f 
that are multiples of 150 Hz, and phases 4 given in the following table. 

Plot a representative portion of the final signal. What is special about the 
phases in the table? (Hint: Try altering a few phases and replotting. Observe 
the maximum absolute value of the signal.) 

2.7 Analog and Digital Domains 

At the end of Section 2.1 we mentioned that one can go back and forth 
between analog and digital signals. A device that converts an analog signal 
into a digital one is aptly named an Analog to Digital converter or A/D 
(pronounced A to D) for short. The reverse device is obviously a Digital to 
Analog converter or D/A (D to A). You will encounter many other names, 
such as sampler, digitizer and codec, but we shall see that these are not 
entirely interchangeable. In this and the next two sections we will explain 
that A/D and D/A devices can work, leaving the details of how they work 
for the following two sections. 

In explaining the function of an A/D there are two issues to be ad- 
dressed, corresponding to the two axes on the graph of the analog signal in 
Figure 2.13. You can think of the A/D as being composed of two quantizers, 
the sampler and the digitizer. The sampler samples the signals at discrete 
times while the digitizer converts the signal values at these times to a digital 
represent ation. 

Converting a continuously varying function into a discrete time sequence 
requires sampling the former at specific time instants. This may lead to a loss 
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Figure 2.13: Conversion of an analog signal into a corresponding digital one involves 
quantizing both axes, sampling time and digitizing signal value. In the figure we see the 
original analog signal overlaid with the sampled time and digitized signal value grid. The 
resulting digital signal is depicted by the dots. 

of information, since many different continuous functions can correspond to 
the same sampled sequence, but under certain conditions there is no such 
loss. The key to understanding this surprising result is the sampling theorem. 
This theorem tells us what happens when we create a discrete time signal 
by sampling an analog signal at a uniform rate. The sampling theorem will 
be discussed in the next section. 

Converting the continuous real values of the analog signal into bounded 
digital ones requires rounding them to the nearest allowed level. This will 
inevitably lead to a loss of precision, which can be interpreted as adding 
(real-valued) noise to each value a, = dn + u,, where un can never exceed 
one half the distance to nearby quantization levels. The effect of this noise 
is to degrade the Signal to Noise Ratio (SNR) of the signal, a degradation 
that decreases in magnitude when the number of available levels is increased. 

Digital signals obtained from analog ones are sometimes called PCM 
streams. Let’s understand this terminology. Imagine wiping out (zeroing) 
the analog signal at all times that are not to be sampled. This amounts to 
replacing the original continuously varying signal by a sequence of pulses 
of varying amplitudes. We could have reached this same result in a slightly 
different way. We start with a train of pulses of constant amplitude. We then 
vary the amplitude of each incoming pulse in order to reflect the amplitude of 
the analog signal to be digitized. The amplitude changes of the original signal 
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are now reflected in the varying heights of the pulses. The process of varying 
some aspect of a signal in order to carry information is called modulation. 
In this case we have modulated the amplitudes of the pulse stream, and 
so have produced Pulse Amplitude Modulation (PAM). Other aspects of 
the pulse stream could have been varied as well, resulting in Pulse Width 
Modulation (PWM), and Pulse Position Modulation (PPM). We now wish 
to digitally record the amplitude of each pulse, which we do by giving each 
a code, e.g. the binary representation of the closest quantization level. From 
this code we can accurately (but not necessarily precisely) reconstruct the 
amplitude of the pulse, and ultimately of the original signal. The resulting 
sequence of numbers is called a Pulse Code Modulation (PCM) stream. 

EXERCISES 

2.7.1 It would seem that sampling always gives rise to some loss of information, 
since it always produces gaps between the sampled time instants; but some- 
times we can accurately guess how to fill in these gaps. Plot a few cycles of 
a sinusoid by connecting a finite number of points by straight lines (linear 
interpolation). How many samples per cycle are required for the plot to look 
natural, i.e., for linear interpolation to accurately predict the missing data? 
How many samples per cycles are required for the maximum error to be less 
than 5%? Less than l%? 

2.7.2 Drastically reduce the number of samples per cycle in the previous exercise, 
but generate intermediate samples using quadratic interpolation. How many 
true samples per cycle are required for the predictions to be reasonably ac- 
curate? 

2.7.3 The sampling theorem gives a more accurate method of interpolation than 
the linear or quadratic interpolation of the previous exercises. However, even 
this method breaks down at some point. At what number of samples per 
cycle can no method of interpolation work? 

2.8 Sampling 

We will generally sample the analog signal at a uniform rate, corresponding 
to a sampling frequency fS. This means that we select a signal value every 
t, = i seconds. How does t, influence the resulting digital signal? The main 
effects can be observed in Figures 2.14-2.17. 
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Figure 2.14: Conversion of an analog signal into the corresponding digital one with a 
lower sampling rate. As in the previous figure, the original analog signal has been overlaid 
with the sampled time and digitized signal value grid. However, the time interval between 
samples t, is longer. 

Figure 2.15: Conversion of an analog signal into the corresponding digital one with yet 
a lower sampling rate. Once again the original analog signal has been overlaid with the 
sampled time and digitized signal value grid. Although there are only four samples per 
cycle, the original signal is still somewhat recognizable. 



2.8. SAMPLING 51 

Figure 2.16: Conversion of an analog signal into a digital one at ‘the minimal sampling 
rate. Once again the original analog signal has been overlaid with the sampled time and 
digitized signal value grid. Although there are only two samples per cycle, the frequency 
of the original sine wave is still retrievable. 

Figure 2.17: Conversion of an analog signal into a digital one at too low a sampling 
rate. Once again the original analog signal has been overlaid with the sampled time and 
digitized signal value grid. With only one sample per cycle, all information is lost. 
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In Figures 2.14 and 2.15 the sampling rate is eight and four samples per 
cycle respectively, which is high enough for the detailed shape of the signal to 
be clearly seen (it is a simple sinusoid). At these sampling rates even simple 
linear interpolation (connecting the sample points with straight lines) is not 
a bad approximation, although peaks will usually be somewhat truncated. 
In Figure 2.16, with only two samples per cycle, we can no longer make out 
the detailed form of the signal, but the basic frequency is discernible. With 
only a single sample per cycle, as in Figure 2.17, even this basic frequency 
is lost and the signal masquerades as DC. 

Have you ever watched the wagon wheels in an old western? When the 
wagon starts to move the wheels start turning as they should; but then at 
some speed they anomalously seem to stand still and then start to spin 
backwards! Then when the coach is going faster yet they straighten out for 
a while. What is happening? Each second of the moving picture is composed 
of some number (say 25) still pictures, called frames, played in rapid succes- 
sion. When the wheel is rotating slowly we can follow one spoke advancing 
smoothly around the axle, from frame to frame. But when the wheel is ro- 
tating somewhat faster the spoke advances so far between one frame and the 
next that it seems to be the next spoke, only somewhat behind. This gives 
the impression of retrograde rotation. When the wheel rotates exactly the 
speed for one spoke to move to the next spoke’s position, the wheel appears 
to stand still. 

This phenomenon, whereby sampling causes one frequency to look like 
a different one, is called aliasing. The sampled pictures are consistent with 
different interpretations of the continuous world, the real one now going 
under the alias of the apparent one. Hence in this case the sampling caused 
a loss of information, irreversibly distorting the signal. This is a general 
phenomenon. Sampling causes many analog signals to be mapped into the 
same digital signal. This is because the digitized signal only records the 
values of the continuous signal at particular times t = nt,; all analog signals 
that agree at these points in time, but differ in between them, are aliased 
together to the same digital signal. 

Since sampling always maps many analog signals into the same digital 
signal, the question arises-are there conditions under which A/D does not 
cause irreparable damage? That is, is there any way to guarantee that we 
will be able to recover the value of the analog signal at all times based 
on the sampled signal alone? We expect the answer to be negative. Surely 
the analog signal can take on arbitrary values at times not corresponding 
to sample periods, and therefore many different analog signals correspond 
to the same digital one. An affirmative answer would imply a one-to-one 
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correspondence between analog signals obeying these conditions and the 
digital signals obtained by sampling them. 

Surprisingly the answer is affirmative; but what stipulation can confound 
our simple logic ? What restrictions can ensure that we incur no loss of 
information when representing a continuous function at discrete points only? 
What conditions on the signal will allow us to correctly guess the value of a 
function between two times separated by t, where it is known? The answer 
is finite bandwidth. 

Theorem: The Sampling Theorem 
Assume that the analog signal s(t) is sampled with a sampling frequency 
fs = l/t, producing the digital signal sn = s(nt,). 

A. If the sampling frequency is over twice that of the highest frequency 
component of the signal fs > fmall:, then the analog signal can be recon- 
structed for any desired time. 

B. The reconstructed value of the analog signal at time t 

S(t) = fj sn sine (afs(t - nt,)) 
n=-ccl 

(2.27) 

is a linear combination of the digital signal values with sine(t) = sin(t) /t 
weighting. 1 

At first sight the sampling theorem seems counterintuitive. We specify 
the values of a signal at certain discrete instants and claim to be able to ex- 
actly predict its value at other instants. Surely the signal should be able to 
oscillate arbitrarily in between sampling instants, and thus be unpredictable. 
The explanation of this paradox is made clear by the conditions of the sam- 
pling theorem. The bandwidth limitation restricts the possible oscillations 
of the analog signal between the sample instants. The signal cannot do more 
than smoothly interpolate between these times, for to do so would require 
higher frequency components than it possesses. 

The minimal sampling frequency (a little more than twice the highest 
frequency component) is called the Nyquist frequency f~ E 2fmaX in honor 
of Harry Nyquist, the engineer who first published the requirement in 1928. 
It wasn’t until 1949 that mathematician Claude Shannon published a formal 
proof of the sampling theorem and the reconstruction formula. An inaccu- 
rate, but easy to remember, formulation of the contributions of these two 
men is that Nyquist specified when an A/D can work, and Shannon dictated 
how a D/A should work. 
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To better understand the Nyquist criterion consider the simple case of 
a single sinusoid. Here the minimum sampling frequency is twice per cycle. 
One of these sample instants will usually be in the positive half-cycle and 
the in the negative one. It is just this observation of positive and negative 
half-cycles that makes the sampling theorem work. It is intuitively obvious 
that sampling at a lesser rate could not possibly be sufficient, since entire 
half cycles will be lost. Actually even sampling precisely twice per cycle 
is not sufficient, since sampling at precisely the zero or peaks conceals the 
half-cycles, which is what happened in Figure 2.17. This is why the sampling 
theorem requires us to sample at a strictly higher rate. 

The catastrophe of Figure 2.17 is a special case of the more general 
phenomenon of &using. What the sampling theorem tells us is that discrete 
time signals with sampling rate fs uniquely correspond to continuous time 
signals with frequency components less than $. Sampling any continuous 
time signal with higher-frequency components still provides a discrete time 
signal, but one that uniquely corresponds to another, simpler signal, called 
the alias. Figure 2.18 demonstrates how a high-frequency sinusoidal signal 
is aliased to a lower frequency one by sampling. The two signals agree at the 
sample points, but the simpler interpretation of these points is the lower- 
frequency signal. 

Figure 2.18: Aliasing of high-frequency analog signal into lower-frequency one. The high- 
frequency signal has only a sample every one and a half cycles, i.e., it corresponds to a 
digital frequency of 
i.e., cp = f. 

$. The lower-frequency sinusoid is sampled at four samples per cycle, 
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It is conventional to define a digital frequency in the following way 

and the sampling theorem tells us that we must have cp < i. Consistently 
using this digital frequency frees us from having to think about real (analog) 
frequencies and aliasing. All the DSP will be exactly the same if a 2 Hz signal 
is sampled at 10 Hz or a 2 MHz signal is sampled at 10 MHz. 

Before continuing we should mention that the sampling theorem we have 
been discussing is not the final word on this subject. Technically it is only 
the ‘low-pass sampling theorem for uniform time intervals’. If the signals of 
interest have small bandwidth but are centered on some high frequency, it is 
certainly sufficient to sample at over twice the highest frequency component, 
but only necessary to sample at about twice the bandwidth. This is the con- 
tent of the band-pass sampling theorem. It is also feasible in some instances 
to sample nonuniformly in time, for example, at times 0, $, 2,2$, 4, . . . . For 
such cases there are ‘nonuniform sampling theorems’. 

Now that we understand the first half of the sampling theorem, we are 
ready to study the reconstruction formula in the second half. We can rewrite 
equation (2.27) as 

ccl 
s(t) = c s,h(t - nt,) (2.28) 

7X=--o;) 

where h(t) E sinc@f,t) is called the sampling kernel. As a consequence 
the reconstruction operation consists of placing a sampling kernel at every 
sample time nts, weighting it by the sampled value there sn, and adding 
up all the contributions (see Figure 2.19). The sine in the numerator of the 
sine is zero for all sample times nts, and hence the sampling kernel obeys 
h(nt,) = &a. From this we immediately conclude s(nt,) = s, as required. 
Consequently, the reconstruction formula guarantees consistency at sample 
times by allowing only the correct digital signal value to contribute there. 
At no other times are the sampling kernels are truly zero, and the analog 
signal value is composed of an infinite number of contributions. 

In order for the reconstruction formula to be used in practice we must 
somehow limit the sum in (2.28) to a finite number of contributions. Noting 
that the kernel h(t) decays as & we can approximate the sum by restricting 
the duration in time of each sample’s contribution. Specifically, if we wish 
to take into account only terms larger than some fraction p, we should limit 
each sample’s contributions to A$ samples from its center. Conversely this 
restriction implies that each point in time to be interpolated will only receive 
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Figure 2.19: The reconstruction formula depicted graphically. In (A) we see an analog 
signal and the samples digitized slightly higher than twice the highest frequency compo- 
nent. (B) shows the sine kernels weighted by the sample value placed at each sample time; 
note that at sample times all other sines contribute zero. In (C) we sum the contributions 
from all kernels in the area and reconstruct the original analog signal. 

a finite number of contributions (from those sample instants no further than 
$ away). 

Proceeding in this fashion we obtain the following algorithm: 

Given: a sampled signal zn, 
its sampling interval tS, 
a desired time t, and 
a cut-off fraction p 

w + Round($) 
Initialize i t 0 

t 
nmid t t, 

nlo t nmid - w 

nhi i- nmid + W 

x+--o 

for n + nlo to r&i 
x t x + xn sinc(7rtStyt9) 
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EXERCISES 

2.8.1 The wagon wheel introduced in the text demonstrates the principle of aliasing 
in a popular context. What is the observed frequency as a function of intended 
frequency. 

2.8.2 Redraw Figures 2.13-2.17 with sample times at different phases of the sinu- 
soid. Is a sine wave sampled at exactly twice per cycle (as in Figure 2.16) 
always recoverable? 

2.8.3 Redraw Figures 2.13-2.17 with a noninteger number of samples per cycle. 
What new effects are observed? Are there any advantages to such sampling? 
Doesn’t this contradict the sampling theorem? 

2.8.4 Plot an analog signal composed of several sinusoids at ten times the Nyquist 
frequency (vastly oversampled). Overlay this plot with the plots obtained for 
slightly above and slightly below Nyquist. What do you observe? 

2.8.5 Write a program for sampling rate conversion based on the algorithm for 
reconstruction of the analog signal at arbitrary times. 

2.9 Digitization 

Now we return to the issue of signal value quantization. For this problem, 
unfortunately, there is no panacea; there is no critical number of bits above 
which no information is lost. The more bits we allocate per sample the less 
noise we add to the signal. Decreasing the number of bits monotonically 
reduces the SNR. 

Even more critical is the matching of the spacing of the quantization 
levels to the signal’s dynamic range. Were the spacing set such that the signal 
resided entirely between two levels, the signal would effectively disappear 
upon digitizing. Assuming there are only a finite number of quantization 
levels, were the signal to vary over a much larger range than that occupied 
by the quantization levels, once again the digital representation would be 
close to meaningless. For the time being we will assume that the digitizer 
range is set to match the dynamic range of the signal (in practice the signal 
is usually amplified to match the range of the digitizer). 

For the sake of our discussion we further assume that the analog signal 
is linearly digitized, corresponding to b bits. This means that we select the 
signal level 1 = - ( 2b-1 - 1) . . . + 2’-l that is closest to s(tn). How does b 
influence the resulting digital signal? The main effects can be observed in 
Figures 2.20-2.24. 
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Figure 2.20: Conversion of an analog signal into a corresponding digital one involves 
quantizing both axes, sampling time and digitizing signal value. In the figure we see the 
original analog signal overlaid with the sampled time and digitized signal value grid. The 
resulting digital signal is depicted by the dots. 
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Figure 2.21: Conversion of an analog signal into the corresponding digital one with fewer 
digitizing levels. As in the previous figure the original analog signal has been overlaid with 
the sampled time and digitized signal value grid. However, here only 17 levels (about four 
bits) are used to represent the signal. 
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Figure 2.22: Conversion of an analog signal into the corresponding digital one with fewer 
digitizing levels. Once again the original analog signal has been overlaid with the sampled 
time and digitized signal value grid. Here only nine levels (a little more than three bits) 
are used to represent the signal. 

Figure 2.23: Conversion of an analog signal into the corresponding digital one with fewer 
digitizing levels. Once again the original analog signal has been overlaid with the sampled 
time and digitized signal value grid. Here only five levels (about two bits) are used to 
represent the signal. 
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Figure 2.24: Cc re rsion of an anal0 sig al int ;o the corresponding digital one with 
. . _ 313 

the minimum number of digitizing levels. Once again the original analog signal has been 
overlaid with the sampled time and digitized signal value grid. Here only three levels (one 
and a half bits) are used to represent the signal. 

Reflect upon the discrete time signal before signal value quantization 
(the pulses before coding). This sequence of real numbers can be viewed as 
the sum of two parts 

an = & + vn where d n z Round(a,) 

and so d, are integers and Ivn 1 < 2. 1 Assuming an to be within the range of 
our digitizer the result of coding is to replace a, with dn, thus introducing 
an error u, (see Figure 2.25). Were we to immediately reconvert the digital 
signal to an analog one with a D/A converter, we would obtain a signal 
similar to the original one, but with this noise added to the signal. 

The proper way of quantifying the amount of quantization noise is to 
compare the signal energy with the noise energy and compute the SNR from 
equation (2.13). For a given analog signal strength, as the quantization levels 
become closer together, the relative amount of noise decreases. Alternatively, 
from a digital point of view, the quantization noise is always a constant 
414 levels, while increasing the number of bits in the digital representation 
increases the digital signal value. Since each new bit doubles the number of 
levels and hence the digital signal value 

SNR(dB) M 10 ( logIo(2b)2 - loglo 12) = 20blogro 2 M 6b (2.29) 

that is, each bit contributes about 6 dB to the SNR. The exact relation will 
be derived in exercise 2.9.2. 
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Figure 2.25: Noise created by digitizing an analog signal. In (A) we see the output of a 
digitizer as a function of its input. In (B) the noise is the rounding error, i.e., the output 
minus the input. 

We have been tacitly assuming a digitizer of infinite range. In practice 
all digitizers have a maximum number of bits and thus a minimum and 
maximum level. The interval of analog signal values that are translated into 
valid digital values is called the dynamic range of the digitizer. Analog signal 
values outside the allowed range are clipped to the maximum or minimum 
permitted levels. Most digitizers have a fixed number of bits and a fixed 
dynamic range; in order to minimize the quantization noise the analog signal 
should be amplified (or attenuated) until it optimally exploits the dynamic 
range of the digitizer. Exceeding the dynamic range of the digitizer should be 
avoided as much as possible. Although moderate amounts of saturation are 
not usually harmful to the digitizer hardware, signal clipping is introduced. 
For a signal with high Peak to Average Ratio (PAR), one must trade off 
the cost of occasional clipping with the additional quantization noise. 

Signal to noise ratios only have significance when the ‘noise’ is truly ran- 
dom and uncorrelated with the signal. Otherwise we could divide a noiseless 
signal into two equal signals and claim that one is the true signal, the other 
noise, and the SNR is 0 dB! We have been tacitly assuming here that the 
quantization noise is truly noise-like and independent of the signal, although 
this is clearly not the case. What is the character of this ‘noise’? 

Imagine continuously increasing the input to a perfect digitizer from 
the minimum to the maximum possible input. The output will only take 
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quantized values, essentially rounding each input to the closest output level. 
Hence the output as a function of the input will produce a graph that looks 
like a staircase, as in Figure 2.25.A. Accordingly the rounding error, the 
output minus the input, will look like a sawtooth, as in Figure 2.25.B. Thus 
the quantization ‘noise’ is predictable and strongly correlated with the sig- 
nal, not random and uncorrelated as we tacitly assumed. This result seems 
contradictory-if the noise signal is predictable, then it isn’t noise at all. 
Were the error to be truly predictable, then one could always compensate 
for it, and digitizing would not harm the signal at all. The resolution of this 
paradox is simple. The noise signal is indeed correlated to the analog signal, 
but independent of the digitized signal. After digitizing the analog signal is 
unavailable, and the noise becomes, in general, unpredictable. 

EXERCISES 

2.9.1 Dither noise is an analog noise signal that can be added to the analog signal 
before digitizing in order to lessen perceived artifacts of round-off error. The 
dither must be strong enough to effectively eliminate spurious square wave 
signals, but weak enough not to overly damage the SNR. How much dither 
should be used? When is dither needed? 

2.9.2 Refine equation (2.29) and derive SNR = (2 logre 2b+1.8)dB by exploiting the 
statistical uniformity of the error, and the definition of standard deviation. 

2.9.3 Plot the round-off error as a function of time for sinusoids of amplitude 15, 
and frequencies 1000, 2000, 3000, 1100, 1300, 2225, and 3141.5 Hz, when 
sampled at 8000 samples per second and digitized to integer levels (-15, -14, 

0 “‘7 9 .“7 14, 15). Does the error look noise-like? 

2.10 Antialiasing and Reconstruction Filters 

Recall that in Figure 1.3 there were two filters marked antialiasing jilter and 
reconstruction filter that we avoided discussing at the time. Their purpose 
should now be clear. The antialiasing filter should guarantee that no fre- 
quencies over Nyquist may pass. Of course no filter is perfect, and the best 
we can hope for is adequate attenuation of illegal frequencies with minimal 
distortion of the legal ones. The reconstruction filter needs to smooth out 
the D/A output, which is properly defined only at the sampling instants, 
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and recreate the proper behavior at all times. In this section we will briefly 
discuss these filters. 

Assume that the highest frequency of importance in the signal to be 
sampled is fmaZ. Strictly speaking the sampling theorem allows us to sample 
at any frequency above the Nyquist frequency fiv = 2f,,,, but in practice 
we can only sample this way if there is absolutely nothing above fmaz . 
If there are components of the signal (albeit unimportant ones) or other 
signals, or even just background noise, these will fold back onto the desired 
signal after sampling unless removed by the antialiasing filter. Only an ideal 
antialiasing filter, one that passes perfectly all signals of frequency less than 

f max and blocks completely all frequencies greater than fmaz, would be able 
to completely remove the undesired signals; and unfortunately, as we shall 
learn in Section 7.1, such an ideal filter cannot be built in practice. 

Realizable antialiasing filters pass low frequencies, start attenuating at 
some frequency fr, and attenuate more and more strongly for higher and 
higher frequencies, until they effectively block all frequencies above some 
f2. We must be sure that the spectral areas of interest are below fr since 
above that they will become attenuated and distorted; however, we can’t 
use 2fr as our sampling frequency since aliasing will occur. Thus in order to 
utilize realizable filters we must sample at a frequency 2f2, higher than the 
sampling theorem strictly requires. Typically sampling frequencies between 
20% and 100% higher (1.2fN 5 fs 2 2fN) are used. The extra spectral 
‘real-estate’ included in the range below $ is called a guard band. 

The D/A reconstruction filter’s purpose is slightly less obvious than that 
of the antialiasing filter. The output of the D/A must jump to the required 
digital value at the sampling time, but what should it do until the next 
sampling time? Since we have no information about what the analog signal 
does, the easiest thing to do is to stay constant until the next sampling time. 
Doing this we obtain a piecewise constant or ‘boxcar’ signal that doesn’t ap- 
proximate the original analog signal very well. Alternatively, we might wish 
to linearly interpolate between sampling points, but there are two difficul- 
ties with this tactic. First, the linear interpolation, although perhaps better 
looking than the boxcar, is not the proper type of interpolation from the 
signal processing point of view. Second, and more importantly, interpolation 
of any kind is noncausal, that is, requires us to know the next sample value 
before its time. This is impossible to implement in real-time hardware. What 
we can do is create the boxcar signal, and then filter it with an analog filter 
to smooth the sharp transitions and eliminate unwanted frequencies. 

The antialiasing and reconstruction filters may be external circuits that 
the designer must supply, or may be integral to the A/D and D/A devices 



64 SIGNALS 

themselves. They may have fixed cutoff frequencies, or may be switchable, 
or completely programmable. Frequently DSP software must set up these 
filters along with initialization and setting sampling frequency of the A/D 
and D/A. So although we shall not mention them again, when designing, 
building, or programming a DSP system, don’t forget your filters! 

EXERCISES 

2.10.1 Simulate aliasing by adding sinusoids with frequencies above Nyquist to prop- 
erly sampled sinusoidal signals. (You can perform this experiment using ana- 
log signals or entirely on the computer.) Make the aliases much weaker than 
the desired signals. Plot the resulting signals. 

2.10.2 If you have a DSP board with A/D and D/A determine how the filters are 
implemented. Are there filters at all or are you supposed to supply them 
externally? Perhaps you have a ‘sigma-delta’ converter that effectively has 
the filter built into the A/D. Is there a single compromise filter, several filters, 
or a programmable filter? Can you control the filters using software? Measure 
the antialiasing filter’s response by injecting a series of sine waves of equal 
amplitude and increasing frequency. 

2.10.3 What does speech sound like when the antialiasing filter is turned off? What 
about music? 

2.11 Practical Analog to Digital Conversion 

Although in this book we do not usually dwell on hardware topics, we will 
briefly discuss circuitry for A/D and D/A in this section. We have two rea- 
sons for doing this. First, the specifications of the analog hardware are of 
great important to the DSP software engineer. The DSP programmer under- 
stand what is meant by such terms as ‘one-bit sampling’ and ‘effective bits’ 
in order to properly design and debug software systems. Also, although we 
all love designing and coding advanced signal processing algorithms, much of 
the day-to-day DSP programming has to do with interfacing to the outside 
world, often by directly communicating with A/D and D/A devices. Such 
communication involves initializing, setting parameter values, checking sta- 
tus, and sending/receiving data from specific hardware components that the 
programmer must understand well. In addition, it is a fact of life that A/D 
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components occasionally fail, especially special-purpose fast A/D convert- 
ers. The DSP software professional should know how to read the signs of a 
failing A/D, and how to test for deficiencies and to evaluate performance. 

Perhaps the simplest A/D to start with is the so-called flash converter, 
the block diagram of which is given in Figure 2.26. The triangles marked 
‘camp’ are comparators that output ‘one’ when the voltage applied to the in 
input is higher than that applied to the reference input ref, and ‘zero’ oth- 
erwise. For a b bit A/D converter we require 2b such comparators (including 
the highest one to indicate an overflow condition). The reference inputs to 
the comparators must be as precise as possible, and for this reason are often 
derived from a single voltage source. 

Every sampling time a voltage x is applied to the input of the digitizer. 
All the comparators whose reference voltages are less than x will fire, while 
those with higher references will not. This behavior reminds one of a mercury 
thermometer, where the line of mercury reaches from the bottom up to a 
line corresponding to the correct temperature, and therefore this encoding is 
called a thermometer code. The thermometer code requires 2b bits to encode 
2b values, while standard binary encoding requires only b bits. It would 
accordingly be not only nonstandard but also extremely inefficient to use it 
directly. The function of the block marked ‘thermometer to binary decoder’ 
in the diagram is to convert thermometer code into standard binary. It is 
left as an exercise to efficiently implement this decoder. 

The main drawback of the flash converter is its excessive cost when a 
large number of bits is desired. A straightforward implementation for 16- 
bit resolution would require 216 reference voltages and comparators and a 
216 by 16 decoder! We could save about half of these, at the expense of 
increasing the time required to measure each voltage, by using the following 
tactic. As a first step we use a single comparator to determine whether 
the incoming voltage is above or below half-scale. If it is below half-scale, 
we then determine its exact value by applying it to a bank of $2b = Zb-’ 
comparators. If it is above half-scale we first shift up the reference voltages 
to all of these 2b-1 comparators by the voltage corresponding to half-scale, 
and only then apply the input voltage. This method amounts to separately 
determining the MSB, and requires only 2b-1 + 1 comparators. 

Why should we stop with determining the MSB separately? Once it 
has been determined we could easily add another step to our algorithm to 
determine the second most significant bit, thus reducing to 2b-2 + 3 the 
number of comparators needed. Continuing recursively in this fashion we 
find that we now require only b stages, in each of which we find one bit, 
and only b comparators in all. Of course other compromises are possible, 
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Figure 2.26: Schematic diagram of a flash converter A/D. 

for example, n most significant bits can be determined by a coarse flash 
converter, and then the remaining b - n bits by an appropriately shifted 
fine converter. These methods go by the name serial-parallel or half-JEash 
converters. 

In order to use such a device we would have to ensure that the input 
voltage remains constant during the various stages of the conversion. The 
time taken to measure the voltage is known a~ the aperture time. Were 
the voltage to fluctuate faster than the aperture time, the result would be 
meaningless. In order to guarantee constancy of the input for a sufficient 
interval a sample and hold circuit is used. The word ‘hold’ is quite descriptive 
of the circuit’s function, that of converting the continuously varying analog 
signal into a piecewise constant, boxcar signal. 

When a sample and hold circuit is employed, we can even reduce the 
number of comparators employed to one, at the expense of yet a further 
increase in aperture time. We simply vary the reference voltage through 
all the voltages in the desired range. We could discretely step the voltage 
through 2b discrete levels, while at the same time incrementing a counter; 
the desired level is the value of this counter when the reference voltage 
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first passes the sample and hold voltage. Stepping through 2b levels can be 
a complex and time-intensive job, and can be replaced by a continuously 
increasing ramp. The counter is replaced by a mechanism that measures the 
time until the comparator triggers. A sawtooth waveform is usually utilized 
in order to quickly return to the starting point. This class of A/D converters 
is called a counting converter or a slope converter. 

High-precision counting converters are by their very nature extremely 
slow. Successive-upproxirnation converters are faster for the same reason 
that half-flash are faster than flash converters. The principle is to start with 
a steep slope, thus quickly determining a rough approximation to the input 
voltage. Once the reference passes the input it is reduced one level and 
further increased at a slower rate. This process continues until the desired 
number of bits has been obtained. 

Now that we understand some of the principles behind the operation 
of real-world A/D devices, we can discuss their performance specifications. 
Obviously the device chosen must be able to operate at the required sam- 
pling rate, with as many bits of accuracy as further processing requires. 
However, bits are not always bits. Imagine a less-than-ethical hardware en- 
gineer, whose design fails to implement the require number of bits. This 
engineer could simply add a few more pins to his A/D chip, not connecting 
them to anything in particular, and claim that they are the least significant 
bits of the converter. Of course they turn out to be totally uncorrelated to 
the input signal, but that may be claimed to be a sign of noise. Conversely, if 
a noisy input amplifier reduces the SNR below that given by equation (2.29) 
we can eliminate LSBs without losing any signal-related information. A/D 
specifications often talk about the number of efective bits as distinct from 
the number of output bits. Effective bits are bits that one can trust, the num- 
ber of bits that are truly input-signal correlated. We can find this number 
by reversing the use of equation (2.29). 

The number of effective bits will usually decrease with the frequency 
of the input signal. Let’s understand why this is the case. Recall that the 
A/D must actually observe the signal over some finite interval, known as the 
aperture time, in order to determine its value. For a low-frequency signal this 
is not problematic since the signal is essentially constant during this entire 
time. However, the higher the frequency the more the signal will change 
during this interval, giving rise to aperture uncertainty. Consider a pure sine 
wave near where it crosses the axis. The sine wave is approximately linear 
in this vicinity, and its slope (derivative) is proportional to the frequency. 
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Prom these considerations it is easy to see that 

fTqxrture 5 rb (2.30) 

so that the effective bits decrease with increasing frequency. 
The sigma-delta, or one-bit, digitizer is a fundamentally different kind 

of A/D device. Although the principles have been known for a long time, 
sigma-delta digitizing has become fashionable only in the last few years. This 
is because its implementation has only become practical (read inexpensive) 
with recent developments in VLSI practice. 

With delta-RX4 one records the differences (‘delta’s) between successive 
signal values rather than the values themselves. It is clear that given the 
initial value and a sequence of such differences the original signal may be 
recovered. Hence delta-PCM carries information equivalent to the original 
PCM. The desirability of this encoding is realized when the signal does 
not vary too rapidly from sample to sample. In this case these differences 
will be smaller in absolute value (and consequently require fewer bits to 
capture) than the signal values themselves. This principle is often exploited 
to compress speech, which as we shall see in Section 19.8 contains more 
energy at low frequencies. 

When the signal does vary too much from sample to sample we will con- 
stantly overflow the number of bits we have allotted to encode the difference. 
To reduce the possibility of this happening we can increase the sampling 
rate. Each doubling of the sampling rate should reduce the absolute value 
of the maximum difference by a factor of two and accordingly decrease the 
number of bits required to encode it by one. We therefore see a trade-off 
between sampling frequency and bits; we can sample at Nyquist with many 
bits, or oversample with fewer bits. Considering only the number of bits 
produced, slower is always better; but recalling that the number of com- 
parators required in a flash converter increases exponentially in the number 
of bits encoded, faster may be cheaper and more reliable. In addition there 
is another factor that makes an oversampled design desirable. Since we are 
oversampling, we can implement the antialiasing filter digitally, making it 
more dependable and flexible. 

It would seem that we have just made our A/D more complex by re- 
quiring digital computation to be performed. However, reconstructing the 
original signal from its delta encoding requires digital computation in any 
case, and the antialiasing filter can be combined with the reconstruction. 
The overall computation is a summing (represented mathematically by the 
letter sigma) of weighted differences (deltas) and consequently these designs 
are called sigma-delta converters. 
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Carried to its logical extreme delta encoding can be limited to a one-bit 
representation of the analog signal, an encoding designated delta modulation. 
As in a conventional A/D we observe the signal at uniformly spaced inter- 
vals, but now we record only whether the signal has increased or decreased 
as compared to the last sampling interval. When the signal is sufficiently 
oversampled, and now we may require extremely high sampling frequencies, 
we can still recover the original signal. This is the principle behind what is 
advertised a~ one-bit sampling. 

Before leaving our discussion of hardware for moving between analog and 
digital domains, we should mention D/A designs. D/A devices are in general 
similar to A/D ones. The first stage of the D/A is the antidigitizer (a device 
that converts the digital representation into an appropriate analog voltage). 
In principle there need be no error in such a device, since all digitized levels 
are certainly available in the continuous world. Next comes the antisampler, 
which must output the antidigitized values at the appropriate clock times. 
Once again this can, in principle, be done perfectly. The only quandary is 
what to output in between sampling instants. We could output zero, but 
this would require expensive quickly responding circuits, and the resulting 
analog signal would not really resemble the original signal at all. The easiest 
compromise is to output a boxcar (piecewise constant) signal, a sort of anti- 
sample-and-hold! The signal thus created still has a lot of ‘corners’ and 
accordingly is full of high-frequency components, and must be smoothed by 
an appropriate low-pass filter. This ‘anti-antialiasing filter’ is what we called 
the ‘reconstruction filter’ in Figure 1.3. It goes by yet a third name as well, 
the sine filter, a name that may be understood from equation (2.27). 

EXERCISES 

2.11.1 Design a thermometer to binary converter circuit for an eight level digitizer 
(one with eight inputs and three outputs). You may only use logical gates, 
devices that perform the logical NOT, AND, OR, and XOR of their inputs. 

2.11.2 A useful diagnostic tool for testing A/D circuits is the level histogram. One 
inputs a known signal that optimally occupies the input range and counts 
the number of times each level is attained. What level histogram is expected 
for a white noise signal? What about a sinusoid? Write a program and find 
the histograms for various sounds (e.g., speech, musical instruments). 

2.11.3 An A/D is said to have bad transitions when certain levels hog more of the 
input range than they should. An A/D is said to have a stuck bit when 
an output bit is constant, not dependent on the input signal. Discuss using 
sawtooth and sinusoidal inputs to test for these malfunctions. 
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2.11.4 A signal that is too weak to be digitized can sometimes be captured using 
a technique known as dithering whereby a small amount of random noise is 
added before digitizing. Explain and demonstrate how dithering works. 

2.11.5 Delta encoding is often allocated fewer bits than actually needed. In this 
cases we must round the differences to the nearest available level. Assuming 
uniform spacing of quantization levels, how much noise is introduced as a 
function of the number of bits. Write a program to simulate this case and try 
it on a speech signal. It is often the case that smaller differences are more 
probable than larger ones. How can we exploit this to reduce the quantization 
error? 

2.11.6 Fixed step size delta modulation encodes only the sign of the difference 
between successive signal values, d, = sgn(s, - s+r), but can afford to 
oversample by b, the number of bits in the original digitized signal. Recon- 
struction of the signal involves adding or subtracting a fixed 6, according to 
n sn = s^,-1 + d,6. What problems arise when S is too small or too large? 
Invent a method for fixes these problems and implement it. 

2.11.7 Prove equation (2.30). 
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by Oppenheim and Schafer [185] that has been updated and reissued as (1861. A 
more introductory text co-authored by Oppenheim is [187]. Another comprehensive 
textbook with a similar ‘engineering approach’ is by Proakis and Manolakis [200]. 
A very comprehensive but condensed source for almost everything related to DSP 
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More accessible to non-engineers, but at a much more elementary level and 
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written a short but informative introductory book [252]. Finally, Mclellan, Schafer 
and Yoder have compiled a course for first year engineering students that includes 
demos and labs on a CD [167]. 
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The Spectrum of Periodic Signals 

Signals dwell both in the time and frequency domains; we can equally ac- 
curately think of them as values changing in time (time domain), or as 
blendings of fundamental frequencies (spectral domain). The method for de- 
termining these fundamental frequencies from the time variations is called 
Fourier or spectral analysis. Similar techniques allow returning to the time 
domain representation from the frequency domain description. 

It is hard to believe that 300 years ago the very idea of spectrum didn’t 
even exist, that less than 200 years ago the basic mechanism for its cal- 
culation was still controversial, and that as recently as 1965 the algorithm 
that made its digital computation practical almost went unpublished due to 
lack of interest. Fourier analysis is used so widely today that even passing 
mention of its most important applications is a lengthy endeavor. Fourier 
analysis is used in quantum physics to uncover the structure of matter on 
the smallest of scales, and in cosmology to study the universe as a whole. 
Spectroscopy and X-ray crystallography rely on Fourier analysis to analyze 
the chemical composition and physical structure from minute quantities of 
materials, and spectral analysis of light from stars tells us of the composition 
and temperature of bodies separated from us by light years. Engineers rou- 
tinely compute Fourier transforms in the analysis of mechanical vibrations, 
in the acoustical design of concert halls, and in the building of aircraft and 
bridges. In medicine Fourier techniques are called upon to reconstruct body 
organs from CAT scans and MRI, to detect heart malfunctions and sleep dis- 
orders. Watson and Crick discovered the double-helix nature of DNA from 
data obtained using Fourier analysis. Fourier techniques can help us differ- 
entiate musical instruments made by masters from inferior copies, can assist 
in bringing back to life deteriorated audio recordings of great vocalists, and 
can help in verifying a speaker’s true identity. 

In this chapter we focus on the concepts of spectrum and frequency, 
but only for periodic signals where they are easiest to grasp. We feel that 
several brief historical accounts will assist in placing the basic ideas in proper 
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context. We derive the Fourier series (FS) of a periodic signal, find the FS for 
various signals, and see how it can be utilized in radar signal processing. We 
briefly discuss its convergence and properties, as well as its major drawback, 
the Gibbs phenomenon. We also introduce a new notation that uses complex 
numbers and negative frequencies, in order to set the stage for the use of 
Fourier techniques in the analysis of nonperiodic signals in the next chapter. 

3.1 Newton’s Discovery 

Isaac Newton went over to the window and shuttered it, completely dark- 
ening the room. He returned to his lab bench, eager to get on with the 
experiment. Although he was completely sure of the outcome, he had been 
waiting to complete this experiment for a long time. 

The year was 1669 and Newton had just taken over the prestigious Lu- 
casian chair at Cambridge. He had decided that the first subject of his 
researches and lectures would be optics, postponing his further development 
of the theory of fluxions (which we now call the differential calculus). Dur- 
ing the years 1665 and 1666 Newton had been forced to live at his family’s 
farm in Lincolnshire for months at time, due to the College being closed on 
account of the plague. While at home he had worked out his theory of flux- 
ions, but he had also done something else. He had perfected a new method 
of grinding lenses. 

While working with these lenses he had found that when white light 
passed through lenses it always produced colors. He finally gave up on trying 
to eliminate this ‘chromatic aberration’ and concluded (incorrectly) that the 
only way to make a truly good telescope was with a parabolic mirror instead 
of a lens. He had just built what we now call a Newtonian reflector telescope 
proving his theory. However, he was not pleased with the theoretical aspects 
of the problem. He had managed to avoid the chromatic aberration, but 
had not yet explained the source of the problem. Where did the colors come 
from? 

His own theory was that white light was actually composed of all possible 
colors mixed together. The lenses were not creating the colors, they were 
simply decomposing the light into its constituents. His critics on this matter 
were many, and he could not risk publishing this result without iron clad 
proof; and this present experiment would vindicate his ideas. 

He looked over the experimental setup. There were two prisms, one to 
break the white light into its constituent colors, and one that would hopefully 
combine those colors back into white light again. He had worked hard in 
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polishing these prisms, knowing that if the experiment failed it would be 
because of imperfections in the glass. He carefully lit up his light source 
and positioned the prisms. After a little experimentation he saw what he 
had expected; in between the prisms was a rainbow of colors, but after the 
second prism the light was perfectly white. He tried blocking off various 
colors and observed the recomposed light’s color, putting back more and 
more colors until the light was white again. Yes, even his most vehement 
detractors at the Royal society would not be able to argue with this proof. 

Newton realized that the white light had all the colors in it. He thought 
of these colors as ghosts which could not normally be seen, and in his Latin 
write-up he actually used the word specter. Later generations would adopt 
this word into other languages as spectrum, meaning all of the colors of the 
rainbow. 

Newton’s next step in understanding these components of white light 
should have been the realization that the different colors he observed cor- 
responded to different frequencies of radiation. Unfortunately, Newton, the 
greatest scientist of his era, could not make that step, due to his firm belief 
that light was not composed of waves. His years of experimentation with 
lenses led him to refute such a wave theory as proposed by others, and 
to assert a corpuscular theory, that light was composed of small particles. 
Only in the twentieth century was more of the truth finally known; light is 
both waves and particles, combined in a way that seventeenth-century sci- 
ence could not have imagined. Thus, paradoxically, Newton discovered the 
spectrum of light, without being able to admit that frequency was involved. 

EXERCISES 

3.1.1 Each of the colors of the rainbow is characterized by a single frequency, 
while artists and computer screens combine three basic colors. Reconcile the 
one-dimensional physical concept of frequency with the three-dimensional 
psychological concept of color. 

3.1.2 Wavepackets are particle-like waves, that is, waves that are localized in space. 
For example, you can create a wavepacket by multiplying a sine wave by a 
Gaussian 

m * sin(&) =e 2~ 

where p is the approximate location. Plot the signal in space for a given time, 
and in time for a given location. What is the uncertainty in the location of 
the ‘particle’? If one wishes the ‘particle’ to travel at a speed V, one can 
substitute 1-1 = vt. What happens to the space plot now? How accurately can 
the velocity be measured? 
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3.2 Frequency Components 

Consider a simple analog sinusoid. This signal may represent monochromatic 
light (despite Newton’s prejudices), or a single tone of sound, or a simple 
radio wave. This signal is obviously periodic, and its basic period T is the time 
it takes to complete one cycle. The reciprocal of the basic period, f = *, the 
number of cycles it completes in a second, is called the frequency. Periods are 
usually measured in seconds per cycle and frequencies in cycles per second, 
or Hertz (Hz). When the period is a millisecond the frequency is a kilohertz 
(KHz) and a microsecond leads to a megahertz (MHz). 

Why did we need the qualifier basic in ‘basic period’? Well, a signal which 
is periodic with basic period T, is necessarily also periodic with period 2T, 
3T, and all other multiples of the basic period. All we need for periodicity 
with period P is for s(t + P) to equal s(t) for all t, and this is obviously 
the case for periods P which contain any whole number of cycles. Hence 
if a sinusoid of frequency f is periodic with period P, the sinusoid with 
double that frequency is also periodic with period P. In general, sinusoids 
with period nf (where n is any integer) will all be periodic with period P. 
Frequencies that are related in this fashion are called harmonics. 

A pure sine is completely specified by its frequency (or basic period), 
its amplitude, and its phase at time t = 0. For more complex periodic 
signals the frequency alone does not completely specify the signal; one has 
to specify the content of each cycle as well. There are several ways of doing 
this. The most straightforward would seem to require full specification of the 
waveform, that is the values of the signal in the basic period. This is feasible 
for digital signals, while for analog signals this would require an infinite 
number of values to be specified. A more sophisticated way is to recognize 
that complex periodic signals have, in addition to their main frequency, many 
other component frequencies. Specification of the contributions of all these 
components determines the signal. This specification is called the signal’s 
spec trunk 

What do we mean by frequency components? Note the following facts. 

l The multiplication of a periodic signal by a number, and the addition 
of a constant signal, do not affect the periodicity. 

l Sinusoids with period nf (where n is any integer) are all periodic with 
period P = i. These are harmonics of the basic frequency sinusoid. 

l The sum of any number of signals all of which are periodic with period 
T, is also periodic with the same period. 
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From all of these facts together we can conclude that a signal that results 
from weighted summing of sinusoidal signals with frequencies n f, and possi- 
bly addition of a constant signal, is itself periodic with period P = -& Such a 
trigonometric series is no longer sinusoidal, indeed it can look like just about 
anything, but it is periodic. You can think of the spectrum as a recipe for 
preparing an arbitrary signal; the frequencies needed are the ingredients, 
and the weights indicate how much of each ingredient is required. 

The wealth of waveforms that can be created in this fashion can be 
demonstrated with a few examples. In Figure 3.1 we start with a simple sine, 
and progressively add harmonics, each with decreased amplitude (the sine 
of frequency rCf having amplitude i). On the left side we see the harmonics 
themselves, while the partial sums of all harmonics up to that point appear 
on the right. It would seem that the sum tends to a periodic sawtooth signal, 

K sin@&) K-*~ c k 
+ -I(t) 

k=O 
(3 1) . 

Figure 3.1: Building up a periodic sawtooth signal -‘T(t) from a sine and its harmonics. 
In (A) are the component sinusoids, and in (B) the composite signal. 

B 

Figure 3.2: Building up a periodic square wave signal from a sine and its odd harmonics. 
In (A) are the component sinusoids, and in (B) the composite signal. 
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and this feeling is strengthened when the summation is carried out to higher 
harmonics. Surprisingly, when we repeat this feat with odd harmonics only 
we get a square wave 

K 1 
c ---sin ((2k + 1)wt) - q (t> 
k (p+l = 

(3 2) . 

as can be seen in Figure 3.2. 
The signal f(t) = sin(wt) is an odd function of t, that is f(-t) = -f(t). 

Since the sum of odd functions is odd, all signals generated by summing only 
harmonically related sines will be odd as well. If our problem requires an 
even function, one for which f(4) = f(t), we could sum cosines in a similar 
way. In order to produce a signal that is neither odd nor even, we need to 
sum harmonically related sines and cosines, which from here on we shall call 
Harmonically Related Sinusoids (HRSs). In this way we can produce a huge 
array of general periodic signals, since any combination of sines and cosines 
with frequencies all multiples of some basic frequency will be periodic with 
that frequency. 

In fact, just about anything, as long as it is periodic, can be represented 
as a trigon .ometric series involving harmonically related sin usoids. Just about 
anything, as long as it is periodic, can be broken down into the weighted 
sum of sinusoidal signals with frequencies nf, and possibly a constant sig- 
nal. When first discovered, this statement surprised even the greatest of 
mathematicians. 

EXERCISES 

3.2.1 

3.2.2 

3.2.3 

In the text we considered summing all harmonics and all odd harmonics with 
amplitude decreasing as i. Why didn’t we consider all even harmonics? 

When two sinusoids with close frequencies are added beats with two observ- 
able frequencies result. Explain this in terms of the arguments of this section. 

To what waveforms do the following converge? 
1. ;- ip$E.l+~+~~~+...) 

2. p-p?g.l+~+~+...) . . . 
3. .$ + ipin - ii(E$E.l + Ei$l+ SCZ.#l +. . .) 

4. i- $(?y-~~+?~.+..., 
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3.3 Fourier’s Discovery 
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The idea of constructing complex periodic functions by summing trigono- 
metric functions is very old; indeed it is probable that the ancient Baby- 
lonians and Egyptians used it to predict astronomical events. In the mid- 
eighteenth century this idea engendered a great deal of excitement due to 
its possible application to the description of vibrating strings (such as violin 
strings). The great eighteenth-century Swiss mathematician Leonard Euler 
realized that the equations for the deflection of a freely vibrating string ad- 
mit sinusoidal solutions. That is, if we freeze the string’s motion, we may 
observe a sinusoidal pattern. If the string’s ends are fixed, the boundary 
conditions of nondeflecting endpoints requires that there be an even num- 
ber of half wavelengths, as depicted in Figure 3.3. These different modes 
are accordingly harmonically related. The lowest spatial frequency has one 
half-wavelength in the string’s length L, and so is of spatial frequency $ 
cycles per unit length. The next completes a single cycle in L, and so is of 

’ frequency E. This is followed by three half cycles giving frequency &, and 
so on. The boundary conditions ensure that all sinusoidal deflection patterns 
have spatial frequency that is a multiple of &. 

However, since the equations for the deflection of the string are linear, 
any linear combination of sinusoids that satisfy the boundary conditions is 
also a possible oscillation pattern. Consequently, a more general transverse 
deflection trace will be the sum of the basic modes (the sum of HRSs). The 

Figure 3.3: The instantaneous deflection of a vibrating string may be sinusoidal, and 
the boundary conditions restrict the possible frequencies of these sines. The top string 
contains only half of its wavelength between the string’s supports; the next contains a full 
wavelength, the third three-quarters, etc. 
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question is whether this is the most general pattern of deflection. In the eigh- 
teenth and nineteenth century there were good reasons for suspecting the 
answer to be negative. Not having the benefit of the computer-generated 
plots of sums of HRSs presented in the previous section, even such great 
mathematicians as Lagrange believed that all such sums would yield smooth 
curves. However, it was easy to deform the string such that its shape would 
be noncontinuous (e.g., by pulling it up at its middle point forcing a trian- 
gular shape). What would happen the moment such a plucked string was 
released? Since the initial state was supposedly not representable in terms 
of the basic sinusoidal modes, there must be other, nonsinusoidal, solutions. 
This was considered to be a fatal blow to the utility of the theory of trigono- 
metric series. It caused all of the mathematicians of the day to lose interest 
in them; all except Jean Baptiste Joseph Fourier. In his honor we are more 
apt today to say ‘Fourier series’ than ‘trigonometric series’. 

Although mathematics was Fourier’s true interest, his training was for 
the military and clergy. He was sorely vexed upon reaching his twenty-first 
birthday without attaining the stature of Newton, but his aspirations had to 
wait for some time due to his involvement in the French revolution. Fourier 
(foolishly) openly criticized corrupt practices of officials of Robespierre’s gov- 
ernment, an act that led to his arrest and incarceration. He would have gone 
to the guillotine were it not for Robespierre himself having met that fate 
first. Fourier returned to mathematics for a time, studying at the Ecole Nor- 
mal in Paris under the greatest mathematicians of the era, Lagrange and 
Laplace. After that school closed, he began teaching mathematics at the 
Ecole Polytechnique, and later succeeded Lagrange to the chair of mathe- 
matical analysis. He was considered a gifted lecturer, but as yet had made 
no outstanding contributions to science or mathematics. 

Fourier then once again left his dreams of mathematics in order to join 
Napoleon’s army in its invasion of Egypt. After Napoleon’s loss to Nel- 
son in the Battle of the Nile, the French troops were trapped in Egypt, 
and Fourier’s responsibilities in the French administration in Cairo included 
founding of the Institut d’Egypte (of which he was secretary and member of 
the mat hemat its division), the overseeing of archaeological explorations, and 
the cataloging of their finds. When he finally returned to France, he resumed 
his post as Professor of Analysis at the Ecole Polytechnique, but Napoleon, 
recalling his administrative abilities, snatched him once again from the uni- 
versity, sending him to Grenoble as Prefect. Although Fourier was a most 
active Prefect, directing a number of major public works, he neglected nei- 
ther his Egyptological writing nor his scientific research. His contributions 
to Egyptology won him election to the French Academy and to the Royal 
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Society in London. His most significant mathematical work is also from this 
period. This scientific research eventually led to his being named perpetual 
secretary of the Paris Academy of Sciences. 

Fourier was very interested in the problem of heat propagation in solids, 
and in his studies derived the partial differential equation 

dV 
K 

d2 V -- - 
at dX2 

now commonly known as the difjhion equation. The solution to such an 
equation is, in general, difficult, but Fourier noticed that there were solutions 
of the form f(t)g(x), where f(t) were decreasing exponentials and g(x) were 
either sin(nx) or cos(nx). Fourier claimed that the most general g(x) would 
therefore be a linear combination of such sinusoids 

g(x) = 2 (uk sin(kx) + bk cos(kx)) 
k=O 

(3 3) . 

the expansion known today as the Fourier series. This expansion is more 
general than that of Euler, allowing both sines and cosines to appear simul- 
taneously. Basically Fourier was claiming that arbitrary functions could be 
written as weighted sums of the sinusoids sin(nx) and cos(nx), a result we 
now call Fourier’s theorem. 

Fourier presented his theorem to the Paris Institute in 1807, but his 
old mentors Lagrange and Laplace criticized it and blocked its publication. 
Lagrange once again brought up his old arguments based on the inability 
of producing nonsmooth curves by trigonometric series. Fourier eventually 
had to write an entire book to answer the criticisms, and only this work 
was ever published. However, even this book fell short of complete rigorous 
refutation of Lagrange’s claims. The full proof of validity of Fourier’s ideas 
was only established later by the works of mathematicians such as Dirichlet, 
Riemann, and Lebesgue. Today we know that all functions that obey certain 
conditions (known as the Dirichlet conditions), even if they have discontin- 
uous derivatives or even if they are themselves discontinuous, have Fourier 
expansions. 

EXERCISES 

3.3.1 Consider functions f(t) defined on the interval -1 5 t 5 1 that are defined 
by finite weighted sums of the form XI, fit cos(dt), where k is an integer. 
What do all these functions have in common? What about weighted sums of 
sin@t)? 
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3.3.2 Show that any function f(t) defined on the interval -1 5 t < 1 can be written 
as the sum of an even function fe(t) (fe(--t) = fe(-t)) and an odd function 
(fo(-t) = -fo(-t)). 

3.3.3 Assume that all even functions can be represented as weighted sums of cosines 
as in the first exercise, and that all odd functions can be similarly rep- 
resented as weighted sums of sines. Explain how Fourier came to propose 
equation (3.3). 

3.3.4 How significant is the difference between a parabola and half a period of 
a sinusoid? To find out, approximate z(t) = cos(t) for -4 5 t 5 4 by 
y(t) = at2 + bt + c. Find the coefficients by requiring y(-t) = y(t), y(0) = 1 
and y(f ;) = 0. Plot the cosine and its approximation. What is the maximal 
error? The cosine has slope 1 at the ends of the interval; what is the slope 
of the approximation? In order to match the slope at t = &4 as well, we 
need more degrees of freedom, so we can try y(t) = at4 + bt2 + c. Find the 
coefficients and the maximum error. 

3.4 Representation by Fourier Series 

In this section we extend our discussion of the mathematics behind the 
Fourier series. We will not dwell upon formal issues such as conditions for 
convergence of the series. Rather, we have two related tasks to perform. 
First, we must convince ourselves that Fourier was right, that indeed any 
function (including nonsmooth ones) can be uniquely expanded in a Fourier 
Series (FS). This will demonstrate that the sinusoids, like the SUIs of Sec- 
tion 2.5, form a basis for the vector space of periodic signals with period T. 
The second task is a practical one. In Section 3.2 we posited a series and 
graphically determined the periodic signal it represented. Our second task 
is to find a way to do the converse operation-given the periodic signal to 
find the series. 

In Section 2.5 we saw that any digital signal could be expanded in the 
set of all SUIs. It was left as exercises there to show that the same is true 
for the analog domain, and in particular for periodic analog signals. The 
set of all shifted analog impulses (Dirac delta functions) s(t - T) forms a 
basis in which all analog signals may be expanded. Now, since we are dealing 
with periodic signals let us focus on the signal’s values in the time interval 
between time zero and time T. It is clear that it is sufficient to employ 
shifted impulses for times from zero to T to recreate any waveform in this 
time interval. 
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The desired proof of a similar claim for HRSs can rest on our showing 
that any shifted analog impulse in the required time interval can be built 
up from such sinusoids. Due to the HRS’s periodicity in T, the shifted im- 
pulse will automatically be replicated in time to become a periodic ‘impulse 
train’. Consequently the following algorithm finds the HRS expansion of any 
function of period T. 

focus on the interval of time from t=O to t=T 
expand the desired signal in this interval in shifted impulses 
for each impulse substitute its HRS expansion 
rearrange and sort the HRS terms 
consider this to be the desired expansion for all t 

All that remains is to figure out how to represent an impulse in terms 
of HRSs. In Section 3.2 we experimented with adding together an infinite 
number of HRSs, but always with amplitudes that decreased with increasing 
frequency. What would happen if we used all harmonics equally? 

bo + cos(t) + cos(2t) + cos(3t) + cos(4t) + . . . (3 4) . 

At time zero all the terms contribute unity and so the infinite sum diverges. 
At all other values the oscillations cancel themselves out. We demonstrate 
graphically in Figure 3.4 that this sum converges to an impulse centered 
at time zero. We could similarly make an impulse centered at any desired 
time by using combinations of sin and cos terms. This completes the demon- 
stration that any analog impulse centered in the basic period, and thus any 
periodic signal, can be expanded in the infinite set of HRSs. 

Figure 3.4: Building up an impulse from a cosine and its harmonics. 
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We are almost done. We have just shown that the HRSs span the vector 
space of periodic analog signals. In order for this set to be a basis the ex- 
pansions must be unique. The usual method of proving uniqueness involves 
showing that there are no extraneous signals in the set, i.e., by showing that 
the HRSs are linearly independent. Here, however, there is a short-cut; we 
can show that the HRSs comprise an orthonormal set, and we know from 
Appendix A.14 that all orthonormal sets are linearly independent. 

In Section 2.5 the dot product was shown to be a valid scalar multipli- 
cation operation for the vector space of analog signals. For periodic analog 
signals we needn’t integrate over all times, rather the product given by 

T 

r =x-y means r = 
s 

x(t) I@> dt 
0 

(where the integration can actually be performed over any whole period) 
should be as good. Actually it is strictly better since the product over all 
times of finite-valued periodic signals may be infinite, while the present 
product always finite. Now it will be useful to try out the dot product on 
sinusoids. 

We will need to know only a few definite integrals, all of which are 
derivable from equation A.34. First, the integral of any sinusoid over any 
number of whole periods gives zero 

iTsin dt=O (3 6) . 

since sin(-x) = - sin(x), and so for every positive contribution to the in- 
tegral there is an equal and opposite negative contribution. Second, the 
integral of sin* (or cos*) over a single period is 

iTsin ($t) dt = g 

which can be derived by realizing that symmetry dictates 

I = iTsin ($t) dt = lTcos2 (ft) dt 

and so 

W) 

21=iT (sin*($t)+cos*($t)) dt=lTldt=T 
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by identity (A.20). Somewhat harder to guess is the fact that the integral 
of the product of different harmonics is always zero, i.e. 

L*sin (Ft) cos (Ft) dt = 0 V72,m > 0 

lTsin (Fi!) sin (Ft) dt = $,mS 

iTcos (Ft) cos (Ft) dt = &,S 

(3 8) . 

the proof of which is left as an exercise. 
These relations tell us that the set of normalized signals {v~}~=~ defined 

bY 

vzrc+1@> = &OS(y) Vk>O 

?J2k@) = J$in(Tt) Vk>O 

forms an orthonormal set of signals. Since we have proven that any signal 
of period T can be expanded in these signals, they are an orthonormal set 
of signals that span the space of periodic signals, and so an orthonormal 
basis. The {vk} are precisely the HRSs to within unimportant multiplica- 
tive constants, and hence the HRSs are an orthogonal basis of the periodic 
signals. The Fourier series takes on a new meaning. It is the expansion of 
an arbitrary periodic signal in terms of the orthogonal basis of HRSs. 

We now return to our second task-given a periodic signal s(t), we now 
know there is an expansion: 

How do we find the expansion coefficients ck? This task is simple due to 
the basis {2/k) being orthonormal. From equation A.85 we know that for an 
orthonormal basis we need only to project the given signal onto each basis 
signal (using the dot product we defined above). 

s T 

i&=s’v= s(t) vk(t) dt 
0 
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This will give us the coefficients for the normalized basis. To return to the 
usual HRSs 

(3 9) . 

is not difficult. 

ak = $iTs(t)sin(Ft) dt 

1 T 
b(-J = - 

J 
s(t) dt 

bl, = i j&COS(~t) dt 

(3.10) 

This result is most fortunate; were the sinusoids not orthogonal, finding 
the appropriate coefficients would require solving ‘normal equations’ (see 
Appendix A.14). When there are a finite number N of basis functions, this 
is a set of N equations in N variables; if the basis is infinite we are not even 
able to write down the equations! 

These expressions for the FS coefficients might seem a bit abstract, so 
let’s see how they really work. First let’s start with a simple sinusoid s(t) = 

A sin(&) + B. The basic period is T = c and so the expansion can contain 
only sines and cosines with periods that divide this T. The DC term is, using 
equations (3.6) and (3.7), 

1 T 
bo = - J T o 

s(t) dt = iiT (Asin +B) dt= $B’T=l3 

as expected, while from equations (3.8) all other terms are zero except for 
one. 

al = GiTs(t)sin (Ft) dt 

= $iT(Asin($t)+B)sin($t)dt=$Ag=A 

This result doesn’t surprise us since the expansion of one of basis signals 
must be exactly that signal! 
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Slightly more interesting is the case of the square wave q (t/T). There 
will be no DC term nor any cosine terms, as can be seen by direct symmetry, 
To show this mathematically we can exploit a fact we have previously men- 
tioned, that the domain of integration can be over any whole period. In this 
case it is advantageous to use the interval from -T/2 to T/2. Since q (t/T) 
is an odd function, i.e., 0(-t/T) = - q (t/T), the contribution from the left 
half interval exactly cancels out the contribution of the right half interval. 
This is a manifestation of a general principle; odd functions have only sine 
terms, while even functions have only DC and cosine term contributions. 
The main contribution for q (t/T) will be from the sine of period T, with 
coefficient 

al = $- LTs(t)sin ($t) dt 

while the sine of double this frequency 

cannot contribute because of the odd problem once again. Therefore only 
odd harmonic sinusoids can appear, and for them 

uk = $ /)(t)sin (Ft) dt 

= ~~~sin(~~)~~-~~~sin(~~)~~ 

= 2$S,Tsin($5+~= -$ 

which is exactly equation (3.2). 

EXERCISES 

3.4.1 Our proof that the HRSs span the space of periodic signals required the HRSs 
to be able to reproduce all SUIs, while Figure 3.4 reproduced only an impulse 
centered at zero. Show how to generate arbitrary SUIs (use a trigonometric 
sum formula). 
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3.4.2 Observe the sidelobes in Figure 3.4. What should the constant term bc be 
for the sidelobes to oscillate around zero? In the figure each increase in the 
number of cosines seems to add another half cycle of oscillation. Research 
numerically the number and amplitude of these oscillations by plotting the 
sums of larger numbers of cosines. Do they ever disappear? 

3.4.3 Reproduce a graph similar to Figure 3.4 but using sines instead of cosines. 
Explain the results (remember that sine is an odd function). Why isn’t the 
result simply a shifted version of cosine case? 

3.4.4 Find the Fourier series coefficients for the following periodic signals. In order 
to check your results plot the original signal and the partial sums. 

1. Sum of two sines al sin(&) + iz2 sin(2Lctt) 

2. Triangular wave 

3. Fully rectified sine 1 sin(z)1 

4. Half wave rectified sine sin(z)u(sin(z)) 

3.4.5 We can consider the signal s(t) = Asin + B to be periodic with period 
T = k What is the expansion now? Is there really a difference? 

W’ 

3.4.6 For the two-dimensional plane consider the basis made up of unit vectors 
along the x axis Al = (1,O) and along the 45” diagonal A = (-&, -$). The 

unit vector of slope $ is Y = (5, -&). Find the coefficients of the expansion 
Y = cqAl + cx2A2 by projecting Y on both Al and A2 and solving the 
resulting equations. 

3.4.7 Find explicitly the normal equations for a set of basis signals 
estimate the computational complexity of solving these equations 

Al,(t) and 

3.5 Gibbs Phenomenon 

Albert Abraham Michelson was the first American to receive a Nobel prize 
in the sciences. He is justly famous for his measurement of the speed of 
light and for his part in the 1887 Michelson-Morley experiment that led to 
the birth of the special theory of relativity. He invented the interferometer 
which allows measurement of extremely small time differences by allowing 
two light waves to interfere with each other. What is perhaps less known is 
that just after the Michelson-Morley experiment he built a practical Fourier 
analysis device providing a sort of physical proof of Fourier’s mathematical 
claims regarding representation of periodic signals in terms of sinusoids. He 
was quite surprised when he found that the Fourier series for the square wave 
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n(t) didn’t converge very well. In fact there was significant ‘ringing’, both- 
ersome oscillations that wouldn’t go away with increasing number of terms. 
Unsure whether he had discovered a new mathematical phenomenon or sim- 
ply a bug in his analyzer he turned to the eminent American theoretical 
physicist of the time, Josiah Willard Gibbs. Gibbs realized that the problem 
was caused by discontinuities. Dirichlet had shown that the Fourier series 
converged to the midpoint at discontinuities, and that as long as there were 
a finite number of such discontinuities the series would globally converge; 
but no one had previously asked what happened near a discontinuity for a 
finite number of terms. In 1899 Gibbs published in Nature his explanation 
of what has become known as the Gibbs phenomenon. 

In Section 3.3 we mentioned the Dirichlet conditions for convergence of 
the Fourier series. 

Theorem: Dirichlet’s Convergence Conditions 
Given a periodic signal s(t), if 

1. s(t) is absolutely integratable, i.e., S Is(t)ldt < 00, where the integral 
is over one period, 

2. s(t) has at most a finite number of extrema, and 

3. s(t) has at most a finite number of finite discontinuities, 

then the Fourier series converges for every time. At discontinuities the series 
converges to the midpoint. n 

To rigorously prove Dirichlet’s theorem would take us too far afield so we 
will just give a taste of the mathematics one would need to employ. What is 
necessary is an analytical expression for the partial sums S&t) of the first 
K terms of the Fourier series. It is useful to define the following sum 

DK(t) = ; + cos(t) + cos(2t) + . . . + cos(Kt) = $ + 2 cos(kt) (3.11) 
k=l 

and to find for it an explicit expression by using trigonometric identities. 

&c(t) = 
sin ((K + ij)t) 

2sin($) 

It can then be shown that for any signal s(t) the partial sums equal 

(3.12) 

SK(t)= ~Js(~+T) DK ($7) dr (3.13) 
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Figure 3.5: Partial sums of the Fourier series of a periodic square wave signal O(t) for 
K = 0, 1,2,3,5 and 7. Note that although far from the discontinuity the series converges 
to the square wave, near it the overshoot remains. 

(the integration being over one period of duration T) from which Dirichlet’s 
convergence results emerge. 

Now you may believe, as everyone did before Gibbs, that Dirichlet’s 
theorem implies that amplitude of the oscillations around the true values 
decreases as we increase the number of terms in the series. This is the case 
except for the vicinity of a discontinuity, as can be seen in Figure 3.5. We 
see that close to a discontinuity the partial sums always overshoot their 
target, and that while the time from the discontinuity to the maximum 
overshoot decreases with increasing K, the overshoot amplitude does not 
decrease very much. This behavior does not contradict Dirichlet’s theorem 
since although points close to jump discontinuities may initially be affected 
by the overshoot, after enough terms have been summed the overshoot will 
pass them and the error will decay. 

For concreteness think of the square wave 0 (t). For positive times close 
to the discontinuity at t = 0 equation (3.13) can be approximated by 

SK(t) = 2 
7T 

sgn(t) Sine (47r.K 

as depicted in Figure 3.6. Sine is the sine integral. 

s 

t 

Sine(t) = sinc(-r) dr 
0 

Sine approaches 5 for large arguments, and thus SK(~) does approach unity 
for large K and/or t. The maximum amplitude of Sine occurs when its 
derivative (sine) is zero, i.e., when its argument is 7r. It is not hard to find 
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Figure 3.6: Gibbs phenomenon for the discontinuity of the square wave at t = 0. Plotted 
are the square wave, the partial sum with K = 3 terms, and the approximation using the 
sine integral. 

numerically that for large K this leads to an overshoot of approximately 
0.18, or a little less than 9% of the height of the jump. Also, the sine integral 
decays to its limiting value like i; hence with every doubling of distance from 
the discontinuity the amplitude of the oscillation is halved. We derived these 
results for the step function, but it is easy to see that they carry over to a 
general jump discontinuity. 

That’s what the mathematics says, but what does it mean? The os- 
cillations themselves are not surprising, this is the best way to smoothly 
approximate a signal-sometimes too high, sometimes too low. As long as 
these oscillations rapidly die out with increasing number of terms the ap- 
proximation can be considered good. What do we expect to happen near a 
discontinuity? The more rapid a change in the signal in the time domain is, 
the wider the bandwidth will be in the frequency domain. In fact the un- 
certainty theorem (to be discussed in Section 4.4) tells us that the required 
bandwidth is inversely proportional to the transition time. A discontinuous 
jump requires an infinite bandwidth and thus no combination of a finite 
number of frequencies, no matter how many frequencies are included, can 
do it justice. Of course the coefficients of the frequency components of the 
square wave do decrease very rapidly with increasing frequency. Hence by 
including more and more components, that is, by using higher and higher 
bandwidth, signal values closer and closer to the discontinuity, approach 
their proper values. However, when we approximate a discontinuity using 
bandwidth BW, within about l/BW of the discontinuity the approxima- 
tion cannot possibly approach the true signal. 
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We can now summarize the Gibbs phenomenon. Whenever a signal has 
a jump discontinuity its Fourier series converges at the jump time to the 
midpoint of the jump. The partial sums display oscillations before and after 
the jump, the number of cycles of oscillation being equal to the number 
of terms taken in the series. The size of the overshoot decreases somewhat 
with the number of terms, approaching about 9% of the size of the jump. 
The amplitude of the oscillations decreases as one moves away from the 
discontinuity, halving in amplitude with every doubling of distance. 

EXERCISES 

3.5.1 Numerically integrate sine(t) and plot Sine(t). Show that it approaches &$ 
for large absolute values. Find the maximum amplitude. Where does it occur? 
Verify that the asymptotic behavior of the amplitude is i. 

3.5.2 The following exercises are for the mathematically inclined. Prove equa- 
tion (3.12) by term-by-term multiplication of the sum in the definition of 
OK by sin (3) and using trigonometric identity (A.32). 

3.5.3 Prove equation (3.13) and show Dirichlet’s convergence results. 

3.5.4 Prove the approximation (3.14). 

3.5.5 Lanczos proposed suppressing the Gibbs phenomenon in the partial sum SK 
by multiplying the kth Fourier coefficient (except the DC) by sine ($) . Try 
this for the square wave. How much does it help? Why does it help? 

3.5.6 We concentrated on the Gibbs phenomenon for the square wave. How do 
we know that other periodic signals with discontinuities act similarly? (Hint: 
Consider the Fourier series for s(t) + au(t) w h ere s(t) is a continuous signal 
and a a constant.) 

3.6 Complex FS and Negative Frequencies 

The good news about the Fourier series as we have developed it is that its 
basis signals are the familiar sine and cosine functions. The bad news is 
that its basis signals are the familiar sine and cosine functions. The fact 
that there are two different kinds of basis functions, and that the DC term 
is somewhat special, makes the FS as we have presented it somewhat clumsy 
to use. Unfortunately, sines alone span only the subspace composed of all 
odd signals, while cosines alone span only the subspace of all even signals. 
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Signals which are neither odd nor even. truly require combinations of both 
Since the FS in equation (3.9) includes for every frequency both a sine and 
cosine function (which differ by 90” or a quarter cycle), it is said to be in 
quadrature form. 

The first signal space basis we studied, the SUI basis, required only one 
functional form. Is there a single set of sinusoidal signals, all of the same type, 
that forms a basis for the space of periodic signals? Well, for each frequency 
component w  the FS consists of the sum of two terms a cos(wt) + b sin@!). 
Such a sum produces a pure sinusoid of the same frequency, but with some 
phase offset d sin(wt + cp). In fact, it is easy to show that 

ak SiIl(Ut) + bl, COS(Ut) = dl, SiIl(Ut + ‘Pk) (3.15) 

as long as 

dk = J&Gj @ = taI+(bk, Q) (3.16) 

where the arctangent is the full four-quadrant function, and 

al, = dl, COS vk bk = dk Sin vk 

in the other direction. 
As a result we can expand periodic signals s(t) as 

s(t) = do i- 5 dksin 
k=. (3 + 4 

(3.17) 

(3.18) 

with both amplitudes and phases being parameters to be determined. 
The amplitude and phase form is intellectually more satisfying than the 

quadrature one. It represents every periodic signal in terms of harmonic 
frequency components, each with characteristic amplitude and phase. This is 
more comprehensible than representing a signal in terms of pairs of sinusoids 
in quadrature. Also, we are often only interested in the power spectrum, 
which is the amount of energy in each harmonic frequency. This is given by 
ldk12 with the phases ignored. 

There are drawbacks to the amplitude and phase representation. Chief 
among them are the lack of symmetry between dk and pk and the lack 
of simple formulas for these coefficients. In fact, the standard method to 
calculate dk and pk is to find ak and bk and use equations (3.16)! 

We therefore return to our original question: Is there a single set of 
sinusoidal signals, all of the same type, that forms a basis for the space of 
periodic signals and that can be calculated quickly and with resort to the 

quadrature representation? The answer turns out to be affirmative. 
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To find this new representation recall the connection between sinusoids 
and complex exponentials of equation (A.8). 

cos(wt) = f (&t + f+) 1 
sin(&) = 5 (eiwt - eeiwt) (3.19) 

We can think of the exponents with positive eiwt and negative e-jut expo- 
nents as a single type of exponential eiwt with positive and negative frequen- 
cies w. Using only such complex exponentials, although of both positive and 
negative frequencies, we can produce both the sine and cosine signals of the 
quadrature representation, and accordingly represent any periodic signal. 

s(t) = F j&&t eke T 
k=-co1 

We could once again derive the expression for the coefficients ck from those 
for the quadrature representation, but it is simple enough to derive them 
from scratch. We need to know only a single integral. 

J 

‘1 jalrnt 
eT e 

0 
-ivt ,jt = 6,,,T (3.21) 

This shows that the complex exponentials are orthogonal with respect to 
the dot product for complex signals 

J 
T 

Sl ‘S2 = Q(t) s;(q c&t 
0 

and that 

form a (complex) orthonormal set. From this it is easy to see that 

1 T 
Ck(t) = T J s(t) esiFt & 

0 

(3.22) 

(3.23) 

(3.24) 

with a minus sign appearing in the exponent. Thus Fourier’s theorem can be 
stated in a new form: All periodic functions (which obey certain conditions) 
can be written as weighted sums of complex exponentials. 

The complex exponential form of the FS is mathematically the simplest 
possible. There is only one type of function, one kind of coefficient, and 
there is strong symmetry between equations (3.20) and (3.24) that makes 
them easier to remember. The price to pay has been the introduction of 
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mysterious negative frequencies. What do we mean by -100 Hz? How can 
something cycle minus 100 times per second? 

Physically, negative frequency signals are almost identical to their posi- 
tive counterparts, since only the real part of a complex signal counts. Recall 
the pen-flashlight experiment that you were requested to perform in exer- 
cise 2.2.6. The complex exponential corresponds to observing the flashlight 
head-on, while the real sinusoid is observing it from the side. Rotation of 
the light in clockwise or counterclockwise (corresponding to positive or neg- 
ative frequencies) produces the same effect on an observer who perceives 
just the vertical (real) component; only an observer with a full view notices 
the difference. However, it would be foolhardy to conclude that negative 
frequencies are of no importance; when more than one signal is present the 
relative phases are crucial. 

We conclude this section with the 
ponential FS-that of a real sinusoid, 
of course T, and 

2Tr 
A cos( +) tci+ dt = 

computation of a simple complex ex- 
Let s(t) = Acos( %$t). The period is 

-iZ$lt 
> 

,-iZZ!$t dt 

which after using the orthogonality relation (3.21) leaves two terms. 

ck = & &,-I + $ bk,+l 

This is exactly what we expected considering equation (3.19). Had we chosen 
s(t) = Asin we would have still found two terms with identical k and 
amplitudes but with phases shifted by 90”. This is hardly surprising; indeed 
it is easy to see that all s(t) = A cos(yt + cp) will have the same FS except 
for phase shifts of cp. Such constant phase shifts are meaningless, there being 
no meaning to absolute phase, only to changes in phase. 

EXERCISES 

3.6.1 Plot sin(z) + sin(2a: + ‘p) with cp = 0, 5, T, %. What can you say about the 
effect of phase? Change the phases in the Fourier series for a square wave. 
What signals can you make? 

3.6.2 Derive all the relations between coefficients of the quadrature, amplitude and 
phase, and complex exponential representations. In other words, show how 
to obtain cLk and bl, from ck and vice versa; c&k and bk from dk and vice versa; 
ck from dk and vice versa. In your proofs use only trigonometric identities 
and equation (A.7). 
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3.6.3 Prove equation (3.21). 

3.6.4 Calculate the complex exponential FS of s(t) = Asin( yt). How does it 
differ from that of the cosine? 

3.6.5 Consistency requires that substituting equation (3.20) for the FS into equa- 
tion (3.24) for ck should bring us to an identity. Show this using (3.21). What 
new expression for the delta function is implied by the reverse consistency 
argument? 

3.6.6 What transformations can be performed on a signal without effecting its 
power spectrum Ick 1 . 27 What is the physical meaning of such transformations? 

3.7 Properties of Fourier Series 

In this section we continue our study of Fourier series. We will exclusively 
use the complex exponential representation of the FS since it is simplest, 
and in any case we can always convert to other representations if the need 
arises. 

The first property, which is obvious from the expression for ck, is linearity. 
Assume sr (t) has FS coefficients ck and sz (t) has coefficients cg , then s(t) = 
As&) + &z(t) has as its coefficients ck = AC: + Bci. This property is often 
useful in simplifying calculations, and indeed we already implicitly used it in 
our calculation of the FS of cos(wt) = $eiwt + $esiwt. As a further example, 
suppose that we need to find the FS of a constant (DC) term plus a sinusoid. 
We can immediately conclude that there will be exactly three nonzero cI, 
terms, c-l, CO, and c+i. 

In addition to its being used as a purely computational ploy, the linearity 
of ck has theoretic significance. The world would be a completely different 
place were the FS not to be linear. Were the FS of As(t) not to be Ack then 
simple amplification would change the observed harmonic content of a signal. 
Linear operators have various other desirable features. For example, small 
changes to the input of a linear operator can only cause bounded changes to 
the output. In our case this means that were one to slightly perturb a signal 
with known FS, there is a limit to how much ck can change. 

The next property of interest is the effect of time shifts on the FS. By 
time shift we mean replacing t by t - 7, which is equivalent to resetting our 
clock to read zero at time r. Since the time we start our clock is arbitrary 
such time shifts cannot alter any physical aspects of the signal being studied. 
Once again going back to the expression for cI, we find that the FS of s(t - 7) 
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l 2rk 
is e-l- T ck. The coefficients magnitudes are unchanged, but the phases have 
been linearly shifted. As we know from exercise 3.6.6 such phase shifts do 
not change the power spectrum but still may be significant. We see here that 
phase shifts that are linear in frequency correspond to time shifts. 

When a transformation leaves a signal unchanged or changes it in some 
simple way we call that transformation a symmetry. Time shift is one inter- 
esting symmetry, and another is time reversal Rev s. Although the import 
of the latter is less compelling than the former many physical operations are 
unchanged by time reversal. It is not difficult to show that the effect of time 
reversal is to reverse the FS to c-k. 

The next property of importance was discovered by Parseval and tells 
us how the energy can be recovered from the FS coefficients. 

E 
1 - T oT ls@)12 dt = 2 lck12 -- 

s 
(3.25) 

k=-co 

What does Parseval’s relation mean? The left hand side is the power com- 
puted over a single period of the periodic signal. The power of the sum of two 
signals equals the sum of the powers if and only if the signals are orthogonal. 

1 
-IT lx(t) + y(t)12dt = 1 
T 0 

T LT (x(t) + !#I)* (x(t) + y(t)) dt 

1 - - T SOT bW12 + lYW12 + m (x*~t)Yw) dt 

Since any two different sinusoids are uncorrelated, their powers add, and 
this can be generalized to the sum of any number of sinusoids. So Parseval’s 
relation is another consequence of the fact that sinusoids are orthogonal. 

For complex valued signals s(t) there is a relation between the FS of 
the signal and that of its complex conjugate s*(t). The FS of the complex 
conjugate is c:k. For real signals this implies a symmetry of ck (i.e., c-k = 
cz), which means Ic-k I = lckl and %(c-k) = %(ck) but $(c-k) = -g(ck). 

There are many more symmetries and relations that can be derived for 
the FS, e.g., the relationship between the FS of a signal and those of its 
derivative and integral. There is also an important rule for the FS of the 
product of two signals, which the reader is not yet ready to digest. 

EXERCISES 

3.7.1 Show that adding to the argument of a sinusoid a phase that varies linearly 
with time shifts its frequency by a constant. Relate this to the time shift 
property of the FS. 
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3.7.2 Plot the sum of several sinusoids with various phases. Demonstrate that a 
linear phase shift causes a time shift. Can you tell that all these signals have 
the same power spectrum? 

3.7.3 How does change of time scale s(CYt) affect ck? Prove that the effect of time 
reversal is to reverse the FS. 

3.7.4 Derive Parseval’s relation for the FS. 

3.7.5 Show that if a signal is symmetric(antisymmetric), i.e., if s(t + 5) = &s(t), 
then its FS contains only even (odd) harmonics. 

3.7.6 The FS of s is ck; what is the FS of its derivative? Its integral? 

3.8 The Fourier Series of Rectangular Wave 

Since we have decided to use the complex exponential representation almost 
exclusively, we really should try it out. First, we want to introduce a slightly 
different notation. When we are dealing with several signals at a time, say 
a(t>, r(t), and s(t), using ck for the FS coefficients of all of them, would be 
confusing to say the least. Since the Fourier coefficients contain exactly the 
same information as the periodic signal, using the name of the signal, as in 
qk, rk, or Sk, would be justified. There won’t be any confusion since s(t) is 
continuous and SI, is discrete; however, later we will deal with continuous 
spectra where it wouldn’t be clear. So most people prefer to capitalize the 
Fourier coefficients, i.e., to use Qk, &, and SK, in order to emphasize the 
distinction between time and frequency domains. Hence from now on we 
shall use 

1 
Sk = - 

T s 
-iyt & (3.26) 

(with the integration over any full period) to go from a signal s(t) to its FS 

{sk}g-,, and 
00 

so 
- - 

>: Se k 
iZZ+kt 

(3.27) 
k=-oo 

to get back again. 
Now to work. We have already derived the FS of a square wave, at least 

in the quadrature representation. Here we wish to extend this result to the 
slightly more general case of a rectangular wave, i.e., a periodic signal that 
does not necessarily spend half of its time at each level. The fraction of time 
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Figure 3.7: The rectangular signal with amplitude A, period T, and duty cycle S = $. 

a rectangular wave spends in the higher of its levels is called its duty cycle 
6 = $!, and a rectangular wave with 6 = $ duty cycle is a square wave. 
We also wish to make the amplitude and period explicit, and to have the 
signal more symmetric in the time domain; we accordingly introduce A, T, 
and d = ST, and require the signal to be high from -$ to $. Unlike the 
square wave, a non-50% duty cycle rectangular signal will always have a DC 
component. There is consequently no reason for keeping the levels symmetric 
around zero, and we will use 0 and A rather than &A. 

Thus we will study 

1 Ifrac( +)I < $ 
s(t) = A 0 

1 

$ < Ifrac($)l < T - 4 (3.28) 
1 T- 4 < Ifrac($)l < T 

(where frac(z) is the fractional part of x) as depicted in Figure 3.7. 
The period is T and therefore the angular frequencies in the Fourier series 

will all be of the form wk = T . a/c We can choose the interval of integration 
in equation (3.24) as we desire, as long as it encompasses a complete period. 
The most symmetric choice here is from -5 to 5, since the signal then 
becomes simply 

4) 
- - A 

and as a consequence 

i 

1 I<+>1 < $ 
0 else 

(3.29) 

1 
T 

0 T 
r3jc = - 

T s 
T s(t) Ciyt dt 

-- 
2 

A 

-1 

d 
2 

- - 

T 
+)kt & 

d -- 
2 
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which after change of variable and use of equation (A.8) becomes 

sin( %$) 
sk=A d 

2 

= Asinc (y) = Asinc (T) = Asinc(nlc6) (3.30) 

where we have recognized our old friend sine. The FS is dependent only on 
the duty cycle, not directly on T. Of course this does not mean that the 
Fourier series is not dependent on T! The coefficient Sk multiplies the term 
containing wk = q, and consequently the distribution on the frequency 
axis indeed changes. Taking into account this meaning of Sk we see that the 
spectral envelope is influenced by the pulse width but not the period. 

The main lobe of the sine function is between -7r and 7r, which here 
means between Sic = -1 and Sk 
WI, = y = fj+, 

= 1. Hence most of the energy is between 
or otherwise stated, the frequency spread is Aw = 3. 

The minimum spacing between two points in time that represent the same 
point on the periodic signal is obviously At = T. The relationship between 
the time and frequency spreads can therefore be expressed as 

4n 
AwAt = T (3.31) 

which is called the ‘time-frequency uncertainty product’. The effect of vary- 
ing the duty cycle S at constant period T is demonstrated in Figure 3.8. As 
6 is decreased the width of the spectrum increases (i.e., the spectral am- 
plitudes become more constant) until finally at zero duty cycle (the signal 
being a periodic train of impulses) all the amplitudes are equal. If the duty 
cycle is increased to one (the signal becoming a constant s(t) = A), only the 
DC component remains nonzero. 

What happens when the period T is increased, with 6 constant? We 
know that the wider the spacing in the time domain, the narrower the 
spacing of the frequency components will be. The constancy of the time- 
frequency uncertainty product tells us that the extent of the sine function 
on the frequency axis doesn’t change, just the frequency resolution. This is 
demonstrated in Figure 3.9. 

These characteristics of the FS of a rectangular wave are important in 
the design of pulse radar systems. We will discuss radar in more detail in 
Section 5.3, for now it is sufficient to assume the following simplistic model. 
The radar transmits a periodic train of short duration pulses, the period of 
which is called the Pulse Repetition Interval (PRI); the reciprocal of the 
PRI is called the Pulse Repetition Frequency (PRF). 

This transmitted radar signal is reflected by a target and received back 
at the radar at this same PRI but offset by the round-trip time. Dividing 
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Figure 3.8: The effect of changing the duty cycle at constant period. In these figures 
we see on the left a periodic rectangular signal, and on the right the absolute squares of 
its FS amplitudes represented as vertical bars placed at the appropriate frequencies. (A) 
represents a duty cycle of 20%, (B) 40%, (C) 60?’ o and (D) 80%. Note that when the duty 
cycle vanishes all amplitudes become equal, while when the signal becomes a constant, 
only the DC term remains. 

the time offset by two and multiplying by the speed of radar waves (the 
speed of light c) we obtain the distance from radar to target. The round-trip 
time should be kept lower than the PRI; and echo returning after precisely 
the PRI is not received since the radar receiver is ‘blanked’ during trans- 
mission; if the round-trip time exceeds the PRI we get aliasing, just as 
in sampling analog signals. Hence we generally strive to use long PRIs so 
that the distance to even remote targets can be unambiguously determined. 
More sophisticated radars vary the PRI from pulse to pulse in order to dis- 
ambiguate the range while keeping the echo from returning precisely when 
the next pulse is to be transmitted. 

Due to the Doppler effect, the PRF of the reflection from target moving 
at velocity w  is shifted from its nominal value. 

APRF = PRF ; (3.32) 

An approaching target is observed with PRF higher than that transmitted, 
while a receding target has a lower PRF. The PRF is conveniently found 
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effect of changing the period at constant duty cycle. In these figures we 
see on the left a periodic rectangular signal, and on the right the absolute squares of its 
FS amplitudes represented as vertical bars placed at the appropriate frequencies. As we 
progress from (A) through (D) the period is halved each time. Note that as the period is 
decreased with constant pulse width the frequency resolution decreases but the underlying 
sine is unchanged. 

using Fourier analysis techniques, with precise frequency determination fa- 
voring high PRF. Since the requirements of unambiguous range (high PRI) 
and precise velocity (high PRF) are mutually incompatible, simple pulse 
radars can not provide both simultaneously. 

The radar signal is roughly a low duty cycle rectangular wave, and so its 
FS is approximately that of Figures 3.8 and 3.9. In order to maximize the 
probability of detecting the echo, we endeavor to transmit as much energy 
as possible, and thus desire wider pulses and higher duty cycles. Higher duty 
cycles entail both longer receiver blanking times and narrower sine functions 
in the frequency domain. The former problem is easily understood but the 
latter may be more damaging. In the presence of interfering signals, such as 
reflections from ‘clutter’, intentional jamming, and coincidental use of the 
same spectral region by other services, the loss of significant spectral lines 
results in reduced target detection capability. 
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EXERCISES 

3.8.1 Show how to regain the Fourier series of the square wave (equation (3.2)), 
from (3.30) by taking a 50% duty cycle. 

3.8.2 We assumed that A in equation (3.28) was constant, independent of T and 
d. Alternative choices are also of interest. One could demand that the basic 
rectangle be of unit area A = $, or of unit energy A = -&, or that the power 

(energy per time) be unity A = &. X- Explain the effect of the different choices 
on the signal and its FS when 6 and 2” are varied. 

3.8.3 Show that the FS of a train of impulses s(t) = c J(t - IcT) is a train of 
impulses in the frequency domain. How does this relate to the calculations 
of this section? To which choice of A does this correspond? 

3.8.4 One technique that radar designers use to disambiguate longer ranges is PRI 
staggering. Staggering involves alternating between several PRIs. How does 
staggering help disambiguate? How should the PRIs be chosen to maximize 
the range? (Hint: Use the Chinese remainder theorem.) 

3.8.5 What is the FS of a rectangular wave with stagger two (i.e., alternation 
between two periods Tl and Z”z)? 

Bibliographical Notes 

For historical background to the development of the concept of frequency consult 
[223]. Newton’s account of the breaking up of white light into a spectrum of colors 
can be read in his book Opticks [179]. For more information on the colorful life 
of Fourier consult [83]. Incidentally, Marc Antoine Parseval was a royalist, who 
had to flee France for a while to avoid arrest by Napoleon. Lord Rayleigh, in his 
influential 1877 book on the theory of sound (started interestingly enough on a 
vacation to Egypt where Fourier lived eighty years earlier), was perhaps the first 
to call the trigonometric series by the name ‘Fourier series’. Gibbs’ presentation of 
his phenomenon is [74]. 

There are many books devoted entirely to Fourier series and transforms. To get 
more practice in the mechanics of Fourier analysis try [104]. In-depth discussion 
of the Dirichlet conditions can be found in the mathematical literature on Fourier 
analysis. 





The Frequency Domain 

The concept of frequency is clearest for simple sinusoids, but we saw in the 
previous chapter that it can be useful for nonsinusoidal periodic signals as 
well. The Fourier series is a useful tool for description of arbitrary periodic 
signals, describing them in terms of a spectrum of sinusoids, the frequencies 
of which are multiples of a basic frequency. 

It is not immediately obvious that the concepts of spectrum and fre- 
quency can be generalized to nonperiodic signals. After all, frequency is only 
meaningful if something is periodic! Surprisingly, the concept of spectrum 
turns out to be quite robust; for nonperiodic signals we simply need a con- 
tinuum of frequencies rather than harmonically related ones. Thus analog 
signals can be viewed either as continuous functions of time or as continuous 
functions of frequency. This leads to a pleasingly symmetric view, whereby 
the signal can be described in the time domain or the frequency domain. 

The mathematical tool for transforming an analog signal from its time 
domain representation to the frequency domain, or vice versa, is called the 
Fourier transform (FT). The name hints at the fact that it is closely related 
to the Fourier series that we have already discussed. For digital signals we 
have close relatives, namely the discrete Fourier transform (DFT) and the z 
transform (zT). In this chapter we introduce all of these, review their prop- 
erties, and compute them for a few example signals. We also introduce a 
non-Fourier concept of frequency, the instantaneous frequency. The FS, FT, 
DFT, zT, and instantaneous frequency, each in its own domain of applica- 
bility, is in some sense the proper definition of frequency. 

4.1 From Fourier Series to Fourier Transform 

In the previous chapter we learned that the set of harmonically related sinu- 
soids or complex exponentials form a basis for the vector space of periodic 
signals. We now wish to extend this result to the vector space of all analog 
signals. The expansion in this basis is the Fourier transform. 

103 
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Looking back at the steps in proving the existence of the Fourier series we 
see that the periodicity of the signals was not really crucial; in fact the whole 
periodicity constraint was quite a nuisance! The SUIs form a basis for all 
signals, whether periodic or not. It was only when we introduced the HRSs, 
sums of which are necessarily periodic, that we had to restrict ourselves to 
representing periodic signals. It would seem that had we allowed arbitrary 
frequency sinusoids we would have been able to represent any signal, and 
indeed this is the case. In fact it would have been just as easy for us to have 
directly derived the Fourier transform without the annoyance of the Fourier 
series; however this would have involved a grave break with mathematical 
tradition that mandates deriving the Fourier transform from the Fourier 
series. 

The basic idea behind this latter derivation is inherent in the FS derived 
in Section 3.8. There we saw how increasing the period of the signal to be 
analyzed required decreasing the fundamental frequency of the HRSs. It is 
a general result that the longer the time duration that we must accurately 
reproduce, the more frequency resolution is required to do so. Now let us 
imagine the period going to infinity, so that the signal effectively is no longer 
periodic. If you find this infinity troublesome just imagine a period longer 
than the time during which you are willing to wait for the signal to repeat. 
The required frequency resolution will then become infinitesimal, and at ev- 
ery step of the way the corresponding HRSs form a basis for the signals with 
this large period. In the limit of aperiodic signals and continuous spectrum 
we discover that the set of all sinusoids forms a basis for the entire vector 
space of signals. Of course, for our basis signals we can choose to use si- 
nusoids in quadrature sin(&) and cos(wt), sinusoids with arbitrary phases 
sin(wt + cp), or complex exponentials e id with both positive and negative 
frequencies. 

We have neglected an essential technical detail-as long as the funda- 
mental frequency is small, but still finite, there are a denumerably infinite 
number of basis signals, and so the dimension of the space is No and ex- 
pansions of arbitrary signals are infinite sums. Once the spectrum becomes 
continuous, there are a nondenumerable infinity of basis functions, and we 
must replace the infinite sums with integrals. The set of ‘coefficients’ Sk 
becomes a single continuous function of frequency S(w). 

The result is an expression for a signal as an integral over all time of a 
function of frequency times a complex exponential. 

-ii.& & (4 1) . 
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This function of frequency is called the Fourier transform (FT). As we shall 
show, you may think of it as the spectrum of a nonperiodic signal. The ex- 
tension of Fourier’s theorem now states that every (not necessarily periodic) 
function (that obeys certain conditions) can be written as the integral over 
complex exponentials. The conditions for the convergence of the Fourier 
transform are almost the same as Dirichlet’s conditions for the Fourier se- 
ries; just remember to increase the region of integration to all times and 
insist on at most a finite number of extrema and discontinuities in any finite 
amount of time. 

Paradoxically, while in normal speech to transform usually means to 
change the form of a quantity without changing its meaning, in mathemat- 
ics a transform is a changing of meaning that does not alter the form. The 
Fourier transform changes the meaning from time to frequency domain, but 
the form remains a continuous function. The Fourier series is not a transform 
since it changes a continuous function into an infinite-dimensional vector of 
coefficients. We will see later that the discrete Fourier transform translates 
infinite-dimensional vectors into infinite-dimensional vectors. Specifically, in- 
tegral transforms, like the FT, are representations of continuous functions 
as 

F(w) = J 
where K is called the kernel of the 

When dealing with transforms 
write S(w) = FT (s(Q) and 

f(t) w, 4 dt 
transform. 
we often use operator notation, i.e., we 

S(w) = FT (s(t)) = LOO s(t) emiwt dt 
=-(-JQ (4 2) . 

and think of FT as an operator that transforms the time domain represen- 
tation of a signal into the frequency domain representation. 

As was the case for periodic signals, the spectrum contains all possible 
information about the signal, and therefore the signal can be reconstructed 
from the spectrum alone. Consequently, we can define the inverse Fourier 
transform (iFT), s(t) = FT-l (S(w)) where FT-l is the inverse operator. 

s(t) = FT-l (S(W)) = $ Im S(w) eiwt dw 
w=-00 

(4 3) . 

The form of the iFT is almost identical to that of the transform itself, but 
it integrates out the frequency variable leaving the time variable. The only 
differences are the normalization constant (more about that shortly) and 
the sign of the exponent. 
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The inverse operator obeys FT-lFT = 1 where 1 is the identity operator 
that leaves every signal completely unchanged 

s(t) = FT-1 (S(U)) = FT-1 FT (Q)) (44 

an identity sometimes called the Fourier Integral Theorem. The two rep- 
resentations related by the FT and FT-l operators are called a Fourier 
transform pair. They are both functions of a single continuous variable and 
contain exactly the same information about the signal, but in different forms. 
The function s(t) is the time domain representation of the signal, while S(w) 
is its frequency domain representation. 

Let’s prove equation (4.4). 

FT-l FT (s(t)) = & I:- S(++Qu 
w- cm 

= 

s 
00 = s(t’) J& J T- eeiwt’eiwt & &’ t’=-00 w- 00 

= s O” s(t’)S(t - t’) dt’ = s(t) 
t/=-m 

We now see why the exponents have different signs-it’s required to get the 
needed delta function. Incidentally, we see that instead of the normalization 
constant & in the iFT we could have used any constants in both FT and -.. 
iFT whose product is $. For instance, physicists usually 
symmetric pair 

S(W) = FT (s(t)) = $= S_m_ s(t) emiwt dt 

s(t) = FT-1 (S(w)) = g/“1 

03 

S(w) eiWt dw 
7r w --oo 

define a more 

(4.5) 

but any other combination could be used as well. The DSP convention of 
putting the constant only in the definition of the inverse transform becomes 
more symmetric when using the frequency f in Hz (cycles per second) rather 
than the angular frequency w in radians per second. 

S(f) = I” s(t)e-2”iftdt 

s(t) = s fT- S(f)e2”iftdf 
-cxI 

(4.6) 
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We have shown that the FT indeed delivers a function of frequency that 
contains all the information in the signal itself. What we haven’t shown is 
its relationship to the concept of frequency spectrum as we understand it. 
The true spectrum should be prominent at frequencies that are provably 
significant components of the signal, and should be zero at frequencies not 
corresponding to any physical aspect of the signal. We could show this di- 
rectly, starting with a single sinusoid such as s(t) = Acos(w’t) and showing 
that it is 

S(w) = FT (A cos(w’t)) = Jm A cos(w’t)eviwtdt 
t=-ocl 

= Arem + (eiw’t + ,-iw’t) +dtdt 

A 
ccl 

= - 
2 (I O” ,idt ewiwtdt + 

J 
e-iw’te-iwtdt 

t=-co t=-CQ > 
A O” 

= - 
2 (I e -i(w-d)tdt + 

J 

00 
e -i(w+d)tdt 

t=-00 t=-co > 

= 27r + (q&J - w’) + qw + w’,) 

and accordingly has only components at fw’ as expected. Then we would 
have to invoke the linearity of the FT and claim that for all combinations 
of sinusoids 

K 

c AI, co+“kt) 
k=O 

the FT has discrete lines of precisely the expected relative weights. Next we 
would have to consider the continuous spectra of nonperiodic signals and 
show that the FT captures the meaning we anticipate. Finally, we would 
need to show that the FT is zero for unwanted frequencies. This could con- 
ceivably involve forcibly notching out frequencies from an arbitrary signal, 
and observing the FT at these frequencies to be zero. 

This prescription is perhaps overly ambitious for us at this point, and in 
any case there is a shrewd way out. All we really need do is to show that the 
FT is the proper generalization of the FS for possibly nonperiodic signals. 
This will ensure that all well-known properties of FS spectra will survive in 
the FT, and all new properties of the FT will be taken to be the definition 
of what the true spectrum should be. 



108 THE FREQUENCY DOMAIN 

We start from slightly modified versions of equations (3.26) and (3.27) 
for the FS of a periodic signal s(t) with period T 

1 
Sk = T T s(t)e 

J 

5 -iZ$.kt 
-- 

2 

00 

s(t) 
- - 

xl 
Se k 

iZ$kt 

k=-oo 

and define w E F. We can now think of the FS as SW instead of Sk; of 
course the indices are no longer integers, but there still are a denumerable 
number of them. They are uniformly spaced with Aw = F between them, 
and they still run from minus infinity to plus infinity. 

S 
Aw 

J 

T 
w=- T 27r we 

-iwtdt 
-- 

2 

00 

s(t) 
- - 

c SWe 
iwt 

w=-00 

We next envision increasing the period 2’ without limit T + 00. As we have 
already discussed, the frequency spacing A will become smaller and smaller 
A + 0, until the sequence {Sw}~~~oo becomes a continuous function S(w). 
Unfortunately, this definition of S(w) is unsatisfactory. Looking back at the 
equation for SW we see that it is proportional to Aw. Assuming the integral 
approaches a finite value, SW will vanish as Aw + 0. However, the ratio .$& 
will remain finite in this limit, and has the pleasing interpretation of being 
the density of Fourier components per unit frequency. 

We therefore propose defining S(w) E &, in terms of which 

SC > 
1 w =- 

27r s 

% -iwtdt 
T we 

-- 

@> = 5 i(w)eiwtAw 
w=-00 

In the limit T + 00 and Aw + 0 several things happen. The integral 
over t now runs from -oo to +oo. The finite difference Aw becomes the 
infinitesimal dw. The sum over the discrete w index in the formula for s(t) 
will of course become an integral over the continuous w variable. Substitution 
of these brings us to 

s( > 
1 00 

w =- 
27r J me 

-iwtdt 
-00 

s(t) - - J 00 S(w)eiwtdw 
-00 
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which is the FT in an unusual but legitimate normalization scheme. Of 
course had we defined S(w) E 27~. & we would have obtained exactly (4.2) 
and (4.3), and S(w) E & & would have produced the physicist’s (4.5). 

In Section 3.4 we interpreted the FS as the expansion of a periodic signal 
in the basis of sines and cosines. We have just derived the FT by a limiting 
process starting from the FS, so it is not surprising that we can interpret 
the FT as the expansion a nonperiodic signal in a basis. Due to the nonde- 
numerably infinite amount of information in a general nonperiodic signal, it 
is not surprising that we need a nondenumerable number of basis functions, 
and that the sum in the expansion becomes an integral. 

Reiterating what we have accomplished, we have shown that the FT as 
we have defined it is the natural generalization to nonperiodic signals of 
Fourier’s expansion of periodic signals into sinusoids. The function S(w) has 
a meaningful interpretation as the Fourier spectral density, so that S(w)& 
is the proper extension of the FS component. The FT is therefore seen to 
truly be the best definition of spectrum (so far). 

EXERCISES 

4.1.1 Prove the opposite direction of (4.4), namely 

S(w) = FTFT-1 (S(w)) 

4.1.2 Find the FT of A sin(w’t). How is it different from that of Acos(w’T)? 

4.1.3 Find the FT of the rectangular wave of Section 3.8. How does it relate to the 
FS found there? Find the FT of a single rectangle. How does it relate to that 
of the first part? 

4.1.4 Write a routine that computes the value of the FT of a real signal s(t) at 
frequency f = $. The signal is nonzero only between times t = 0 and t = T, 
and is assumed to be reasonably well behaved. You should use numerical 
Riemann integration with the time resolution At variable. 

4.1.5 Generate a signal composed of a constant plus a small number of unrelated 
sinusoids. Using the routines developed in the previous exercise, plot the real 
and imaginary parts of its FT for a frequency band containing all frequencies 
of interest. Vary the time resolution, How is the accuracy affected? Vary the 
frequency resolution. Are the frequencies of the sinusoids exact or is there 
some width to the lines? Is this width influenced by the time resolution? How 
much time is needed to compute the entire FT (as a function of time and 
frequency resolution)? 
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4.2 Fourier Transform Examples 

The time has come to tackle a few examples of FT calculation. Although it 
is instructive to go through the mechanics of integration a few times, that is 
not our only motivation. We have selected examples that will be truly useful 
in our later studies. 

The simplest signal to try is a constant signal s(t) = 1, and for this 
signal we almost know the answer as well! There can only be a DC (zero 
frequency) component, but how much DC is there? The integral in (4.2) is 

S(w) = /OO eWiwtdt = /OO (cos wt - isin wt) dt 
t=-00 t=-w 

(4 7) . 

(we simply replaced s(t) by 1). Now we are stuck, since the required definite 
integrals don’t appear in any table of integrals. We can’t do the indefi- 
nite integral and substitute the values at the endpoints, since sin(foo) and 
cos(foo) don’t approach a constant value; and don’t confuse this integral 
with equation (3.21) for m = 1, since the integral is over the entire t axis. 
Whenever we’re stuck like this, it is best to think about what the integral 
means. When w = 0 we are trying to integrate unity over the entire t axis, 
which obviously diverges. For all other w we are integrating sinusoids over 
all time. Over full periods sinusoids are positive just as much as they are 
negative, and assuming infinity can be considered to be a whole number of 
periods, the integral should be zero. We have thus deduced a delta function 
to within a constant S(w) = 76(w). To find y we need to integrate over w. 
We know from (4.4) that 

1 
- lw S(w)dw 
27r -W 

= FT-1 (S(w)) = s(t) = 1 

from which we conclude that y = 2n. 
Let’s try the other way around. What is the transform of an analog 

impulse s(t) = 6(t)? Well it’s just 

FT (s(t)) = lw 6(t)eeiwtdt = e” = 1 
=- 00 

using property (A.69) of the delta function. So it works the other way as 
well-the transform of a delta is a constant. With only minimal additional 
effort we can find the transform of an impulse at any nonzero time r. In this 
case we pick out the exponential at some other time 

FT (6(t - Qt - de 
-&t& = ,-&T (4 81 . 
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which is a complex exponential in the frequency domain. The interpretation 
of this sinusoid is slightly different from the usual. Remember that here r is 
a constant that we are given and w is the variable. The sinusoidal behavior 
is as a function of frequency, and the higher r is, the more compressed 
the oscillation becomes. So T plays the role of frequency here, which is not 
surprising due to the dual nature of time and frequency. 

Conversely, a non-DC complex exponential s(t) = P has the transform 

FT (s(t)) = lrn ei%-iwtdt = drn ,i(n-w)tdt = 27r6(w - R) (4.9) 
z-w =- 00 

(we could interchange the omegas since the delta function is symmetric). 
Thus the complex exponential corresponds to a single frequency line, as 
expected. 

What about a real sinusoid sin@) or cos(Stt)? Using the linearity of the 
FT and the expressions (A.8) we can immediately conclude that sine and 
cosine consist of two delta functions in the frequency domain. One delta is 
at +a and the other at -0. 

FT (sin(wt)) = z (b(w - St) - S(w + 0)) 
i 

FT (cos(wt)) = n- (6(w - 0) + S(w + R,) (4.10) 

The absolute value of the spectrum is symmetric, as it must be for real 
functions, but sine and cosine differ in the relative phase of the deltas. 

The FT decaying exponential can also be useful to know. It is simply 

FT (e-%(t)) = & 
1 

(4.11) 

and actually the same transform holds for complex A, as long as the real 
part of X is positive. 

Up to now we have treated rather smooth signals and impossibly singular 
ones (the delta). We will also need to investigate archetypical jump discon- 
tinuities, the sgn and step functions. Since sgn is odd, sgn(-t) = -sgn(t), 
we can immediately deduce that the zero frequency component of sgn’s FT 
must be zero. The zero frequency component of u(t) is obviously infinite 
and so we know that u(w) must have a M(w) component. The value of AJ 
can be determined from the fact that u(-t) + u(t) = 1 and from linearity 
FT(u(-t)) + FT(u(t)) = FT(l) = 2nS(w); so the DC component is simply 
7rS(w). 

Trying to find the nonzero frequency components of either sgn or u(t) 
we stumble upon one of those impossible integrals, like (4.7). For large w it 
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should go to zero since the integral over an even number of cycles of sinusoids 
is zero; but for smaller w there is the issue of the end effects. We will be able 
to prove later that the spectrum decays as $, i.e., every time we double the 
frequency the amplitude drops to half its previous value. When displaying 
the spectrum on a logarithmic scale this translates to a linear drop of 6 dB 
per octave. Since any signal with a single discontinuity can be considered to 
be continuous signal plus a step or sgn, all signals with step discontinuities 
have this 6 dB per octave drop in their spectra. 

EXERCISES 

4.2.1 Calculate the FT of a complex exponential from those of sin and cos using 
linearity and equation (A.8). 

4.2.2 What is the difference between the FT of sin and cos? Explain the effect of 
A and cp on the FT of Asin(wt + cp). 

4.2.3 Find the FT of the single rectangle (equation (3.29)). 

4.2.4 Show that ~~=-~ eeiwnT = 0 when w is not a multiple of y. 

4.2.5 Formally prove that the FT of the impulse train s(t) = C s(t - IcT) is an im- 
pulse train in the frequency domain by finding its Fourier series and relating 
the transform to the series. 

4.2.6 Our proof of the universality of the Fourier series in Section 3.4 rested on the 
expansion of shifted delta functions in the basic period in terms of harmoni- 
cally related sinusoids. Show how this can be simplified using our results for 
impulse trains. 

4.2.7 Prove that the following are FT pairs: 

UP> rib(w) + & 
e-%(t) 1 

x+iw 

tee%(t) 1 
(X+lw)2 

&-4 1-d 
l-2a cos(w)+a~ 

14 -3 
I 

emuIt 2a 
3x7 1 
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4.3 FT Properties 

As we saw in the examples, the Fourier transform of a signal may look like 
just about anything. It is customary to differentiate between continuous 
and discrete line spectra. When the FT is a continuous smooth function of 
frequency a nondenumerable number of frequency components are required 
to reproduce the signal. A FT composed of some number of sharp discrete 
lines results from a signal that is the sum of that number of sinusoids. 
In general, spectra may have both continuous and discrete parts. In fact all 
signals encountered in practice are noisy and so cannot be precisely periodic, 
and hence some continuous spectrum contribution is always present. 

The question of the ‘mathematical existence’ of the FT is an important 
one for mathematicians, but one we will not cover extensively. The Dirichlet 
conditions for the FT require that the integral over all time of the absolute 
value of the signal be finite, as well as there being only a finite number of 
extrema and discontinuities in any finite interval. The FT obviously does 
not exist in the technical sense for periodic signals such as sinusoids, but by 
allowing delta functions we bypass this problem. 

Although we will not dwell on existence, there are many other character- 
istics of the FT that we will need. Many times we can find the FT of signals 
without actually integrating, by exploiting known transforms and some of 
the following characteristics. These characteristics are often closely related 
to characteristics of the FS, and so we need not derive them in detail. 

First, it is important to restate the Fourier Integral Theorem that the 
inverse FT given by equation (4.3) is indeed the inverse operation. 

FT-1 FTz = x FTFT-‘X=X (4.12) 

Next, the FT is linear, i.e., 

FT (z(t) + !dt)) = X(w) + Y(w) 

FT (,,(t,> = US(U) 

a property already used in our derivation of the FT of real sinusoids. 
Speaking of real signals, it is easy to see that the FT of a real signal is 

Hermitian even, 
S(-w) = s*(w) 

meaning that RS(c3) is even, QS(w) is odd, IS( is even, and U(w) is odd. 
Conversely the FT of an even signal (s( -t) = s(t)) is real, and that of an 
odd signal is pure imaginary. 
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There are two properties that deal with changing the clock, namely the 
time shifting property 

FT (,(t - T))) = e-%(w) (4.14) 

and the time scaling property. 

FT (s(4) = j$s(;) (4.15) 

Conversely, there is a property that deals with shifting the frequency axis 

FT (s(t)eiRt) = S(w - Cl) (4.16) 

an operation we usually call mixing. 
What happens when you differentiate s(t) = eiwt? You get &s(t). Simi- 

larly, integrating it you get ks(t). It follows that differentiating or integrat- 
ing an arbitrary signal affects the FT in a simple way. 

These are surprising results; we think of differentiation and integration as 
purely time domain operations, but they are even simpler in the frequency 
domain! We will see in Section 7.3 that the DSP approach to differentiation 
and integration in the time domain involves first designing a filter in the 
frequency domain. Note also that differentiation emphasizes high frequen- 
cies, while integration emphasizes lows. This is because derivatives involve 
subtracting nearby values, while integrals are basically averaging operators. 

Linearity told us how to find the spectrum when adding signals; what 
happens when we multiply them? Since we have never tried this before we 
will have to actually do the integral. 

J O” x(t)y(t)e+ dt = 
-03 

1 O” 
= i% Q=-00 J 

xm / t_m_m Y(W ib-n)t & dfl 

= 

What we did was simply to replace z(t) by its iFT, change the order of 
integration, and recognize the FT of y. So we have found the following: 

FT (x(t)y(t)) = ; k;- x(n)y(u - 52) df-2 = x * y (4.18) 
co 
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Now that we have the answer, what does it mean? The FT of the product 
of two signals in the time domain is the integral of a strange-looking product 
in the frequency domain. We hide this strangeness by using the symbol *, 
implying a product of some sort. It’s a truly unusual product since the 
integration variable in Y runs in the opposite direction to that of the X 
variable. If that is not bad enough, repeating the above computation for 
iFT of a product in the frequency domain, we find 

FT-1 (X(w)Y(w)) = Lm x(T)y(t - T)dT E x * y 
=--o(J 

(4.19) 

where the integration variable in y runs backward in time! We are not yet 
ready to digest this strange expression that goes under the even stranger 
name of convolution, but it will turn out to be of the utmost importance 
later on. 

A particular case of equation (4.18) is the DC (w = 0) term 

X(fl)Y(-0) dS2 

and by taking x(t) = s(t), y(t) = s*(t) and changing the name of the 
integration variable, we get Parseval’s relation for the FT. 

s O” ls(t)12dt = & Srn b%f)i2df (4.20) 
-00 w=-OQ 

IS(W))~~ = lrn 
f =- 00 

Parseval’s relation tells us that the signal’s energy is the same whether we 
look at it in the time domain or the frequency domain. This is an important 
physical consistency check. 

To demonstrate the usefulness of some of these properties, we will now 
use the integration rule to derive a result regarding signals with discontinu- 
ous derivatives. We know that the FT of the impulse is constant, and that 
its integral is the unit step u(t). Thus we would expect from (4.17) for the 
FT of the step to be simply 6, which is not what we previously found! 
The reason is that (4.17) breaks down at w = 0, and so we always have to 
allow for the possible inclusion of a delta function. Integrating once more we 

get f(t) = Wt), which is continuous but has a discontinuous first deriva- 
tive. The integration rule tells us that the FT of this f is -wB2 (except at 
W = 0). Integrating yet another time gives us a signal with continuous first 
derivative but discontinuous second derivative and iwS3 behavior. Continu- 
ing this way we see that if all derivatives up to order k are continuous but 
the (k + l)th is not, then the (nonzero frequency) transform is proportional 
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Figure 4.1: The effect of derivative discontinuity on the FT. In (A) the signal itself (the 
zeroth derivative) is discontinuous and the spectrum is constant. In (B) the first derivative 
is discontinuous and the spectrum decays as wB2. In (C) the second derivative jumps and 
the spectrum decays as we4. 

to cd-Ic, and the power spectrum is inversely proportional to u2’. In other 
words a discontinuous first derivative contributes a term which decays 6 dB 
per octave; a second derivative 12 dB per octave, etc. These results, depicted 
in Figure 4.1, will be useful in Section 13.4. 

EXERCISES 

4.3.1 

4.3.2 

4.3.3 

4.3.4 

4.3.5 

4.3.6 

4.3.7 

Explain why s-“, &dt = 2nS(w) using a graphical argument. 

Show that time reversal causes frequency reversal FT (s(A)) = S(-w). 

Show how differentiation and integration of the spectrum are reflected back 
to the time domain. 

The derivative of cos(wt) is -w sin(wt). State this fact from the frequency 
domain point of view. 

Show that we can interchange X and Y in the convolution integral. 

Redraw the right-hand side of Figure 4.1 using dB. How does the slope relate 
to the order of the discontinuity? 

Generalize the relationship between spectral slope and discontinuity order to 
signals with arbitrary size discontinuities not necessarily at the origin. What 
if there are manv discontinuities? 
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4.4 The Uncertainty Theorem 

Another signal with discontinuities is the rectangular window 

4) 
- 1 ItI < T - - 

0 else 
(4.21) 

which is like a single cycle of the rectangular wave. The term ‘window’ is 
meant to evoke the picture of the opening a window for a short time. Its FT 

FT (s(t)) = ST eiWtdt 
-T 

e+iwT - e-iwT 
- - 

iW 

- - 2sin(wT) 
W 

= 2 T sinc(wT) 

turns out to be a sine. Now the interesting thing about this sine is that its 
bandwidth is inversely proportional to T, as can be seen in Figure 4.2. 

The wider the signal is in the time domain, the narrower it is in frequency, 
and vice versa. In fact if we define the bandwidth to be precisely between 
the first zeros of the sine, Aw = Sj?, and relate this to the time duration 
At = 2T, we find that the uncertainty product 

Aw At = 4~ 

ALtA-+LL-f 

Figure 4.2: Rectangular windows of various widths with their Fourier transforms. Note 
that the signal energy is not normalized. 
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although different definitions of bandwidth would change the precise value 
on the right-hand side. 

This is a special case of a more general rule relating time durations to 
bandwidth. A single sinusoid is defined for all time and has a completely 
precise line as its spectrum. Signals of finite duration cannot have discrete 
line spectra since in order build the signal where it is nonzero but cancel it 
out at t = foe we need to sum many nearby frequencies. The shorter the 
time duration the more frequencies we need and so the wider the bandwidth. 

It is useful to think of this in a slightly different way. Only if we can 
observe a sinusoid for an infinite amount of time can we precisely determine 
its frequency. If we are allowed to see it for a limited time duration we can 
only determine the frequency to within some tolerance; for all sinusoids with 
similar frequencies look about the same over this limited time. The less time 
we are allowed to view the sinusoid, the greater our uncertainty regarding its 
true frequency. You can convince yourself of this fact by carefully studying 
Figure 4.3. 

Figure 4.3: The effect of observation window duration on frequency uncertainty. In (A) 
we only observe the sinusoid for an extremely short time, and hence we can not accurately 
gauge its frequency. In (B) we observe about half a cycle and can now estimate the 
frequency, but with relatively large uncertainty. In (C) two full cycles are observed and 
consequently the uncertainty is much reduced. 
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As our next example, consider the Gaussian 

s(t) = Ae-Pt2 (4.22) 

whose Fourier transform is 

(4.23) 

which doesn’t look hopeful. The mathematical trick to use here is ‘complet- 
ing the square’. The exponent is -(/3t2 + id). We can add and subtract $ 
so that 

S(w) = SW Ae-(ot+$$2,-$& = Ae-$ SW e-(Gt+&)2& (4.24) 
-CO -00 

and a change of variable u = fit + 
7 
2iwp gives 

S(w) = Ae-$ 
J 

w ,-u’d” = A 
-co lo 

(4.25) 

so the FT of a Gaussian is another Gaussian. 
Now let’s look at the uncertainty product for this case. The best way 

of defining At here is as the variance of the square of the signal. Why the 
square? Well, if the signal took on negative values it would be more obvious, 
but even for the Gaussian the energy is the integral of the square of the 
signal; the ‘center of gravity’ is the expected value of the integral of t times 
the signal squared, etc. Comparing the square of the signal A2em2Pt2 with 
equation (A.19) we see that the standard deviation in the time domain is 
At = 1 

2fi’ 
while the same considerations for equation (4.25) lead us to 

realize that AU = fl. The uncertainty product follows. 

AtAw = f 

Now it turns out that no signal has a smaller uncertainty product than 
this. This theorem is called the uncertainty theorem, and it is of importance 
both in DSP and in quantum physics (where it was first enunciated by 
Heisenberg). Quantum physics teaches us that the momentum of a particle 
is the Fourier transform of its position, and hence the uncertainty theorem 
limits how accurately one can simultaneously measure its position and ve- 
locity. Energy and time are similarly related and hence extremely accurate 
energy measurements necessarily take a long time. 
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The Uncertainty Theorem 
Given any signal s(t) with energy 

E= J O” 2 s (t)dt 
-ccl 

time center-of-gravity 

squared time uncertainty 

w2 = .f.T&<t - (t> >2s2(tPt - 
E 

frequency center-of-gravity 

and squared frequency uncertainty 

(Au)2 = s-“,(w - tw> >2s2(w)dw 
E 

then the uncertainty product 

is always greater than one half. n 

Although this theorem tells us that mathematics places fundamental 
limitations on how accurately we are allowed to measure things, there is 
nothing particularly mystifying about it. It simply says that the longer you 
are allowed to observe a signal the better you can estimate its frequencies. 

Next let’s consider the train of Dirac delta functions 

s(t) = 5 qt - ?-LT) (4.26) 
n=-co 

depicted in Figure 4.4. This signal is truly fundamental to all of DSP, since 
it is the link between analog signals and their digital representations. We 
can think of sampling as multiplication of the analog signal by just such a 
train of impulses, 

so / W = ,_“_, c qt - nT)+%t 

- n--m 
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Figure 4.4: Trains of Dirac delta functions in time and frequency domains. Note that 
the spacing in the time domain is the inverse of that in the frequency domain. 

Interchanging the order of summation and integration (we ask permission 
of the more mathematically sophisticated reader before doing this), we find 
a sum over the FT of equation (4.8) with r = nT 

S(w) = nzEm lysm J(t - nT)eeiWtdt = 5 ewiwnT 
n=-co 

and once again we are stuck. Looking carefully at the sum we become con- 
vinced that for most w the infinite sum should contain just as many negative 
contributions as positive ones. These then cancel out leaving zero. At w = 0, 
however, we have an infinite sum of ones, which is infinite. Does this mean 
that the FT of a train of deltas is a single Dirac delta? No, because the same 
thing happens for all w of the form 3 as well! So similarly to the Gaussian, 
a train of impulses has an FT of the same form as itself, a train of impulses 
in the frequency domain; and when the deltas are close together in the time 
domain, they are far apart in the frequency domain, and vice versa. The 
product of the spacings obeys 

At Aw = 2n 

once again a kind of uncertainty relation. 
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EXERCISES 

4.4.1 Prove the Schwartz inequality for signals. 

4.4.2 Using Parseval’s relation and the FT of a derivative prove the following re- 
lation involving the uncertainties and the energy E. 

(& Aw)2 = J-0 - (t> >2s2wt s (%I” dt 
E4 

4.4.3 Using the Schwartz inequality, the above relation, and integration by parts, 
prove the uncertainty theorem. 

4.5 Power Spectrum 

The energy E of a signal s(t) is defined as the integral over all times of 
the squared values in the time domain. Due to this additive form, we can 
interpret the integral over some interval of time as the signal’s energy during 
that time. Making the interval smaller and smaller we obtain the power 
E(t); the signal’s energy during a time interval of infinitesimal duration dt 
centered on time t is E(t)dt where E(t) = ls(t)12. You can think of the power 
as the energy time density, using the term ‘density’ as explained at the end 
of Appendix A.9. 

Integrating the power over any finite time interval brings us back to the 
signal’s energy during that time; integrating over all time retrieves the total 
energy. 

E= J O” E(t)dt = co Is( dt 
-Xl J -00 

From Parseval’s relation we know that the energy is also computable 
as the integral of squared values in the frequency domain (except possibly 
for a normalization factor depending on the FT definition chosen). Hence 
repeating the above arguments we can define the energy spectral density 

E(f) = lS(f)\2, that specifies how the signal’s energy is distributed over 
frequency. The meaning of E(f) is similar to that of the power; the energy 
contained in the signal components in an interval of bandwidth df centered 
on frequency f is E(f) df. 
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f 

Figure 4.5: Power spectral density for the DTMF digit ‘8’. The horizontal axis is the 
frequency in KHz and the vertical axis is a linear measure of the energy density. The eight 
possible frequencies are marked for convenience. 

In the next section we will see that many signals have spectral distribu- 
tions that vary as time progresses. For such signals we wish to know how 
much energy is in the frequency range around f at times around t. Since 
the energy density in the time domain is the power, the desired quantity 
is called the Power Spectral Density (PSD). PSDs that change in time are 
so common that we almost always use the term power spectrum instead of 
energy spectrum. 

Writing the full FT as a magnitude times an angle S(f) = A(f)e@(f), 
we see that the PSD contains only the magnitude information, all the angle 
information having been discarded. At this stage of our studies it may not 
yet be entirely clear why we need the full frequency domain representation, 
but it is easy to grasp why we would want to know how a signal’s energy is 
divided among the component frequencies. For example, push-button dialing 
of a phone uses DTMF signals where two tones are transmitted at a time 
(see Figure 4.5). The lower tone of the two is selected from four candidate 
frequencies Ll, L2, L3, L4, and the higher is one of HI, Hz, H3, H4. In order 
to know that an eight was pressed we need only ascertain that there is energy 
in the vicinities of L3 and Hz. The phases are completely irrelevant. 

As a more complex application, consider a phone line on which several 
signals coexist. In order for these signals not to interfere with each other 
they are restricted by ‘masks’, i.e., specifications of the maximal amount of 
power they may contain at any given frequency. The masks in Figure 4.6 are 
specified in dBm/Hz, where dBm is the power in dB relative to a 1 milli- 
watt signal (see equation (A.16)). The horizontal scale has also been drawn 
logarithmically in order to accommodate the large range of frequencies from 
100 Hz to over 10 MHz. Although the higher frequency signals seem to be 
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Figure 4.6: PSD masks for several signals on a phone line. The horizontal axis is the 
frequency in KHz on a logarithmic scale and the vertical axis is the maximum allowed 
PSD in dBm per Hz. The leftmost signal is the POTS (Plain Old Telephone System) 
mask, including voice and voicegrade modems. The middle mask is for ADSL, with the 
lower portion for the 512 Kb/s upstream signal and the upper for the 6 Mb/s downstream 
signal. At the far right is the mask for the 1 Mb/s Home Phone Network signal. 

lower in power, this is only an illusion; the PSD is lower but the bandwidths 
are much greater. 

The mask containing the lowest frequencies is for regular telephone con- 
versations, affectionately called Plain Old Telephone Service (POTS). This 
mask, extending from 200 Hz to about 3.8 KHz, holds for voice signals, 
signals from fax machines, and voicegrade modems up to 33.6 Kb/s. 

The need for high-speed digital communications has led to innovative 
uses of standard phone lines. The Asymmetric Digital Subscriber Line 
(ADSL) modem is one such invention. It can deliver a high-speed down- 
stream (from the service provider to the customer) connection of up to 8 
Mb/s, and a medium-speed upstream (from the customer to the provider) 
connection of 640 Kb/s. ADSL was designed in order not to interfere with 
the POTS signal, so that the standard use of the telephone could continued 
unaffected. By placing the ADSL signal at higher frequencies, and restricting 
the amount of power emitted at POTS frequencies, interference is avoided. 
This restriction may be verified using the power spectrum; the signal phases 
are irrelevant. 

In the same way, after the definition of ADSL the need arose for net- 
working computers and peripherals inside a residence. Of course this can be 
done by running cables for this purpose, but this may be avoided by using 
the internal phone wiring but requiring the new ‘home phone network’ signal 
to lie strictly above the POTS and ADSL signals. 

We see that based on the power spectrum alone we may deduce whether 
signals may coexist without mutual interference. The principle behind this 
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0 

Figure 4.7: Power spectral density for speech, more specifically the sound eh pronounced 
by a male speaker. The horizontal axis is the frequency in KHz and the vertical axis is 
the energy density in dBm per Hz. The spectrum is obviously made up of discrete lines, 
and we note that three main resonances at 500, 1820, and 2510 Hz and a weak fourth at 
a higher frequency. 

is that if the frequencies do not overlap the signals may be separated by 
appropriate filters. Isolation in the frequency domain is a sufficient (but not 
a necessary) condition for signals to be separable. 

A third example is given by the speech signal. Most of the information 
in speech is encoded in the PSD; in fact our hearing system is almost in- 
sensitive to phase, although we use the phase difference between our ears 
to ascertain direction. In Figure 4.7 we see the spectrum of a (rather drawn 
out) eh sound. The vertical axis is drawn logarithmically, since our hearing 
system responds approximately logarithmically (see Section 11.2). We can’t 
help noticing three phenomena. First, the spectrum is composed entirely of 
discrete lines the spacing between which changes with pitch. Second, there 
is more energy at low frequencies than at high ones; in fact when we average 
speech over a long time we discover a drop of between 6 and 12 dB per 
octave. Finally, there seem to be four maxima (called fomnants), three over- 
lapping and one much smaller one at high frequency; for different sounds 
we find that these formants change in size and location. With appropriate 
training one can ‘read’ what is being said by tracking the formants. 

In Section 9.3 we will learn that the PSD at a given frequency is itself 
the FT of a function called the autocorrelation. 

ASPS = J_“, [J_“, s(t)+ - T) dt] ciwT d7 (4.27) 

The autocorrelation is a generalization of the idea of squaring the signal, 
and hence this relation tells us that the squaring operation can be performed 
either before or after the Fourier integral. 
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EXERCISES 

4.5.1 Write a program that finds the PSD by numerical integration (equation (4.1)) 
and squaring. Use this program to find the PSD of a rectangular window 
(equation (4.21)) f or several different widths. Repeat the exercise for a sinc- 
shaped pulse for several different pulse widths. 

4.5.2 Build 1024 samples of sine waves of 1, 2, 3, 4, 5, 6, 7, and 8 KHz sampled 
at 8 KHz. Observe the sines in the time domain; can you see the aliasing for 
f > 4 KHz? Extract the PSD (if you didn’t write your own program in the 
first exercise many programs are readily available for this purpose). Can you 
read off the frequency? What do you see now for f > 4 KHz? 

4.5.3 Build 1024 sample points of sine waves with frequencies 1.1, 2.2, and 3.3 KHz 
sampled at 8 KHz. What happened to the spectral line? Try multiplying the 
signal by a triangular window function that linearly increases from zero at 
n = 0 to one at the center of the interval, and then linearly decreases back 
to zero). 

4.5.4 In exercise 2.6.4 we introduced the V.34 probe signal. Extract its power 
spectrum. Can you read off the component frequencies? What do you think 
the probe signal is for? 

4.5.5 Find the PSD of the sum of two sinusoids separated by 500 Hz (use 2 KHz & 
500 Hz) sampled at 8 KHz. Can you distinguish the two peaks? Now reduce 
the separation to 200 Hz. When do the two peaks merge? Does the triangular 
window function help? 

4.5.6 In the text it was stated that isolation in the frequency domain is a sujficient 
but not a necessary condition for signals to be separable. Explain how can 
signals can be separated when their PSDs overlap. 

4.6 Short Time Fourier Transform (STFT) 

The Fourier transform is a potent mathematical tool, but not directly rele- 
vant for practical analog signal processing, because the integration must be 
performed from the beginning of time to well after the observer ceases car- 
ing about the answer. This certainly seems to limit the number of FTs you 
will calculate in your lifetime. Of course, one can compute the FT for finite 
time signals, since they were strictly zero yesterday and will be strictly zero 
tomorrow, and so you only have to observe them today. But that is only the 
case for signals that are strictly zero when you aren’t observing them-small 
isn’t good enough when we are integrating over an infinite amount of time! 
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In Section 4.2 we found the FT for various infinite time signals. Could we 
have approximated these mathematical results by numerically integrating 
over a finite amount of time? Other than the restrictions placed by the 
uncertainty theorem it would seem that this is possible. One needn’t observe 
a simple sinusoid for years and years to be able to guess its spectrum. Of 
course the longer we observe it the narrower the line becomes, but we will 
probably catch on after a while. The problem is that we can’t be completely 
sure that the signal doesn’t radically change the moment after we give up 
observing it. Hence we can only give our opinion about what the signal’s 
FT looked like over the time we observed it. Unfortunately, the FT isn’t 
defined that way, so we have to define a new entity-the Short Time Fourier 
Transform (STFT). 

Consider the signal 

s1(t) = 
{ 

sin(27rflt) t < 0 
sin(27rfzt) t 2 0 

which is a pure sine of frequency fl from the beginning of time until at time 
t = 0 when, for whatever reason, its frequency abruptly changes to f2. What 
is the FT of this signal? 

As we have seen, the FT is basically a tool for describing a signal si- 
multaneously at all times. Each frequency component is the sum total of all 
contributions to this frequency from time t = -oo to t = +oo. Consequently 
we expect the power spectrum calculated from the FT to have two equal 
components, one corresponding to fr and the other to f~. 

Now consider the signal 

sz(t) = 
{ 

sin(27rfzt) t < 0 
sin(2nflt) t 2 0 

It is clear that the power spectrum will continue to be composed of two equal 
components as before since time reversal does not change the frequency 
composition. Assume now that fl and fz correspond to a whole number of 
cycles per second. Then the signal sa(t) 

S3@) = 
1 

sin(2nfl t) [tJ even 
sin(2nf2 t) [tJ odd 

which consists of interleaved intervals of sin(27rfrt) and sin(2n&t), must also 
have the same power spectrum! 

The STFT enables us to differentiate between these intuitively different 
signals, by allowing different spectral compositions at different times. The 
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FT basically considers all signals to be unvarying, never changing in spec- 
trum, while the STFT is an adaptation of the mathematical idea of the FT 

to the realities of the real world, where nothing stays unchanged for very 
long. 

The STFT, or more accurately the short time PSD, goes under several 
different aliases in different fields. A ‘musical score’ is basically a STFT 
with a horizontal time axis, a vertical frequency axis and a special notation 
for durations. The STFT has long been a popular tool in speech analysis 
and processing, where it goes under the name of sonogrum. The sonogram 
is conventionally depicted with a vertical frequency axis, with DC at the 
bottom, and a horizontal time axis, with time advancing from left to right. 
Each separate STFT is depicted by a single vertical line, traditionally drawn 
in a gray-scale. If there is no component at a given frequency at the time 
being analyzed the appropriate point is left white, while darker shades of 
gray represent higher energy levels. With the advent of DSP and computer 
graphics, analog sonographs with their rolls of paper have been replaced 
with scrolling graphics screens. The modern versions often use color rather 
than gray-scale, and allow interactive measurement as well. 

Figure 4.8 is a sonogram of the author saying ‘digital signal processing’, 
with the sounds being uttered registered underneath. With some training one 
can learn to ‘read’ sonograms, and forensic scientists use the same sonograms 
for speaker identification. In the figure the basic frequency (pitch) of about 

4000 

3000 

2000 

1000 

0 

DI GI TA L SI GNAL PROCESSING 

Figure 4.8: Sonogram of author saying ‘digital signal processing’. The vertical axis is the 
frequency from 0 to 4000 Hz, while the horizontal axis is time (approximately 2 seconds). 
The sounds being uttered at each time are indicated by the writing below. 
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200 Hz is clearly visible at the bottom, and the difference between vowels 
and consonants is readily identifiable, You can probably also discern which 
syllables are accented, and may be able to see similarities among the various 
i sounds. The two s sounds in the last word seem to be invisible; this is due 
to their indeed having low energy, and most of that energy being spread 
out and at high frequencies, above the bandwidth displayed here. The ing 
is also very weak, due to being unaccented. 

Rotating the sonogram by 90” we obtain the fulling raster spectrogram 
popular in radar signal processing. Here the horizontal axis represents fre- 
quencies in the region of interest, time advances from top to bottom, and 
gray-scale intensity once again represents the square amplitude of the STFT 
component. Once the desired range of frequencies is selected, falling raster 
spectral displays provide intuitive real-time pictures; the display scrolling 
upwards as text does on a computer terminal. 

The transition from FT to STFT requires forcing arbitrary signals to 
become finite time signals. To accomplish this we multiply the signal by a 
window function, that is, a function w(t) that is strictly zero outside the time 
of interest. The window function itself should not introduce any artifacts 
to the spectrum of this product, and will be discussed in more detail in 
Section 13.4. For now you can think of the simplest window, the rectangular 
window of equation (4.21). Also commonly used are window functions that 
rise smoothly and continuously from zero to unity and then symmetrically 
drop back down to zero. 

Of course, the uncertainty theorem puts a fundamental limitation on 
the precision of the STFT. The longer the time during which we observe a 
signal, the more precise will be our frequency. distribution predictions; but 
the longer the window duration the more we blur the frequency changes 
that may be taking place in the signal. The uncertainty inequality does not 
allow us to simultaneously measure to arbitrary accuracy both the spectral 
composition and the times at which this composition changes. 

The sonogram and similar graphic displays are tools to view the signal 
simultaneously in the time and frequency domains, yet they do not treat 
time and frequency on equal footing. What we may really want is to find a 
function f(t,w) such that f(t, w) dtdw is the energy in the ‘time-frequency 
cell’. This brings us to define joint time-frequency distributions. 

These are derived by considering time and frequency to be two character- 
istics of signals, just as height and weight are two characteristics of humans. 
In the latter case we can define a joint probability density p(h, w) such that 
p(h, w) dh dw is the percentage of people with both height between h and 
h + dh and weight between w and w + dw (see Appendix A.13). For such 
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joint probability distributions we require the so-called ‘marginals’, 

where the integrations are over the entire range of possible heights and 
weights, p(h)dh is the percentage of people with height between h and h+dh 
regardless of weight, and p(w)dw is the percentage of people with weight 
between w and w + dw regardless of height. 

Similarly, a joint time-frequency distribution is a function of both time 
and frequency p(t, w). We require that the following marginals hold 

s 
00 s(t) = I44 4 d&J -co S(w) = /* p(t,w) dt 

-00 

and the integration over both time and frequency must give the total energy, 
which we normalize to E = 1. We may then expect p(t, w) dt CL to represent 
the amount of energy the signal has in the range between w and w + dw 
during the times between t and t + dt. 

Gabor was the first to express the STFT as a time-frequency distribution 

but he suggested using Gaussian-shaped windows, rather than rectangular 
ones, since Gaussians have the minimal uncertainty product. Perhaps even 
simpler than the short-time PSD is the double-square distribution 

PW = WI2 lS(412 
while more complex is the Wigner-Ville distribution 

Pk 4 = &/s*(t-;) ciwTs(t+;) dr 

The double square requires computing lS(c~)l~ by the FT’s integral over all 
time, and then simply multiplies this by the signal in the time domain. It 
is obviously zero for times or frequencies for which the signal is zero, but 
doesn’t attempt any more refined time-frequency localization. The Wigner- 
Ville formula looks similar to equation (4.27) for finding the power spectrum 
via the autocorrelation, and is only one of an entire family of such bilinear 
distributions. 
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In addition to these, many other distributions have been proposed; in- 
deed Cohen introduced a general family from which an infinite number of 
different time-frequency distributions can be derived, 

p(t, w) = --& I/ 1 e-iet-irw+ieu~*(~ - ;)cp(6, r)s(u + ;) du dr d0 

but none are perfect. Although they all satisfy the marginals, unexpected 
behaviors turn up. For example, when two frequencies exist simultaneously, 
some distributions display a third in between. When one frequency compo- 
nent ceases and another commences a short time later, some distributions 
exhibit nonzero components in the gap. These strange phenomena derive 
from the bilinear nature of the Cohen distributions. Even more bizarre is 
the fact that while the short-time PSD and the double-square are always 
positive, most of the others can take on nonintuitive negative values. 

EXERCISES 

4.6.1 There is another case for which we can compute the FT after only a finite 
observation time, namely when someone guarantees the signal to be periodic. 
Do we need the STFT for periodic signals? 

4.6.2 In the text, examples were presented of signals with identical power spec- 
tra. Doesn’t this contradict the very nature of a transform as a reversible 
transformation to another domain? Resolve this paradox by demonstrating 
explicitly the difference between the three cases. 

4.6.3 Compute the FT by numerical integration and plot the empirical PSD of a 
sinusoid of time duration T. How does the line width change with T? 

4.6.4 A FSK signal at any given time is either one of two sinusoids,,one of frequency 
wr, and the other of frequency LJ~. Generate a FSK signal that alternates 
between wr and w2 every T seconds, but whose phase is continuous. Using 
a sampling frequency of 8000 Hz, frequencies 1000 and 2000 Hz, and an 
alternation rate of 100 per second, numerically compute the power spectrum 
for various window durations. You may overlap the windows if you so desire. 
Plot the result as a falling raster spectrogram. What do you get when a 
transition occurs inside a window? Does the overall picture match what you 
expect? Can you accurately measure both the frequencies and the times that 
the frequency changed? 

4.6.5 Repeat the previous exercise with the double-square distribution. 

4.6.6 Show that the uncertainty theorem does not put any restrictions on joint 
time-frequency distributions, by proving that any distribution that satisfies 
the marginals satisfies the uncertainty theorem. 
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4.7 The Discrete Fourier Transform (DFT) 

We have often discussed the fact that signals are functions of time that have 
pertinent frequency domain interpretation. The importance of being able to 
transform between time and frequency domains is accordingly evident. For 
analog signals we have seen that the vehicle for performing the transforma- 
tion is the Fourier transform (FT), while in DSP it is the Discrete Fourier 
Transform (DFT). 

The DFT can be derived from the FT 

S(w) = Irn s(t) e-%it 
--oo 

by discretization of the time variable. To accomplish this we must first deter- 
mine the entire interval of time [t, . . . tZ] wherein s(t) is significantly different 
from zero. We will call the duration of this interval 2’ E t, - t,. If this time 
interval is very large, or even the entire t axis, then we can partition it up in 
some manner, and calculate the FT separately for each part. Next divide the 
interval into N equal-sized bins by choosing N equally spaced times {tn}~~~ 
in the following fashion t, = t,+nAt where At E 5. (Note that to = t, but 
tN-1 = &-At; however, tN-1 z t, when N > 1 or equivalently At < T.) If 
we allow negative n, we can always take ta = 0 without limiting generality. 
In this case we have tn = nAt. For sampled signals we recognize At as the 
basic sample interval (the inverse of the sampling frequency) ts = i. 

Now we also want to discretize the frequency variable. In a similar way 
we will define wk = IcAw with Aw G E. It is obvious that short time 
intervals correspond to high frequencies, and vice versa. Hence, if we choose 
to use a small At we will need a high upper frequency limit CL The exact 
correspondence is given by 

NAw=n=g or AwAt = $ (4.28) 

where we recognize an uncertainty product. 
We can now evaluate the FT integral (4.2) as a Riemann sum, substi- 

tuting tn and wk for the time and frequency variables, 

,qw) = Iw @) ,-iwt dt - sk = Nc1 ,n,-iW4Wt) 
--oo n=O 

which upon substitution gives 

N-l 

,!?I, = c 

2mtk 
s,e 

i 
N (4.29) 

n=O 
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which is the DFT. The power spectrum for the digital case is ISkI and each 
Ic represents the energy that the signal has in the corresponding ‘frequency 
bin’. 

For a given N, it is useful and customary to define the Nth root of unity 
WN. This is a number, in general complex, that yields unity when raised to 
the Nth power. For example, one square root of unity is -1 since ( -1)2 = 1; 
but l2 = 1 so 1 is a square root of itself as well. Also i is a fourth root of 
unity since i2 = (-1O)2 = 1, but so are -i, -1, and 1. There is a unique best 
choice for W’N, namely the trigonometric constant 

(4.30) 

which for N = 2 is as follows. 

-iZ 
Wz=e N=-1 (4.31) 

This is the best choice since its powers Wh for k = 0.. . N - 1 embrace all 
the N roots. Thinking of the complex numbers as points in the plane, WN is 
clearly on the unit circle (since its absolute value is one) and its phase angle 
is $ of the way around the circle. Each successive power moves a further h 
around the circle until for N = 1 we return to WE = 1. This is illustrated 
in Figure 4.9 for N = 8. 

Figure 4.9: The N complex roots of unity displayed graphically. (Here N = 8.) 

In terms of WN the DFT can be expressed 

N-l 

Sk = 
c SnWEk (4.32) 
n=O 

(just note that (WN)“” = (e-is)nk = e-‘v). The powers (WN)“~ are also 
on the unit circle, but at integer multiples of the basic angle. Consequently 
the set of all the powers of WN divides the unit circle into N equal pieces. 
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It is illuminating to investigate the simplest DFT, the two-point trans- 
form. Substituting N = 2 into equation (4.31) we readily find 

so = -&snw;= so+s1 
n=O 

Sl = 5 SnWF = SO - Sl (4.33) 
n=O 

which has a simple interpretation. The zeroth (DC) coefficient is simply 
the sum (i.e., twice the average of SO and sl). The other (high-frequency) 
coefficient is the difference (the derivative). 

How do we return to the time domain given the discrete frequency com- 
ponents Sk? 

1 N-l 

s, = - 
c 

nk 

N skwi 
k=O 

(4.34) 

This is easy to show by direct substitution of (4.32). 
Equations (4.32) and (4.34) are the main results of this section. We see 

that the sn and the Sk can be calculated one from the other, and so contain 
precisely the same information. They form what is known as the discrete 
Fourier transform pair. With the equations we have derived one can go back 
and forth between the time and frequency domains, with absolutely no loss 
of information. 

The DFT as we have derived it looks only at sn over a finite interval of 
time. What happens if we take the DFT Sk and try to find sn for times not 
in the interval from 0 to N - l? The DC term is obviously the same outside 
the interval as inside, while all the others are periodic in N. Hence the DFT 
predicts SN+n = Sn, IlOt SN+~ = 0 as we perhaps expected! There is no way 
of getting around this paradox; as discussed in Section 2.8 the very act of 
sampling an analog signal to convert it into a digital one forces the spectrum 
to become periodic (aliased). 

The only way to handle a nonperiodic infinite duration digital signal 
is to let the DFT’s duration N increase without limit. Since the Nyquist 
frequency range is divided into N intervals by the DFT, the frequency reso- 
lution increases until the frequency bins become infinitesimal in size. At this 
point we have a denumerably infinite number of time samples but a continu- 
ous frequency variable S(w) (defined only over the Nyquist interval). There 
is no consensus in the literature as to the name of this Fourier transform. 
We will sometimes call it the Long Time DFT (LTDFT) but only when we 
absolutely need to differentiate between it and the usual DFT. 
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The (short time) DFT takes in a finite number of digital values and 
returns a finite number of digital values. We thus have a true transform 
designed for digital computation. However, this transform is still a math- 
ematical concept, not a practical tool. In Chapter 14 we will see that the 
DFT is eminently practical due to the existence of an efficient algorithm for 
its computation. 

EXERCISES 

4.7.1 Derive the LTDFT directly from the FT. 

4.7.2 Express W,” and kVhN-‘)-k in terms of IV&. Express IV; + I%‘;” and 
IV; - IVGk in terms of sine and cosine. How much is kVk+m)k? Derive 
the trigonometric sum formulas (A.23) using these relations. 

4.7.3 What is the graphical interpretation of raising a complex number to a positive 
integer power ? What is special about numbers on the unit circle? Give a 
graphical interpretation of the fact that all powers of VVN are N roots of 
unity. Write a program that draws the unit circle and ail the IV&. Connect 
consecutive powers of each root with straight lines. Describe the pictures you 
obtain for odd and even N. 

4.7.4 What are the equations for 4-point DFT, and what is their interpretation? 

4.7.5 Write a straightforward routine for the computation of the DFT, and find 
the digital estimate of the PSD of various sinusoids. Under what conditions 
is the estimate good? 

4.8 DFT Properties 

Some of the DFT’s properties parallel those of the FT for continuous signals 
discussed in Section 4.3, but some are specific to signals with discrete time 
index. For most of the properties we will assume that the frequency index 
is discrete as well, but the obvious extensions to the LTDFT will hold. 

First, let’s review properties that we have already mentioned. We clearly 
need for the inverse operation defined in equation 4.34 to be a true inverse 
operation, (i.e., we need a sort of ‘Fourier sum theorem’). 

DFT-1 DFT s = s DFT DFT-1 S = S (4.35) 
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It is equally important for the DFT to be linear. 

DFT(z, + $~n) = & + yk 
DFT(a&) = ask 

(4.36) 

Also important, but not corresponding to any characteristic of the FT, are 
the facts that the DFT and its inverse are periodic with period N. For 
example, when given a signal so, sr, . . , SN-1 we usually compute the DFT 
for the N frequencies centered around DC. If we want the DFT at some 
frequency outside this range, then we exploit periodicity. 

S k-mm = Sk for all integer m (4.37) 

This leads us to our first implementational issue; how should we put the 
DFT values into a vector? Let’s assume that our signal has N = 8 samples, 
the most commonly used indexation being 0 to N - 1 (i.e., so, ~1,. . . ~7). 
Since there are only 8 data points we can get no more than 8 independent 
frequency components, about half of which are negative frequency compo- 
nents. 

s-4,s-3,s-2,s-l,sO,sl,s2,s3 

Why is there an extra negative frequency component? Consider the signals 

ei2Kfn = cos(2rfn) + i sin(2rfn) 
k 

where f = N 

for integer k, which are precisely the signals with only one nonzero DFT com- 
ponent . For all integer k in the range 1 5 k 5 s the signal with frequency 
f = +h and the corresponding signal with negative frequency f = -$ 
are different. The real part of the complex exponential is a cosine and so is 
unchanged by sign reversal, but the imaginary term is a sine and so changes 
sign. Hence the two signals with the same IfI are complex conjugates, When 
k = -% the frequency is f = -3 and the imaginary part is identically zero. 
Since this signal is real, the corresponding f = +$ signal is indistinguish- 
able. Were we (despite the redundancy) to include both f = ZJZ$ signals in a 
‘basis’, the corresponding expansion coefficients of an arbitrary signal would 
be identical; exactly that which is needed for periodicity to hold. 

. . . s-4, s-3, s-2, s-1, SO, sl, s2, s3, s-4, s-3, s-2, s-1, SO, sl, s2, s3, . . . 

In fact, any N consecutive Fourier coefficients contain all the information 
necessary to reconstruct the signal, and the usual convention is for DFT 
routines to return them in the order 

SO, &, s2, s3, s4=s-4, s5=%3, &=A%2, &=s-1 
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obtained by swapping the first half (S-d,S-3, S-2, S-1) with the second 

(sO,%s2,s3)~ 

Let’s observe a digital signal sn from time n = 0 until time n = N - 1 
and convert it to the frequency domain Sk. Now using the iDFT we can 
compute the signal in the time domain for all times n, and as we saw in 
the previous section the resulting sn will be periodic. No finite observation 
duration can completely capture the behavior of nonperiodic signals, and 
assuming periodicity is as good a guess as any. It is convenient to visualize 
digital signals as circular buffers, with the periodicity automatically imposed 
by the buffer mechanics. 

Now for some new properties. The DFT of a real signal is Hermitian 
even, 

s-k = s; for real sn (4.38) 

and that of an imaginary signal is Hermitian odd. Evenness (or oddness) for 
finite duration discrete time signals or spectra is to be interpreted accord- 
ing to the indexation scheme of the previous paragraph. For example, the 
spectrum So, Sl, S2, S3, S-4, S-3, S-2,S-1 = 

A-1. lb-l. 
7, -l+@+l)i, -l+i, -l+~i, -1, -1-41, -l-i, -l-(&+i)i 

is Hermitian even and hence corresponds to a real signal. This property 
allows us to save computation time by allowing us to compute only half of 
the spectrum when the input signal is real. 

Conversely, real spectra come from Hermitian even signals (s-~ = SE) 
and pure imaginary spectra from Hermitian odd signals. For example, the 
DFT of the signal SO, sr, ~2, ~3, ~4, ~5, ss, s7 = 

77 --I-@+l>i, -l--i, -l-2(&-l)i, -1, -1+2(fl-l)i, -l+i, -l+(fi+l)i 

will be real. 
The properties that deal with transforming the discrete time and fre- 

quency axes are the time shifting property 

DFT s~-~ = e-imkSk (4.39) 

the time reversal property 

DFT s+ = S-k (4.40) 

and the frequency shifting (mixing) property. 

DFT (sneinn) = Sk-, (4.41) 
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Of course, for finite-duration DFTs, time shifts can move us to times where 
we haven’t observed the signal, and frequency shifts to frequencies where we 
haven’t computed the DFT. When this happens simply use the periodicity 
properties. When we use the word ‘shift’ for digital signals we always mean 
‘circular shift’ (i.e., shift in a circular buffer). 

Parseval’s relation for the DFT is easy to guess 

n=O k=O 

(4.42) 

and for infinite duration signals the sum on the left is over a denumerably 
infinite number of terms and the right-hand side becomes an integral. 

The simplest application of Parseval’s relation for the DFT involves a signal 
of length two. The DFT 1s 

so = so + Sl Sl = so - Sl 

and it is easy to see that Parseval’s relation holds. 

s,2 + sf = (so + s1>2 + (so - s1)2 = a(4 + ST) 

g 1Sn12 = SW (Skl”dk 
n=O -00 

(4.43) 

Products of discrete signals or spectra correspond to convolution sums 
rather than convolution integrals. 

LTDFT (Inun) = 2 x,&s, f x * Y (4.44) 
tC=--00 

LTDFT-1 (X(w)Y(w)) = 2 Xnyn-m G X * y (4.45) 
m=-00 

When the signals are of finite time duration the periodicity forces us to define 
a new kind of convolution sum, known as circular (or cyclic) convolution. 

(4.46) 

DFT-l (XkYk) = N2 Xny(n-m)mod N = X@y 
m=O 

(4.47) 
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where the indices k - K and n - m wrap around according to the periodicity. 
In other words, while the linear (noncircular) convolution of ICO,CE~, 22,x3 

with YO, ~1, ~2~~3 gives 

X*Y = XOYO, 

XOYl + XlYO, 

XoY2 + XlYl + X2Y0, 

2oy3 + Xl y2 + xaYl+ X3Y0, 

21Y3 + X2Y2 + X3Yll 

x2Y3 + x3Y2 

X3Y3 

the circular convolution gives the following periodic signal. 

x@y = . . . 

SOY0 + XlYS + X2Y2 + X3Y1, 

XOYl + XlYO + x2Y3 + x3Y2, 

XoY2 + x1y1+ X2Yo + X3Y3, 

XOYQ + XlY2 + J;2y1+ X3Y0, 

XOYO + XlY3 + X2Y2 + X3Y1, 

XOYl + XlYO + x2Y3 + x3Y2, 

XoY2 + XlYl + XZYO + X3Y3, 

. . . 

We will return to the circular convolution in Section 15.2. 
To demonstrate the use of some of the properties of the FT and DFT 

we will now prove the sampling theorem. Sampling can be considered to be 
implemented by multiplying the bandlimited analog signal s(t) by a train of 
impulses spaced t, apart. This multiplication in the time domain is equiva- 
lent to a convolution in the frequency domain, and since the FT if an impulse 
train in time is an impulse train in frequency, the convolution leads to a pe- 
riodic FT. Stated in another way, the multiplication is a sampled signal sn, 
and thus we should talk in terms of the DFT, which is periodic. We know 
that the impulse train in the frequency domain has repetition frequency 
fs = & and so the convolution forces the frequency domain representation 
to be periodic with this period. The situation is clarified in Figure 4.10 for 
the case of bandwidth less than half fs. If the analog signal s(t) has band- 
width wider than ifs the spectra will overlap, resulting in an irreversible 
loss of information. 
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Ill t 
Figure 4.10: The sampling theorem. On the left we see the signals of interest in the time 
domain, and on the right in the frequency domain. The graphs in (A) depict the original 
analog signal, those in (B) the sampling impulses, and in (C) the sampled signal. 

EXERCISES 

4.8.1 Prove all of the DFT’s properties stated above. 

4.8.2 DFT routines usually return the same number of outputs as inputs, but 
sometimes we need higher frequency resolution. Assuming that we only have 
access to N samples, how can we generate 2N DFT components? Conversely, 
assume we have N DFT components and require 2N signal values. How can 
we retrieve them? These tricks seem to create new information that didn’t 
previously exist. How can this be? 

4.8.3 Prove that an even time signal has an even DFT, and an odd time signal has 
an odd DFT. What can you say about real even signals? 

4.8.4 Explain why we didn’t give the counterparts of several of the properties 
discussed for the FT (e.g., time scaling and differentiation). 

4.8.5 Why does the circular convolution depend on N? (Some people even use the 
notation x Q y to emphasize this fact.) 

4.8.6 In Section 2.8 we mentioned the band-pass sampling theorem that holds for 
a signal with components from frequency fo > 0 to fi > fo. Using a figure 
similar to Figure 4.10 find the precise minimal sampling rate. 

4.8.7 What can be said about the FT of a signal that is zero outside the time 
interval -T < t < +T? (Hint: This is the converse of the sampling theorem.) 
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4.9 Further Insights into the DFT 

In this section we wish to gain further insight into the algebraic and com- 
putational structure of the DFT. This insight will come from two new ways 
of understanding the DFT; the first as the product of the W matrix with 
the signal, and the second as a polynomial in W. 

The DFT is a linear transformation of a finite length vector of length N to 
a finite length vector of the same length. Basic linear algebra tells us that all 
linear transformations can be represented as matrices. This representation 
is also quite evident from equation (4.32)! Rather than discussing a function 
that transforms N signal values se through s~-i into frequency bins SO 
through SN-~, we can talk about the product of an N by N matrix W with 

= 
an iv-vector (se, . . . SN-1) yielding an N-vector (SO, . . . SN-1). 

s=ws (4.48) - -- - 
For example, the simple two-point DFT of equation (4.33) can be written 

more compactly as 

(z)=(: ‘l)(Z) 
as can be easily seen. More generally, the WN matrix is 

w= (4.49) 
= 

1 1 
1 WN 

1 w;t, = 
1 w; 
. . . . 

; wj- 

\ 1 * 
wN-1 

w2rN-l) 

w; “’ N 
w?(N-l) 

. . . . 

1 w2(N-l) . . . w(/-‘)(N-‘) 
N 

and since WN is the Nth root of unity, the exponents can be reduced modulo 
N. Thus 

w2=(% z)=(: !l) (4.50) C 
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w4 = 

and 

= 

ws = 

pg!i#j=[;~$gj(4.51 

t 1 1 1 1 -1 -i 1 i -1 -1 1 1 -; -i 1 ’ 1 

(4.52) 

which can be made explicit using Wg = e -i$ = l!Z(l - i). 

The W matrix is symmetric, as is obvious from the above examples, but 
there are further, less obvious, symmetries as well. For instance, any two 
rows of the matrix are orthogonal, and the squared length (sum of squares 
of the elements) of any row is precisely N. Furthermore, there are relations 
between the elements of WN and those of WM when M divides N. It is these 
relations that make the FFT possible, as will be explained in Section 14.5. 

The matrix representation gives us a simple interpretation for the inverse 
DFT as well. The IDFT’s matrix must be the inverse of the DFT’s matrix 

s = w-‘s (4.53) - =- 

and 

E-’ =- ;W* 
= 

where the Hermitian conjugate of the WN matrix has elements 

(4.54) 

(w*)$c = ,+iy = W-$C 

as can easily be shown. 
There is yet another way of writing the basic formula for the DFT (4.32) 

that provides us with additional insight. For given N and Ic let us drop the 
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indices and write W E IV;. Then the DFT takes the form of a polynomial 
in W with coefficients sn 

N-l 

Sk = c &wn 

n=O 

(4.55) 

which is a viewpoint that is useful for two reasons. First, the connection with 
polynomials will allow use of efficient algorithms for computation of polyno- 
mials to be used here as well. The FFT, although first introduced in signal 
processing, can be considered to be an algorithm for efficient multiplica- 
tion of polynomials. Also, use of Horner’s rule leads to an efficient recursive 
computation for the DFT known as Goertzel’s algorithm. Second, a more 
modern approach considers the DFT as the polynomial approximation to the 
real spectrum. When the real spectrum has sharp peaks such a polynomial 
approximation may not be sufficient and rational function approximation 
can be more effective. 

EXERCISES 

4.9.1 Write explicitly the matrices for DFT of sizes 3, 5, 6, 7, and 8. 

4.9.2 Invert the DFT matrices for sizes 2, 3, and 4. Can you write the iDFT matrix 
in terms of the DFT matrix? 

4.9.3 Prove that any two rows of the DFT matrix are orthogonal and that the 
squared length of any row is N. Show that -&b is a unitary matrix. 

4.10 The z Transform 

So far this chapter has dealt exclusively with variations on a theme by 
Fourier. We extended the FS for periodic analog signals to the FT of arbi- 
trary analog signals, adapted it to the DFT of arbitrary digital signals, and 
modified it to the STFT of changing signals. In all the acronyms the ubiqui- 
tous F for Fourier appeared; and for good reason. The concept of spectrum 
a la Fourier is rooted in the basic physics of all signals. From colors of light 
through the pitch of voices and modes of mechanical vibration to frequen- 
cies of radio stations, Fourier’s concept of frequency spectrum is so patently 
useful that it is hard to imagine using anything else. 
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In the special world of DSP there is, however, an alternative. This alter- 
native is entirely meaningless in the analog world, in some ways less mean- 
ingful than the Fourier spectrum even in the digital world, and on occasion 
seems to be a mere artificial, purely mathematical device. It does sometimes 
enhance our understanding of signals, often greatly simplifies calculations, 
and always includes Fourier’s spectrum as a special case. 

This alternative is called the x trunsfonn, which we shall denote zT. This 
nomenclature is admittedly bizarre since the use of the letter x is completely 
arbitrary (there was no section in the previous chapter named ‘Z Discovers 
Spectrum’), and it is not really a transform at all. Recall that the FS, which 
maps periodic analog signals to discrete spectra, is not called a transform. 
The FT, which maps analog signals to continuous spectra, and the DFT, 
which makes digital signals into discrete spectra, are. The zT takes an arbi- 
trary digital signal and returns a continuous function. This change of form 
from sequence to function should disqualify it from being called a transform, 
but for some reason doesn’t. Even more curious is the fact that outside the 
DSP sphere of influence the term ‘z transform’ is entirely unknown; but a 
closely related entity is universally called the generating function. 

As we have done in the past, we shall abide by DSP tradition. After all, 
every field has its own terminology that has developed side by side with its 
advances and applications, even if these terms seem ridiculous to outsiders. 
Computer hardware engineers use flip-flops without falling. Programmers 
use operating systems without upsetting surgeons. Mathematicians use ir- 
rational numbers and nonanalytic functions, and no one expects either to 
act illogically. High-energy physicists hypothesize subatomic particles called 
quads that have strangeness, flavor, and even charm. When lawyers garnish 
they leave people without appetite, while according to their definitions the 
victim of battery can be left quite powerless. So saying DC when there is no 
electric current, spectral when we are not scared, and x transform pales in 
comparison with the accepted terminologies of other fields! 

The basic idea behind the classic generating function is easy to explain; 
it is a trick to turn an infinite sequence into a function. Classic mathematics 
simply knows a lot more about functions than it does about infinite se- 
quences. Sometimes sequences can be bounded from above or below and in 
this way proven to converge or not. A few sequences even have known limits. 
However, so much more can be accomplished when we know how to change 
arbitrary sequences into functions; specifically, recursions involving sequence 
elements become algebraic equations when using generating functions. 
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Given a sequence se, sr, ~2, . . ., its generating function is defined to be 

s(x) CE 2 snxn (4.56) 
n=O 

basically an infinite polynomial in x. The variable x itself is entirely artificial, 
being introduced solely for the purpose of giving the generating function 
a domain. It is easily seen that the correspondence between a sequence 
and its generating function is one-to-one; different sequences correspond to 
different generating functions, and different generating functions generate 
different sequences. In a way, generating sequences are the opposite of Taylor 
expansions. A Taylor expansion takes a function s(x) and creates a sequence 
of coefficients sn of exactly the form of equation (4.56), while the generating 
function does just the opposite. The Taylor coefficients give us intuition as 
to the behavior of the function, while the generating function gives us insight 
as to the behavior of the sequence. 

We can demonstrate the strength of the generating function technique 
with a simple example, that of the Fibonacci sequence fn. This famous se- 
quence, invented by Leonardo of Pisa (nicknamed Fibonacci) in 1202, models 
the number of female rabbits in successive years. We assume that each ma- 
ture female rabbit produces a female offspring each year and that no rabbit 
ever dies. We start with a single female rabbit (fo = 1); there is still only 
that rabbit after one year (fr = l), since it takes a year for the rabbit to 
reach maturity. In the second year a new baby rabbit is born (f2 = 2)) and 
another in the third (fs = 3). Th ereafter in each year we have the number of 
rabbits alive in the previous year plus those born to rabbits who were alive 
two years ago. We can deduce the recursive definition 

fo = 1 fl = 1 fn = fn-1 + fn-2 forn > 2 (4.57) 

that produces the values 1, 1,2,3,5,8,13,21, . . . . However, were we to need 
fls7 we would have no recourse other than to recurse 137 times. Is there an 
explicit (nonrecursive) formula for fn . 7 At this point we don’t see any way 
to find one, but this is where the generating function can help. Generating 
functions convert complex recursions into simple algebraic equations that 
can often be solved. 

The generating function for the Fibonacci sequence is 

f(X) = 2 fnXn = 1 + X + 2x2 + 3x3 + 5x4 + 8x5 + . . . 

n=O 
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and this is what we wish to evaluate. To proceed, take the recursion that 
defines the Fibonacci sequence, multiply both sides by P and sum from 
n = 2 to infinity. 

cm co co 

Cf nxn = Cf n-lxn + Cf n-2X 
n 

n=2 n=2 n=2 

= x c fn-lxn-l + x2 c fne2p-2 
n=2 n=2 

= xgfnXn+X2gfnXn 
n=l n=O 

f (4 - fox0 - flJ: l = x (f (2) - foxO) + x2f (x) 
f (2) - 1 - x = f (x)x - x + f (x)x2 

Solving the algebraic equation we easily find an explicit expression for the 
generating function A 

f(x) = 1 l-x-22 

which is plotted in Figure 4.11. 

Figure 4.11: The generating function for the Fibonacci sequence. Note the divergences 
at -y x -1.618 and -7’ M 0.618. 
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The zeros of the quadratic in the denominator are easily found to be 
-y and -7’ where y E y = cos-1 A (x) is the famous ‘golden ratio’ and 
y == l-6 1 = -- 

We c&i now &turn to our original problem. In order to find an explicit 
formula for the nth Fibonacci element, we need only to rewrite the gener- 
ating function as an infinite polynomial and pick out the coefficients. To do 
this we use a ‘partial fraction expansion’ 

Ox) = (x + $x + 7’) > 

where a + b = -ab = 1. Utilizing the formula for the sum of a geometric 
1 progression l-az = Cr!-o(all:)n and comparing term by term, we find 

fn = 5 (Tn+’ - (,y+l) (4.58) 

the desired explicit formula for the n th Fibonacci element. 
Most people when seeing this formula for the first time are amazed that 

this combination of irrational numbers yields an integer at all. When that 
impression wears off, a feeling of being tricked sets in. The two irrational 
numbers in the numerator contain exactly a factor of 6, which is exactly 
what is being eliminated by the denominator; but if it is all a trick why 
can’t a formula without a & be devised? So we are now surprised by our 
prior lack of surprise! Equation (4.58) is so astounding that you are strongly 
encouraged to run to a computer and try it out. Please remember to round 
the result to the nearest integer in order to compensate for finite precision 
calculations. 

Now that we have become convinced of the great utility of generating 
functions, we will slightly adapt them for use in DSP. The z-transform is 
conventionally defined as 

00 

SM = zT(s,) = c snCn 
n=-co 

(4.59) 

and you surely discern two modifications but there is also a third. First, 
we needed to make the sum run from minus infinity rather than from zero; 
second, the DSP convention is to use 2-l rather than x; and third, we 
will allow .Z to be a complex variable rather than merely a real one. The 
second change is not really significant because of the first; using .Z instead 
of x-l is equivalent to interchanging sn with s+. The really consequential 
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change is that of using a complex variable. Unlike the generating function 
we saw above, S(Z) is defined over the complex plane, called the z-plane. 
Sinusoids correspond to z on the unit circle, decaying exponentials to z 
inside the unit circle, growing exponentials to z outside the unit circle. The 
definition of z in the complex plane makes available even more powerful 
analytic techniques. The study of functions of complex variables is one of 
the most highly developed disciplines that mathematics has to offer, and 
DSP harnesses its strength via the z transform. 

Any complex variable z can be written in polar form 

2 = r&W 

where r is the magnitude, and w the angle. In particular, if x is on the unit 
circle T = 1, and z = elW. If we evaluate the zT on the unit circle in the 
x-plane, considering it to be a function of angle, we find 

(4.60) 
n=-co n=--00 

which is precisely the DFT. The zT reduces to the DFT if evaluated on the 
unit circle. 

For other nonunity magnitudes we can always write r = ex so that 
2 = ex+iw and 

S(z) = g &g-n = -g- q.&++i+ 

n=--00 n=--00 
(4.61) 

which is a digital version of the Laplace Transform (LT). The Laplace trans- 
form, which will not be discussed in detail here, expands functions in terms 
of exponentially increasing or damped sinusoids, of the type described in 
equation (2.11). Its expression is 

f(s) = Jm f(t)e-“tdt 
-CO 

(4.62) 

where s is understood to be complex (defining the s-plane). Sinusoids corre- 
spond to purely imaginary s, decaying exponentials to positive real s, grow- 
ing exponentials to negative real s. The LT generalizes the FT, since the 
FT is simply the LT along the imaginary s axis. This is analogous to the zT 
generalizing the DFT, where the DFT is the zT on the unit circle. Although 
a large class of analog signals can be expanded using the FT, the LT may 
be more convenient, especially for signals that actually increase or decay 
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with time. This is analogous to the DFT being a sufficient representation 
for most digital signals but the zT often being more useful. 

We have been ignoring a question that always must be raised for infinite 
series. Does expression (4.59) for the zT converge? When there are only a 
finite number of terms in a series there is no problem with performing the 
summation, but with an infinite number of terms the terms must decay fast 
enough with n for the sum not to explode. For complex numbers with large 
magnitudes the terms will get larger and larger with 72, and the whole sum 
becomes meaningless. 

By now you may have become so accustomed to infinities that you may 
not realize the severity of this problem. The problem with divergent infinite 
series is that the very idea of adding terms may be called into question. 
We can see that unconvergent sums can be meaningless by studying the 
following enigma that purports to prove that 00 = -l! Define 

S=1+2+4+8+... 

so that S is obviously infinite. By pulling out a factor of 2 we get 

S = 1 + 2(1+ 2 + 4 + 8 + . . .) 

and we see that the expression in the parentheses is exactly S. This implies 
that S = 1 + 2S, which can be solved to give S = -1. The problem here 
is that the infinite sum in the parentheses is meaningless, and in particular 
one cannot rely on normal arithmetical laws (such as 2(a + b) = 2a + 2b) to 
be meaningful for it. It’s not just that I is infinite; I is truly meaningless 
and by various regroupings, factorings, and the like, it can seem to be equal 
to anything you want. 

The only truly well-defined infinite series are those that are absolutely 
convergent. The series 

S=C an 
n=O 

is absolutely convergent when 

A= y, ~%-tl 
n=O 

converges to a finite value. If a series S seems to converge to a finite value 
but A does not, then by rearranging, regrouping, and the like you can make 
S equal to just about anything. 
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Since the zT terms are a, = s&, our first guess might be that 1x1 
must be very small for the sum to converge absolutely. Note, however, that 
the sum in the zT is from negative infinity to positive infinity; for absolute 
convergence we require 

A = fJ ISnIIZln = 2 lS,ll~ln+~ l%illXln = E Is-nIICln+~ ISnIIXln 
n=-00 12=--o;) n=O n=l n=O 

where we defined C G z-r. If lzl is small then ICI is large, and consequently 
small values of Iz I can be equally dangerous. In general, the Region Of 
Convergence (ROC) of the z transform will be a ring in the z-plane with 
the origin at its center (see Figure 4.12). This ring may have T = 0 as its 
lower radius (and so be disk-shaped), or have r = co as its upper limit, or 
even be the entire z-plane. When the signal decays to zero for both n + --00 
and n + 00 the ring will include the unit circle. 

3 

Figure 4.12: In general, the region of convergence (ROC) of the z transform is a ring in 
the z-plane with the origin at its center. 

The x-plane where the zT lives, with its ROCs, poles, and zeros, is a 
more complex environment than the frequency axis of the FT. We will learn 
a lot more about it in the coming chapters. 

EXERCISES 

4.10.1 The zT is an expansion in basis functions zn = reiwn. Show that this basis 
is orthogonal. 

4.10.2 Derive the generating function for a Fibonacci sequence with initial condi- 
tions fo = 1, fl = 2. What is the explicit formula for fn? 
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4.10.3 The integer recursions for the two families of sequences g+ and g- 

f 
gn+1= 

{ 

39; f 1 
&I$ 

g,f odd 
9,’ even 

may eventually lead to g = 1, or may oscillate wildly. For example, for the 
g- case, go = 5 leads to a cycle 5,14,7,20,10,5; no cycle has ever been found 
for the g+ case (the Collatz problem). Compute numerically the generating 
functions g*(z) for 0 5 z < 1 and starting values go = 2. . . 10. Can you tell 
which initial values cycle from the generating function? 

4.10.4 Consider the infinite series S = 1 - 1 + 1 - 1 + . , . . Writing this S = (1 - 
1) + (1 - 1) + . . . = 0 + 0 + . . . it would seem to converge to zero. Regroup 
to make S equal something other than zero. Is S absolutely convergent? 

4.10.5 Show that if the zT of a signal is a rational function of z then the locations 
of poles and zeros completely specifies that signal to within a gain. 

4.10.6 Show that the LT of s(t) is the FT of s(t)emxt. 

4.10.7 Find the Laplace transforms of the unit impulse and unit step. 

4.10.8 Derive the zT from the LT similarly to our derivation of DFT from FT. 

4.10.9 According to the ratio test an infinite sum C,“=, a, converges absolutely if 
the ratio 1 y 1 converges to a value less than unity. How does this relate to 
the zT? 

4.11 More on the z Transform 

Once again the time has come to roll up our sleeves and calculate a few 
examples. The first signal to try is the unit impulse sn = &,o, for which 

S(x) = zT(&u) = 5 s,x-~ = 1 s x0 = 1 
n=-00 

which is analogous to the FT result. The series converges for all z in the 
z-plane. Were the impulse to appear at time m $ 0, it is easy to see that 
we would get S(z) = z-~, which has a zero at the origin for negative times 
and a pole there for positive ones. The ROC is the entire plane for m 5 0, 
and the entire plane except the origin for m > 0. 
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What is the zT of s, = CPU,? This signal increases exponentially with 
time for QI > 1, decreases exponentially for 0 < Q! < 1, and does the same 
but with oscillating sign for a < 0. 

S(z) = zT(c2’&) = 2 ~2%~ z--~ = &oZ-1)n 
n=--00 n=O 

Using the equation (A.47) for the sum of an infinite geometric series, we find 

S(x) = l 
z 

=- 
1 - cw-1 z-a 

(4.63) 

which has a pole at z = a. The ROC is thus 1x1 > 1~11, the exterior of disk 
of radius a. When does the FT exist? As a general rule, poles in the z-plane 
outside the unit circle indicate explosive signal growth. If Ial < 1 the ROC 
includes the unit circle, and so the FT converges. For the special case of the 
unit step Sn = un, we have QI = 1, SO the zT is 5 with ROC 1~1 > 1; the 
FT does not exist. 

We can shift the signal step to occur at time m here as well. In this case 

qz) = 2 an-mUn-mX-n = E CL~--mZ-mZ-(n--m) 

n=-00 n=m 

which after a change in variable from n to n - m gives 

S(x) = Z-m fy cPX-n = z-m1 _ iZbl 

Z1-m 
=- 

n=O z-o! 

with poles at z = QI and z = 0, and ROC unchanged. 
What about sn = oVnun? This is a trick question! This is the same as 

before if we write sn = ($)nun so S(x) = 1-i-1, with ROC IzI > Jo-‘1. 
Since the sum we performed is true in general, the Q! used above can be 
anything, even imaginary or complex. Hence we know, for instance, that the 
zT of elwn is 1 

l-elwy-1 
with ROC IzI > Ieiwl = 1. 

We can perform a calculation similar to the above for sn = onU-n. 

S(Z) = C~?-,QnU-nZ-n = 5 (O!Z-l)n 

n=--00 
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The ROC is now jz[ < Ial, th e interior of the disk. Shifting the ending time 
to n = m we get 

S(z) = c~y-oo cP-- U++.m) X-n = 2 an-m Z-m Z-(n-m) 
n=--00 

C,“=&-w 
1 

= = Zrn 
1 - a-lx 

with an extra pole if m < 0. It will often be more useful to know the zT of 
s, = anU-n-l. This will allow covering the entire range of n with no overlap. 
It is convenient to remember that the zT of sn = --CPU-,-~ is exactly that 
of sn = anUn but with ROC IzI < Ial. The desired transform is obtained by 
noting that multiplication of sn by anything, including - 1, simply causes 
the zT to be multiplied by this same amount. 

Rather than calculating more special cases directly, let’s look at some 
of the z transform’s properties. As usual the most critical is linearity, i.e., 
the zT of axn + by, is ax(z) + by(z). The ROC will always be at least the 
intersection of the ROCs of the terms taken separately. This result allows us 
to calculate more transforms, most importantly that of cos(wn). We know 
that cos(wn) = i(eiwn+emiwn ), so the desired result is obtained by exploiting 
linearity. 

The next most important property of the zT is the effect of a time shift. 
For the FS and FT, shifting on the time axis led to phase shifts, here there is 
something new to be learned. In the cases we saw above, the effect of shifting 
the time by m digital units was to multiply the zT by zmrn. In particular the 
entire effect of delaying the digital signal by one digital unit of time was to 
multiply the zT by a factor of z -‘. This is a general result, as can be easily 
derived. 

zT(xn-1) = C~?-ooXn-lX-n = C XnZ -(n+l) 

n=-co 
co 

n=-00 

Accordingly the factor of 2-l can be thought of as a unit delay operator, as 
indeed we defined it back in equation (2.21). The origin of the symbol that 
was arbitrary then is now understood; delaying the signal by one digital unit 
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of time can be accomplished by multiplying it by x-l in the z domain. This 
interpretation is the basis for much of the use of the zT in DSP. 

For example, consider a radioactive material with half-life T years. At 
the beginning of an experiment n = 0 we have 1 unit of mass m = 1 of this 
material; after one half-life n = 1 the mass has dropped to m = $ units, 
3 having been lost. At digital time n = 2 its mass has further dropped to 
m=4 ’ after losing a further $, etc. After an infinite wait 

i+$+i+&+...=l 

all of the material has been lost (actually converted into another material). 
The mass left as a function of time measured in half-lives is 

an exponentially decreasing signal. Now a scientist measures the amount of 
mass at some unknown time n and wishes to predict (or is it postdict?) what 
the mass was one half-life back in time. All that need be done is to double 
the amount of mass measured, which is to use the operator z-l with z being 
identified as i. This example might seem a bit contrived, but we shall see 
later that many systems when left alone tend to decrease exponentially in 
just this manner. 

What about time reversal? For the FT this caused negation of the fre- 
quency; here it is straightforward to show that the zT of s-n has its x variable 
inverted, zT(s-n) = S(Z-l). If the original signal had a ROC & < 1~1 < Rh, 
then the time-reversed signal will have a ROC of RF1 > 1~1 > Rh’. The 
meaning of this result is not difficult to comprehend; the inversion of x = reiw 
both negates the w and inverts T. Thus decaying exponentials are converted 
to exploding ones and vice versa. 

You must be wondering why we haven’t yet mentioned the inverse zT 
(izT). The reason is that it is somewhat more mathematically challenging 
than the other inverse operations we have seen so far. Remember that the 
zT’s range is a ring in the complex z-plane, not just a one-dimensional line. 
To regain sn from S(x) we must perform a contour integral 

1 
Sn= . 

2x2 f s( > 
n-l zx dz (4.64) 

over any closed counterclockwise contour within the ROC. This type of 
integral is often calculated using the residue theorem, but we will not need 
to use this complex mechanism in this book. 
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Many more special zTs and properties can be derived but this is enough 
for now. We will return to the zT when we study signal processing systems. 
Systems are often defined by complex recursions, and the zT will enable us 
to convert these into simple algebraic equations. 

EXERCISES 

4.11.1 

4.11.2 

4.11.3 

4.11.4 

4.11.5 

4.11.6 

4.11.7 

Write a graphical program that allows one to designate a point in the z-plane 
and then draws the corresponding signal. 

Plot the z transform of 6, m for various m. 9 

Prove the linearity of the zT. 

Express zT(~n2,) in terms of z(z) = zT(z,). 

What 
1. 
2. 
3. 
4. 
5. 

What 
1. 
2. 
3. 

Prove 
1. 
2. 
3. 
4. 
5. 
6. 

is the z transform of the following digital signals? What is the ROC? 
6 0 
%2+2 

anu(n) 
ant+n - 1) 
2jnUn + inU-n 

digital signals have the following z transforms? 
- z 2 

2+2 
1 

1-2~4 ROC 14 > I21 

the following properties of the zT: 
linearity 
time shift ZTsn-k = Z-%(Z) 
time reversal ZTs-n = S(e) 
conjugation zTsE = S*(z*) 
resealing ZT(ansn) = S(2) 
z differentiation zT(ns,) = --t&S’(z) 

4.12 The Other Meaning of Frequency 

We have discussed two quite different representations of functions, the Tay- 
lor expansion and the Fourier (or z) transform. There is a third, perhaps 
less widely known representation that we shall often require in our signal 
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processing work. Like the Fourier transform, this representation is based on 
frequency, but it uses a fundamentally different way of thinking about the 
concept of frequency. The two usages coincide for simple sinusoids with a 
single constant frequency, but differ for more complex signals. 

Let us recall the examples with which we introduced the STFT in Sec- 
tion 4.6. There we presented a pure sinusoid of frequency fi, which abruptly 
changed frequency at t = 0 to become a pure sine of frequency fi. Intu- 
ition tells us that we should have been able to recover an instantaneous 
frequency, defined at every point in time, that would take the value fi for 
negative times, and f2 for positive times. It was only with difficulty that 
we managed to convince you that the Fourier transform cannot supply such 
a frequency value, and that the uncertainty theorem leads us to deny the 
existence of the very concept of instantaneous frequency. Now we are going 
to produce just such a concept. 

The basic idea is to express the signal in the following way: 

s(t) = A(t) cos p-w) 

for some A(t) and G(t). This is related to what is known a~ the analytic 
representation of a signal, but we will call it simply the instantaneous rep- 
resentation. The function A(t) is known a~ the instantaneous amplitude of 
the signal, and the Q(t) is the instantaneous angle. Often we separate the 
angle into a linear part and the deviation from linearity 

s(t) = A(t) cos (wt + qqt)) 

where the frequency w is called the carrier frequency, and the residual 4(t) 
the instantaneous phase. 

The instantaneous frequency is the derivative of the instantaneous angle 

d@ (t > d4w 29Tf(t) = ----g-- = w + 7 (4.67) 

which for a pure sinusoid is exactly the frequency. This frequency, unlike 
the frequencies in the spectrum, is a single function of time, in other words, 
a signal. This suggests a new world view regarding frequency; rather than 
understanding signals in a time interval as being made up of many frequen- 
cies, we claim that signals are fundamentally sinusoids with well-defined 
instantaneous amplitude and frequency. One would expect the distribution 
of different frequencies in the spectrum to be obtained by integration over 
the time interval of the instantaneous frequency. This is sometimes the case. 
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Consider, for example, a signal that consists of a sinusoid of frequency fi 
for one second, and then a sinusoid of nearby frequency f2 for the next sec- 
ond. The instantaneous frequency will be fl and then jump to fi; while the 
spectrum, calculated over two seconds, will contain two spectral lines at fr 
and f2. Similarly a sinusoid of slowly increasing instantaneous frequency will 
have a spectrum that is flat between the initial and final frequencies. 

This new definition of frequency seems quite useful for signals that we 
usually consider to have a single frequency at a time; however, the instanta- 
neous representation of equation (4.65) turns out to very general. A constant 
DC signal can be represented (using w = 0), but it is easy to see that a con- 
stant plus a sinusoid can’t. It turns out (as usual, we will not dwell upon the 
mathematical details) that all DC-less signals can be represented. This leads 
to an apparent conflict with the Fourier picture. Consider a signal composed 
of the sum of the two sinusoids with close frequencies fi and fi; what does 
the instantaneous representation do, jump back and forth between them? 
No, this is exactly a beat signal (discussed in exercise 2.3.3) with instanta- 
neous frequency a constant i (fr + f2), and sinusoidally varying amplitude 
is with frequency $ lfr - f21. Such a signal is depicted in Figure 4.13. The 
main frequency that we see in this figure (or hear when listening to such a 
combined tone) is the instantaneous frequency, and after that the effect of 
A(t), not the Fourier components. 

We will see in Chapter 18 that the instantaneous representation is par- 
ticularly useful for the description of communications signals, where it is 
the basis of modulation. Communications signals commonly carry informa- 

Figure 4.13: The beat signal depicted here is the sum of two sinusoids of relatively 
close frequencies. The frequencies we see (and hear) are the average and half-difference 
frequencies, not the Fourier components. 
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tion by varying (modulating) the instantaneous amplitude, phase, and/or 
frequency of a sinusoidal ‘carrier’. The carrier frequency is the frequency 
one ‘tunes in’ with the receiver frequency adjustment, while the terms AM 
(Amplitude Modulation) and FM (Frequency Modulation) are familiar to 
all radio listeners. 

Let us assume for the moment that the instantaneous representation 
exists; that is, for any reasonable signal s(t) without a DC component, we 
assume that one can find carrier frequency, amplitude, and phase signals, 
such that equation (4.65) holds. The question that remains is how to find 
them. The answering of this question is made possible through the use of a 
mathematical operator known as the Hilbert transform. 

The Hilbert transform of a real signal z(t) is a real signal y(t) = ax(t) 
obtained by shifting the phases of all the frequency components in the spec- 
trum of z(t) by 90”. Let’s understand why such an operator is so remarkable. 
Assume z(t) to be a simple sinusoid. 

x(t) = Acos(wt) 

Obtaining the 90” shifted version 

y(t) = Xx(t) = A cos = A sin(&) 

is actually a simple matter, once one notices that 

y(t) = Aces w t 
( (-&))=x(t-&) 

which corresponds to a time delay. So to perform the Hilbert transform of 
a pure sine one must merely delay the signal for a time corresponding to 
one quarter of a period. For digital sinusoids of period L samples, we need 
to use the operator z -4, which can be implemented using a FIFO of length 
L/4. 

However, this delaying tactic will not work for a signal made up of more 
that one frequency component, e.g., when 

x(t) = Al cos(wlt) + A2 co+&) 

we have 
y(t) = %x(t) = A 1 sin(wt) + A2 sir@) 

which does not equal x(t - 7) for any time delay r. 
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Hence the Hilbert transform, which shifts all frequency components by 
a quarter period, independent of frequency, is a nontrivial operator. One 
way of implementing it is by performing a Fourier transform of the signal, 
individually shifting all the phases, and then performing an inverse Fourier 
transform. We will see an alternative implementation (as a fiEter) in Sec- 
tion 7.3. 

Now let us return to the instantaneous representation 

s(t) = A(t) cos (wt + #+)) (4.68) 

of a signal, which we now call z(t). Since the Hilbert transform instanta- 
neously shifts all A cos(wt) to A sin(wt), we can explicitly express y(t). 

Y(t) = 3-149 = A(t) sin (wt + d(t)) (4.69) 

We can now find the instantaneous amplitude by using 

A(t) = 4x2(t) + y2(t) (4.70) 

the instantaneous phase via the (four-quadrant) arctangent 

4(t) = tan-l $j - wt 

and the instantaneous frequency by differentiating the latter. 

w(t) d4@) =--- 
dt 

(4.71) 

(4.72) 

The recovery of amplitude, phase, or frequency components from the original 
signal is called demodulation in communications signal processing. 

We have discovered a method of constructing the instantaneous repre- 
sentation of any signal x(t). This method can be carried out in practice for 
digit al signals, assuming that we have a numeric method for calculating the 
Hilbert transform of an arbitrary signal. The instantaneous frequency simi- 
larly requires a numeric method for differentiating an arbitrary signal. Like 
the Hilbert transform we will see later that differentiation can be imple- 
mented as a filter. This type of application of numerical algorithms is what 
DSP is all about. 
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EXERCISES 

4.12.1 

4.12.2 

4.12.3 

4.12.4 

4.12.5 

4.12.6 

We applied the Hilbert transform to z(t) = cos(wt + 4(t)) and claimed that 
one obtains y(t) = sin@ + 4(t)). Using trigonometric identities prove that 
this is true for a signal with two frequency components. 

Even a slowly varying phase may exceed 2n or drop below zero causing 
nonphysical singularities in its derivative. What should be done to phases 
derived from equation (4.71) in such a case? 

What is the connection between the instantaneous frequency and the spec- 
trum of the signal? Compare the short time power spectrum calculated over 
a time interval to the histogram of the instantaneous frequency taken over 
this interval. 

Show that given a signal s(t) and any amplitude signal A(t) an appropriate 
phase (a(t) can be found so that equation (4.65) holds. Similarly, show that 
given any phase an amplitude signal may be found. The amplitude and phase 
are not unique; the z(t) and y(t) that are related by the Hilbert Transform 
are the canonical (simplest) representation. 

Find an explicit direct formula for the instantaneous frequency as a function 
of z(t) and y(t). What are the advantages and disadvantages of these two 
methods of finding the instantaneous frequency? 

We can rewrite the analytic form of equation (4.68) in quadrature form. 

x(t) = a(t) cos(wt) + b(t) sin(wt) 

What is the connection between a(t), b(t) and A(t), 4(t)? We can also write 
it in sideband form. 

x(t) = (u(t) + l(t)) cos(wt) + (u(t) - l(t)) sin(wt) 

What are the relationships now? 

Bibliographical Notes 

The DFT and zT are covered well in many introductory texts, e.g., [187, 252, 1671, 
while the Hilbert transform and analytic representation are confined to the more 
advanced ones [186, 2001. An early book devoted entirely to the zT is [125], while 
tables were published even earlier [97]. 

The uncertainty theorem was introduced in quantum mechanics by Heisenberg 
[99]. Another physicist, Wigner [282], derived the first example of what we would 
call a time-frequency distribution in 1932, but this mathematical achievement had 
to be translated into signal processing terms. The article by Leon Cohen [39] is the 
best introduction. 
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Noise 

Much of signal processing involves extracting signals of interest from noise. 
Without noise to combat, a radar receiver could detect an echo by simple 
energy thresholding. In a noiseless world an infinite amount of information 
could be transmitted through a communications channel every second. Were 
it not for noise, signal classification would be reduced to dictionary lookup. 
Yet signals in the real world are always noisy. Radar echoes are buried under 
noise, making their detection impossible without sophisticated processing. 
Modem signals rely on complex modulation and error correction schemes to 
approach the maximum rate attainable through noisy telephone lines. Due 
to noise, signal classification is still more an art than a science. Extracting a 
signal from noise can rely on knowledge of the clean signal and/or knowledge 
of the noise. Up to now we have learned to characterize clean signals; in this 
chapter we will study the characteristics of noise. 

As discussed in Section 2.3, a stochastic signal cannot be precisely pre- 
dicted, being bound only by its statistics. What do we mean by ‘statistics’? 
It is jokingly said that probability is the science of turning random numbers 
into mathematical laws, while statistics is the art of turning mathematical 
laws into random numbers. The point of the joke is that most people take 
‘statistics’ to mean a technique for analyzing empirical data that enables one 
to prove just about anything. In this book ‘statistics’ refers to something 
far more tangible, namely the parameters of probabilistic laws that govern 
a signal. Familiar statistics are the average or mean value and the variance. 

In this chapter we will learn how noisy signals can be characterized 
and simulated. We will study a naive approach that considers noise to be 
merely a pathological example of signals not unlike those we have previously 
met. In particular, we will take the opportunity to examine the fascinating 
world of chaotic deterministic signals, which for all practical purposes are 
indistinguishable from stochastic signals but can be approached via periodic 
signals. Finally, we will briefly discuss the mathematical theory of truly 
stochastic signals. 

161 
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5.1 Unpredictable Signals 

‘Pure noise’ is the name we give to a quintessential stochastic signal, one that 
has only probabilistic elements and no deterministic ones. Put even more 
simply, pure noise is completely random; it obeys only probabilistic laws 
and can never be perfectly predicted. ‘Plain’ noise has a softer definition in 
that we allow signals with some deterministic characteristics, e.g. the sum 
of a pure noise and a deterministic signal. The ratio of the energy of the 
deterministic signal to that of the pure noise component is called the Signal 
to Noise Ratio (SNR), usually specified in dB. A signal with finite SNR is 
unpredictable to some degree. Our guesses regarding such noisy signals may 
be better than random, but we can quite never pin them down. An SNR of 
OdB (SNR=l) means the signal and noise have equal energies. 

There are four distinguishable ways for a signal to appear unpredictable: 
it may be pseudorandom, incompletely known, chaotic, or genuinely stochas- 
tic. The exact boundaries between these four may not always be clear, but 
there is progressively more known about the signal as we advance from the 
first to the third. Only the fourth option leads to true noise, but in practice 
it may be impossible to differentiate even between it and the other three. 

A pseudorandom signal is completely deterministic, being generated by 
some completely defined algorithm. However, this algorithm is assumed to 
be unknown to us, and is conceivably quite complex. Being ignorant of the 
algorithm, the signal’s behavior seems to us quite arbitrary, jumping capri- 
ciously between different values without rhyme or reason; but to the initiated 
the signal’s behavior is entirely reasonable and predictable. If we may as- 
sume that there is no correlation between the unknown generating algorithm 
and systems with which the signal may interact, then for all intents and pur- 
poses a pseudorandom signal is noise. Pseudorandom signals will be treated 
in more detail in Section 5.4. 

An incompletely known signal is also completely deterministic, being 
generated by a known algorithm that may depend on several parameters. 
The details of this algorithm and some, but not all, of these parameters 
are known to us, the others being hidden variables. Were we to know all 
these parameters the signal would be completely predictable, but our state 
of knowledge does not allow us to do so. In practice knowing the form and 
some of the parameters may not help us in the least, and the signal seems to 
us completely erratic and noise-like. In theory the signal itself is not erratic 
at all; it’s simply a matter of our own ignorance! 

A chaotic signal is also completely deterministic, being generated by a 

completely specified algorithm that may even be completely known to us. 
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However, a chaotic signal seems noisy because of numeric sensitivity of this 
algorithm that causes us to rapidly lose information about the signal with 
the passage of time. Were all initial conditions to be specified to infinite 
precision, and all calculations to be performed with infinite accuracy, the 
signal would indeed be perfectly predictable; but any imprecision of knowl- 
edge or inaccuracy of computation will inevitably lead to complete loss of 
predictability after enough time has passed. Such chaotic signals will be 
treated in detail in Section 5.5. 

A truly stochastic signal is one that is not generated by any deterministic 
algorithm at all. The time between successive clicks of a Geiger counter 
or the thermal noise measured across a resistor are typical examples. At 
a fundamental level, quantum mechanics tells us that nature abounds with 
such genuinely random signals. The philosophical and scientific consequences 
of this idea are profound [53]. The implications for DSP are also far-reaching, 
and will be discussed briefly in Section 5.6. However, a formal treatment of 
stochastic signals is beyond the scope of this book. 

EXERCISES 

5.1,l The game of guessit is played by two or more people. First the players 
agree upon a lengthy list of functions of one variable t, each of which is also 
dependent on one or two parameters. The inventor picks function from the 
list and supplies parameters. Each analyst in turn can request a single value 
of the function and attempt to guess which function has been selected. What 
strategy should the inventor use to make the analysts’ task more difficult? 
What tactics can the analysts use? Try playing guessit with some friends. 

5.1.2 Generate a signal x with values in the interval [0 . . . l] by starting at an 
arbitrary value in the interval and iterating xn+l = Xx,(1-xzn) for 0 5 X 5 4. 
For what values of X does this signal look random? 

5.1.3 To which of the four types of unpredictable signal does each of the following 
most closely belong? 

1. Static noise on shortwave radio 
2. Sequence of heads (s=l) and tails (s=O) obtained by throwing a coin 
3. World population as a function of time 
4. Value of stock portfolio as a function of time 
5. Sequence produced by your compiler’s random number generator 
6. Distance from earth to a given comet 
7. Position of a certain drop of water going down a waterfall 
8. Maximum daily temperature at your location 
9. The sequence of successive digits of 7r 
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5.2 A Naive View of Noise 

No matter what its source, a noise-like signal is very different from the 
signals with which we have dealt so far. Although we can observe it as a 
function of time, its graph resembles modern art as compared to the classical 
lines of deterministic signals; and every time we observe and plot it we get 
a completely different graph. In Figures 5.1, 5.2, and 5.3 we plot distinct 
noise signals in the time domain. All the plots in each figure represent the 
same noise signal, and are called realizations of the underlying noise. No 
two realizations are precisely the same, yet there are noticeable similarities 
between realizations of the same noise, and different noise signals may be 
easily distinguishable by eye. 

Were you to be presented with a new, previously unseen realization of 
one of the noise signals of the figures, and asked to which it belonged, you 
would probably have little difficulty in classifying it. How do you do it? 
How can we best characterize noise signals? It will not surprise you to learn 
that noise signals, like deterministic signals, have characteristics in the time 
domain and in the frequency domain. 

In the time domain we are interested in the statistical attributes of in- 
dividual signal values u,, such as the mean (average) (v) , the variance or 
standard deviation, and the moments of higher orders. The set of all pa- 
rameters that determine the probabilistic laws is called suficient statistics. 
Sufficient statistics are not sufficient to enable us to precisely predict the 
signal’s value at any point in time, but they constitute the most complete 
description of a stochastic signal that there is. Noise signals are called sta- 
tionary when these statistics are not time-dependent. This implies that the 
probabilistic properties of the noise do not change with time; so if we mea- 
sure the mean and variance now, or half an hour from now, we will get the 
same result. 

We will almost always assume stationary noise signals to have zero mean, 
(v) = 0. This is because noise w(t) of nonzero average can always be written 

v(t) = (v) + u(t) A D 21, = (v) + un 

where the constant (w) is of course a (deterministic) DC signal, and v is 
noise with zero mean. There is no reason to apply complex techniques for 
stochastic signals to the completely deterministic DC portion. which can be 
handled by methods of the previous chapters. 



5.2. A NAIVE VIEW OF NOISE 165 

Figure 5.1: A few realizations of a noise signal. The set of all such realizations is called 
the ensemble. Note that each realization is erratic, but although the different realizations 
are quite varied in detail, there is something similar about them. 

Figure 5.2: A few realizations of another noise signal. Note the differences between this 
noise signal and the previous one. Although both have zero average and roughly the 
same standard deviation, the first is uniformly distributed while this signal is Gaussian 
distributed. A few values are off-scale and thus do not appear. 

___ _.. ._......... . . . . . . . .-.. . . . . . . . -. . . KG. __............ . . . . . . . . . __. ._._.._ . . . . . . . ..-........ . ..--.. . . . . _... 
Figure 5.3: A few realizations of a third noise signal. Note the differences between this 
noise signal and the previous two. Although the signal is also zero average and of the 
same standard deviation, the first two signals were vrhite while this signal has been low- 
pass filtered and contains less high-frequency energy, 
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The most detailed information concerning the statistics of individual 
signal values is given by the complete probability distribution these values. 
Probability distributions are functions p(z) that tell us the probability of the 
signals taking on the value 5. Digital signals can only take on a finite number 
of values, and thus (at least in principle) we can record the complete prob- 
ability distribution as a table. To demonstrate this consider a noise signal 
that can take on only the values -1, 0,l and whose probability distribution 
is the following. 

p(-1) = i P(O) = 4 p(+l) = ; 

Note that the probabilities sum to one since each signal value must be either 
-1, 0, or +l. One signal with such a distribution may be 

. . . 0, -1, +l, -1, -l,O, +l,O,O,O, +l, +l,O, 0, -l,O,. . . 

while another could be 

. . . 0, +l,O, -1, +l,O, -1, -l,O, +l,O, -l,O, 0, +l,O,. . . 

as the reader may verify. 
Given a long enough sample of a digital signal with unknown distribu- 

tion, we can estimate its probability distribution by simply counting the 
number of times each value appears and at the end dividing by the number 
of signal values observed. For example, the noise signal 

. . . - l,O, +l, +1,0, -l,O, -l,O, +I, +I, -1, +I, 0, -1, * * * 

has a probability distribution close to i, $, f . The probability distribution 
of any digital signal must sum to unity (i.e., must be normalized) 

CP(Xi) = 1 (5 2) . 

where the sum is over all possible signal values. 
We said before that the probability distribution contains the most de- 

tailed information available as to individual signal values. This implies that 
all single signal value statistics can be derived from it. For a digital signal 
we can express the mean as a sum over time, 

( > 
1 N 

I-L = Sn =- 
N c Sn (5 3) . 

n=l 

or we can sort the terms such that smaller sn appear before larger ones. 
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This is in turn equivalent to summing each observed signal value s times 
the relative number of times it was observed p(s), 

P = 2 P(S>S 
S=--00 

(5 4 . 

which is seen to be a simple sum of the probability distribution. The variance 
is defined to be the mean-squared deviation from the mean 

o2 = 
( 

(Sn - P)2) = $ &sn - P>2 
n=l 

which can also be written in terms of the probability distribution. 

CT2 = g p(x)(x - pj2 
2=-00 

(5 5) . 

(5 6) . 

Analog signals have a nondenumerably infinite number of possible signal 
values, and so a table of probabilities cannot be constructed. In such cases 
we may resort to using histograms, which is similar to digitizing the analog 
signal. We quantize the real axis into bins of width 62, and similar to the 
digital case we count the number of times signal values fall into each bin. 
If the histogram is too rough we can choose a smaller bin-width 6~. In 
the limit of infinitesimal bin-width we obtain the continuous probability 
distribution p(x), from which all finite width histograms can be recovered by 
integration. Since the probability distribution does not change appreciably 
for close values, doubling small enough bin-widths should almost precisely 
double the number of values falling into each of the respective bins. Put 
another way, the probability of the signal value x falling into the histogram 
bin of width 6x centered on x0 is p( x0)6x, assuming 6x is small enough. For 
larger bin-widths integration is required, the probability of the signal value 
being between x1 and 22 being Ji12 p(x)dx. Since every signal value must be 
some real number, the entire distribution must be normalized. 

s ccl 
p(x) dx = 1 

--00 
(5 7) . 

In analogy with the digital case, the mean and variance are given by the 
following. 

s 00 P = P(X) x dx 
-00 

o2 = I” p(x)(x - p)2dx (5 8) . 
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A 

lt 
0 

Figure 5.4: Four different probability distributions. (A) represents the uniform distribu- 
tion. (B) depicts an exponential distribution. (C) is the bell-shaped Gaussian (or normal) 
distribution. (D) is a representative bimodal distribution, actually the mixture of two 
Gaussians with different means. 

From its very definition, the probability distribution of a random signal 
must be nonnegative and have an integral of one. There are a large number 
of such functions! For example, signal values may be uniformly distributed 
over some range, or exponentially distributed, or have a Gaussian (normal) 
distribution with some mean and variance, or be multimodal. Uniformly 
distributed signals only take on values in a certain range, and all of these 
values are equally probable, even those close to the edges. In Figure 5.4.A 
we depict graphically the uniform distribution. Gaussian distribution means 
that all signal values are possible, but that there is a most probable value 
(called the mean p) and that the probability decreases as we deviate from 
the mean forming a bell-shaped curve with some characteristic width (the 
standard deviation a). Mathematically, 

(5 9) . 

is the famous Gaussian function, depicted in Figure 5.4.C. It is well known 
that when many students take an exam, their grades tend to be distributed 
in just this way. The rather strange constant before the exponent ensures 
that the Gaussian is normalized. 

The frequency domain characteristics of random signals are completely 
distinct from the single-time signal value characteristics we have discussed so 
far. This may seem remarkable at first, since in DSP we become accustomed 
to time and frequency being two ways of looking at one reality. However, 
the dissimilarity is quite simple to comprehend. Consider a digital signal 

Sl, S2, S3, l l -  SN 

with some signal value distribution and a new signal obtained by arbitrarily 
replicating each signal value 

Sl, Sl, S2, S2, S3, S3,. . - SN, SN 
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so that each value appears twice in a row. The new signal obviously has the 
same single-sample statistics as the original one, but its frequencies have 
been halved! Alternatively, consider permuting the order of signal values; 
this once again obviously results in an identical probability distribution, 
but quite different frequency characteristics! A signal’s frequency statistics 
are determined by the relationship between signal values at various rela- 
tive positions, and thus contains information different from the signal value 
statistics. 

We will often talk of white noise. White noise is similar to white light 
in that its spectrum is flat (constant, independent of frequency). Having all 
possible frequencies allows the signal to change very rapidly, indeed even 
knowing the entire past history of a white noise signal does not contribute 
anything to prediction of its future. We thus call a discrete time signal sn 
white noise if observation of {sn}!&, does not allow us to say anything 
useful about the value of sk other than what the single-signal value statistics 
tell us. 

Of course not all noise is white; when the noise signal’s spectrum is 
concentrated in part of the frequency axis we call it colored noise. Colored 
noise can be made by passing white noise through a band-pass filter, a 
device that selectively enhances Fourier components in a certain range and 
rejects others. As we decrease the bandwidth of the filter, the signal more 
and more resembles a sine wave at the filter’s central frequency, and thus 
becomes more and more predictable. 

Since they are independent, time and frequency domain characteristics 
can be combined in arbitrary ways. For example, white noise may happen 
to be normally distributed, in which case we speak of Gaussian white noise. 
However, white noise may be distributed in many other ways, for instance, 
uniformly, or even limited to a finite number of values. This is possible 
because the time domain characteristics emanate from the individual signal 
values, while the frequency domain attributes take into account the relation 
between values at specific times. 

Our naive description of noise is now complete. Noise is just like any other 
signal-it has well defined time domain and frequency domain properties. 
Although we have not previously seen a flat spectrum like that of white 
noise, nothing prevents a deterministic signal from having that spectrum; 
and colored noise has narrower spectra, more similar to those with which we 
are familiar. The time domain characterization of noise is different from that 
of regular signals -rather than specifying how to create the signal, we must 
content ourselves with giving the signal’s statistics. From our naive point of 
view we can think of all noise signals as being pseudorandom or incompletely 



170 NOISE 

known; we suppose that if we had more information we could describe the 
‘noise signal’ in the time domain just as we describe other signals. 

The reader probably realizes from our use of the word naive in describing 
this characterization of noise, that this isn’t the entire story. It turns out 
that stochastic signals don’t even have a spectrum in the usual sense of the 
word, and that more sophisticated probabilistic apparatus is required for 

the description of the time domain properties as well. We will take up these 
topics in Section 5.6. However, our naive theory is powerful enough to allow 
us to solve many practical problems. The next section deals with one of the 
first successful applications of noise removal, the processing of radar returns. 

EXERCISES 

5.2.1 Write a program to generate digital noise signals with probability distribution 
(5.1). Estimate the probability distribution using 10, 100, 1000, and 10,000 
samples. What is the error of the estimation? 

5.2.2 Equation (5.6) for the variance require two passes through the signal values; 
the first for computation of ~1 and the second for 0’. Find a single-pass 
algorithm. 

5.2.3 Using the random number generator supplied with your compiler write a 
zero-mean and unity variance noise generator. Make a histogram of the val- 
ues it produces. Is it uniform? Calculate the empirical mean and standard 
deviation. How close to the desired values are they? 

5.2.4 Using the noise generator of the previous exercise, generate pairs of random 
numbers and plot them as Z, y points in the plane. Do you see any patterns? 
Try skipping L values between the 2 and y. 

5.2.5 The noise generator you built above depends mainly on the most significant 
bits of the standard random number generator. Write a noise generator that 
depends on the least significant bits. Is this better or worse? 

5.2.6 You are required to build the sample value histogram of a signal that only 
takes on values in a limited range, based on N samples. If you use too few 
bins you might miss relevant features, while too many bins will lead to a 
noisy histogram. What is the ‘right’ number of bins, assuming the probability 
distribution is approximately flat? What is the error for 10,000 samples in 
100 bins? 

5.2.7 What are the average, variance, and standard deviation of a Gaussian signal? 
What are the sufficient statistics? In what way is a Gaussian noise signal the 
simplest type of noise? 
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5.3 Noise Reduction by Averaging 

Radar is an acronym for radio detection and ranging. The basic principle of 
range finding using radar was first patented in 1935 by Robert Watson-Watt, 
but practical implementations were perfected by American and British sci- 
entists during World War II. Although modern radars are complex signal 
processing systems, the principles of the basic pulse radar are simple to 
explain. The radar transmitter periodically sends out a powerful electro- 
magnetic pulse of short time duration; the time between pulses is called the 
Pulse Repetition Interval (PRI). The pulse leaves the transmitter at the 
speed of light c and impinges upon various objects, whereupon minute frac- 
tions of the original signal energy are reflected back to the radar receiver. 
The round-trip time between the transmission of the pulse and the reception 
of the returned echo can thus be used to determine the distance from the 
radar to the object 

r = $T (5.10) 

where the speed of light c is conveniently expressed as about 300 meters per 
microsecond. 

The radar receiver is responsible for detecting the presence of an echo and 
measuring its Time Of Arrival (TOA). The time between the TOA and the 
previous pulse transmission is called the lug which, assuming no ambiguity 
is possible, should equal the aforementioned round-trip time T. In order to 
avoid ambiguity the lag should be less than the PRI. Radar receivers must 
be extremely sensitive in order to detect the minute amounts of energy 
reflected by the objects to be detected. To avoid damaging its circuitry, 
the radar receiver is blanked during pulse transmission; and in order to 
keep the blanking time (and thus distance to the closest detectable target) 
minimal we try to transmit narrow pulse widths. This limits the amount of 
energy that may be transmitted, further decreasing the strength of the echo. 
Unfortunately, large amounts of natural and man-made noise are picked up 
as well, and the desired reflections may be partially or completely masked. 
In order to enhance the echo detection various methods have been developed 
to distinguish between the desired reflection signal and the noise. In general 
such a method may exploit characteristics of the signal, characteristics of 
the noise, or both. In this section we show how to utilize the knowledge 
we have acquired regarding the attributes of noise; the known PRI being 
the only signal-related information exploited. In Section 9,6 we will see how 
to improve on our results, notably by embedding easily detectable patterns 
into the pulses. 
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We can view the received signal as being the sum of a deterministic 
periodic signal xn and an additive zero-mean noise signal u, 

and our task is to recover 2, to the best of our abilities. The periodic- 
ity (with period equal to the PRI) of the desired signal derives from the 
supposition that the target is stationary or moving sufficiently slowly, and 
it enables us to observe the same echo signal many times. For sufficiently 
strong echoes we can simply isolate the echoes and measure the TOA for 
each pulse transmitted. Then we need only subtract successive TOAs to find 
the lag. However, this approach is not optimal, and doesn’t work at all when 
the echoes are hidden deep in the noise. We are thus led to seek a stronger 
technique, one that exploits more knowledge regarding the noise. 

The only quantitative statement made about the additive noise Un was 
that it had zero mean. From one PRI to the next the desired signal xn re- 
mains unchanged, but the received signal yn is seems completely different 
from Xn, as depicted in Figure 5.5. Sometimes yn is greater than xn, but 
(due to the noise having zero mean) just as frequently it will be less. Math- 
ematically, using the linearity of the expectation operator, we can derive 

(Yn) = (X7-h + V,) = (Xn) + (%) = Xn- 

Figure 5.5: A pulsed radar signal contaminated by additive zero-mean noise. Note that 
from pulse to pulse the noise is different, but the pulse shape stays the same. 
uncontaminated signal can be reconstructed by pulse-to-pulse integration. 

Thus the 
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Hence, although in general the observed yn is not the desired xn, its 
average is. We can thus average the observed signals and obtain a much 
cleaner estimate of xn. Such averaging over successive pulses is called radar 
return integration. With each new pulse transmitted, the true echo signal 
becomes stronger and stronger, while the noise cancels out and grows weaker 
and weaker. Even if the echo was initially completely buried in the noise, 
after sufficient averaging it will stand out clearly. Once detected, the lag 
measurement can be made directly on the average signal. 

A similar operation can be performed for all periodic phenomena. When 
the desired underlying signal is periodic, each period observed supplies in- 
dependent observations, and averaging increases the SNR. Another special 
case is slowly varying signals. Assuming the additive noise to be white, or at 
least containing significant spectral components at frequencies above those of 
xn, we can average over adjacent values. The time domain interpretation of 
this operation is clear-since xn varies more slowly than the noise, adjacent 
values are close together and tend to reinforce, while the higher-frequency 
noise tends to average out. The frequency domain interpretation is based 
on recognizing the averaging as being equivalent to a low-pass filter, which 

attenuates the high-frequency noise energy, while only minimally distorting 
the low-frequency signal. So once again just the zero mean assumption is 
sufficient to enable us to increase the SNR. 

These averaging techniques can be understood using our naive theory, 
but take on deeper meaning in the more sophisticated treatment of noise. 
For example, we assumed that we could perform the averaging either in time 
or over separate experiments. This seemingly innocent assumption is known 
as the ergodic hypothesis and turns out to be completely nontrivial. We will 
return to these issues in Section 5.6. 

EXERCISES 

5.3.1 Generate M random fl values and sum them up. The average answer will 
obviously be zero, but what is the standard deviation? Repeat for several 
different M and find the dependence on M. 

5.3.2 In this exercise we will try to recover a constant signal corrupted by strong 
additive noise. Choose a number x between -1 and +l. Generate M random 
numbers uniformly distributed between -1 and +l and add them to the 
chosen number, sn = x + u,. $70~ try to recover the chosen number by 
averaging over M values 2 = Cn=i sn and observe the error of this procedure 
z - 2. Perform this many times to determine the average error. How does 
the average error depend on M? 
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5.3.3 Generate M sets of 1024 points of a sinusoidal signal corrupted by additive 
zero-mean noise, 

%a = sin@) + gun 

where un is uniform in the range [-1 . . . + 11. Average sn over the A4 sets to 
reduce the noise. Use fl = 0.01, g = 0.1, 1,10 and A4 = 10,100,1000. How 
does the residual noise decrease as a function of M? 

5.3.4 Using the same signal as in the previous exercise, replace each sn value by 
the average 

s,-L + &g-L+1 + l l ’ + Sn-1 + Sn + Sn+l + l l l + Sn+L-1 + Sn+L 

How well does this work compared to the previous exercise? Try Q = 0.001 

and St = 0.1. What can you say about time averaging? 

5.4 Pseudorandom Signals 

Although noise is often a nuisance we wish weren’t there, we frequently need 
to generate some of our own. One prevalent motive for this is the building 
of simulators. After designing a new signal processing algorithm we must 
check its performance in the presence of noise before deploying it in the real 
world. The normal procedure (see Section 17.7) requires the building of a 
simulator that inexpensively provides an unlimited supply of input signals 
over which we exercise complete control. We can create completely clean 
signals, or ones with some noise, or a great deal of noise. We can then 
observe the degradation of our algorithm, and specify ranges of SNR over 
which it should work well. 

We may also desire to generate noise in the actual signal processing algo- 
rithm. Some algorithms actually require noise to work! Some produce output 
with annoying features, which may be masked by adding a small amount 
of noise. Some are simply more interesting with probabilistic elements than 
without. 

In this section we will discuss methods for generating random numbers 
using deterministic algorithms. These algorithms will enable us to use our 
familiar computer environment, rather than having to input truly proba- 
bilistic values from some special hardware. You undoubtably already have 
a function that returns random values in your system library; but it’s often 
best to know how to do this yourself. Perhaps you checked your random 
number generator in the exercises of the previous section and found that 
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it is not as good as you need. Or perhaps you are designing an embedded 
application that runs without the benefit of support libraries, and need an 
efficient noise generator of your own. Or maybe you are given the job of 
writing just such a library for some new DSP processor. 

Before embarking on our exposition of random number generators there 
is a myth we must dispel. There is no such thing as a random number! If 
there is no such thing, then why are we trying to generate them? We aren’t. 
What we are trying to generate are random sequences or, in DSP terminol- 
ogy, random digital signals. Each particular signal value, once generated, is 
perfectly well known. It’s just that the connection between the signal values 
at different times is nontrivial and best described in probabilistic terms. Ide- 
ally one should not be able to guess the next value that the generator will 
produce based on the previous values (unless one knows the algorithm). Un- 
fortunately, the term ‘random number generator’ has become so entrenched 
in popular computer science jargon that it would be futile to try to call it 
something else. You can safely use this term if you remember that these gen- 
erators are not to be used to generate a single ‘random’ value; their proper 
use is always through generating large numbers of values. 

There are several relatively good algorithms for generating random se- 
quences of numbers, the most popular of which is the linear recursion method, 
originally suggested by D.H. Lehmer in 1951. This algorithm employs the 
integer recursion 

xn+l = (uz, + b) mod m (5.11) 

starting from some quite nonrandom initial integer x0. The integer param- 
eters a, b, and m must be properly chosen for the scheme to work, for 
instance, by taking large m, and requiring b and m to be relatively prime, 
and a to be a large ‘unusual’ number. Real-valued random signals may be 
obtained by dividing all the integer values by some constant. Thus to create 
random real-valued signals in the range [O . . . 1) one would probably simply 
use u, = ti m , yielding quantized values with spacing -&. Subtracting $ from 
this yields noise approximately symmetric around the zero. 

The signals generated by equation (5.11) are necessarily periodic. This 
is because the present signal value completely determines the entire future, 
and since there are only a finite number of integer values, eventually some 
value must reoccur. Since apparent periodicity is certainly a bad feature 
for supposedly random signals, we wish the signal’s period to be as long 
(and thus as unnoticeable) as possible. The longest period possible for the 
linear recursion method is thus the largest integer we can represent on our 
computer (often called MAXINT) . 
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Long period is not enough. Taking a = 1, b = 1, and m =MAXINT gives 
us the sequence 1,2,3.. .MAXINT, h’ h ’ d d 1 w  ic m ee on y repeats after MAX- 
INT values, but hardly seems random. This is the reason we suggested that 
a be relatively large; this allows successive values to be widely separated. 
Keeping b and m relatively prime makes successive values as unrelated as 
possible. There is a lot more to say about optimal selection of these param- 
eters, but instead of saying it we refer the reader to the extensive literature. 

The implementation of equation (5.11) is quite problematic due to the 
possibility of overflow. Normally we desire m to be close to MAXINT, but 
then x may be quite large as well and ax + b would surely overflow. Choos- 
ing m to be small enough to prohibit overflow would be overly restrictive, 
severely limiting period length. In assembly language programming this may 
sometimes be circumvented by temporarily allocating a larger register, but 
this option is not available to the writer of a portable or high-level language 
routine. The constraints can be overcome by restructuring the computation 
at the expense of slightly increased complexity (in the following / represents 
integer division without remainder). 

Given integers m, a, b, x 
Precompute: 

Q t mla 
r + m-a*q 
h-m-b 

Loop : 

x + a*(x-q*k)-wk-1 
if x < 0 then x + x + m 

By the way, if what you want is random bits then it’s not a good idea to 
generate random integers and extract the LSB. This is because a sequence 
of integers can appear quite random, even when its LSB is considerably 
less so. Luckily there are good methods for directly generating random bits. 
The most popular is the Linear Feedback Shift Register (LFSR), which 
is somewhat similar to linear recursion. A shift register is a collection of 
bits that can be shifted one bit to the right, thus outputting and discarding 
the LSB and making room for a new MSB. Linear feedback means that 
the new bit to be input is built by xoring together some of the bits in the 
shift register. Starting off with some bits in the shift register, we generate 
a sequence of bits by shifting to the right one bit at a time. Since the state 
of the shift register uniquely determines the future of the sequence, the 
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sequence eventually become periodic. If the shift register ever has all zeros 
it becomes stuck in this state, and so this must be avoided at all costs. 

One of the first random number generators was suggested by John von 
Neumann back in 1946. His method starts with some D digit integer. Squar- 
ing this integer produces an integer with 20 digits from which the next 
integer in the sequence is obtained by extracting the middle D digits. This 
recursion produces a periodic sequence of D digit integers, but this sequence 
will be considerably less random than one generated by a properly selected 
linear recursion generator. 

Another random number generator does not require a multiplication, but 
does need more memory 

G-b+1 = (xn-j + xn-h) mod m 

where j, Ic, and rn need to be carefully chosen. Of course we need a buffer of 
length max(j, k), and must somehow initialize it. 

Even if our random number generator turns out to be of inferior per- 
formance, there are ways to repair it. The most popular method is to use 
several different suboptimal generators and to combine their outputs in some 
way. For example, given three generators with different periods that output 
b bit integers, we can add the outputs or xor together their respective bits 
(an operation that is usually fast) and obtain a much better sequence. Given 
only two generators we can ‘whiten’ one by placing its values into a FIFO 
buffer and output a value from the buffer chosen by the second generator. 
This can even be accomplished by using a single suboptimal generator for 
both purposes. For example, assume that each call to ‘random’ returns a 
new pseudorandom real number between 0 and 1; then 

Allocate buffer of length N 
for i + 1 to 72 

bufferi +- random 
Loop : 

Ic +-- f loor(nrandom) + 1 
output buff erk 
bufferr, +- random 

is more random, since it whitens short time correlations. 
The algorithms we have discussed so far return uniformly distributed 

pseudorandom numbers. In practice we frequently require pseudorandom 
numbers with other distributions, most frequently Gaussian. There are two 
popular ways of generating Gaussian noise given a source of uniformly 
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distributed noise. The first relies on the ‘law of large numbers’ (see Ap- 
pendix A.13) that states that the sum of a large number of independent 
random numbers, whatever their original distribution, will tend to be Gaus- 
sianly distributed. To exploit this law requires generating and adding N 
(even 12 is often considered large enough) uniform random numbers. Of 
course the maximum value that can be obtained is N times the maximum 
value of the uniform generator, so in reality the Gaussian is somewhat trun- 
cated, but the true distribution is extremely small there anyway. Often of 
more concern is the computational burden of computing N uniform random 
numbers per Gaussian random required. 

The second method commonly used to generate Gaussianly distributed 
numbers, sometimes called the Box-Muller algorithm after its inventors, is 
best understood in steps. First pick at random a point inside the unit circle, 
x:+iy=re . ie If we selected the point such that x and y are independent 
(other than the constraint that the point be inside the circle) then r and 
0 will be as well. Now 8 is uniformly distributed between 0 and 27r; how 
is r distributed? It is obvious that larger radii are more probable since the 
circumference increases with radius; in fact it is quite obvious that the prob- 
ability of having a radius between zero and r increases as r2. We now create 
a new point in the plane u + iv, whose angle is 6’ but with radius p that 
obeys r2 = e -P2j2 The probability of such a point having radius less than R . 
is the same as the probability that the original squared radius r2 is greater 
than e -R2/2. From this it follows that u and v are Gaussianly distributed. 

How do we select a point inside a circle with all points being equally 
probable? The easiest way is to randomly pick a point inside the square that 
circumscribes the unit circle, and to discard points outside the circle. Picking 
a point inside a square involves independently generating two uniformly 
distributed random numbers x and y. Since u and v are also independent, 
for every two uniform random numbers that correspond to a point inside 
the circle we can compute two Gaussianly distributed ones. 

Thus we arrive at the following efficient algorithm: 

generate two uniform random numbers between -1 and +l, x and y 
r2 + x2 -I- y2 
if r2 > 1 return to the beginning 

P2 +- -21nr2, c + $ 
u c- cx and v + cy 
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EXERCISES 

5.4.1 Not only isn’t there such a thing as a random number, there really is no such 
thing as a random sequence of finite length. For example, all sequences of ten 
digits are equally probable, namely one chance in lOlo. Yet we feel viscerally 
that sequences such as { 1, 1, 1, 1, 1, 1, 1, 1, 1) or { 1,2,3,4,5,6,7,&g} are less 
random than say { 1,9,3,6,3,4,5,8,2}. Can you explain this feeling? 

5.4.2 You can test a random function using the following graphical test. Gener- 
ate successive values ~1, r2, . . . and make a scatter plot consisting of points 
(rk, rk- 1). If the resulting picture has structure (e.g., noticeable lines) the 
random sequence has short-term correlations. If the plot looks reasonably 
homogeneous repeat the procedure but plot (rk, ?-k-m) instead. Test the in- 
teger recursions (equation (5.11)) defined by a=lO, b=5, m=50; a=15625, 
b=O, m=65536; and the generator supplied with your programming environ- 
ment . 

5.4.3 Take inferior random generators from the previous exercise and whiten them 
using the algorithm given in the text. Perform the graphical test once again. 

5.4.4 Code a Gaussian noise generator based on the law of large numbers and check 
its distribution. 

5.4.5 Some people use this algorithm to generate Gaussianly distributed numbers: 
generate two uniform random numbers, z and y, between 0 and +l 
a=&BiZi,q6=2~y 
u + asin and v +- aces(#) 
Is this algorithm correct? What are the advantages and disadvantages relative 
to the algorithm given in the text? 

5.4.6 Other people use the following algorithm: 
generate two uniform random numbers, x and y, between 0 and +l 
u = j/Xsin(2ny) 
v = ~xiiEcos(2Ty) 
Show that this method is mathematically equivalent to the method given 
in the text. In addition to requiring calls to sine and cosine functions, this 
method is numerically inferior to the one given in the text. Why? 

5.4.7 Complete the proof of the second algorithm for generating Gaussianly dis- 
tributed random numbers. 

5.4.8 How can we generate random numbers with an arbitrary distribution given 
a uniform generator? 

5.4.9 Show that after an initial transient LFSR sequences are always periodic. 
What is the maximal period of the sequence from a shift register of length 
K? Find a maximal length LFSR sequence of length 15. 
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5.5 Chaotic Signals 

Completely specified deterministic signals, that is, signals generated by com- 
pletely specified deterministic algorithms, can still appear to be entirely ran- 
dom and chaotic. The word ‘chaos’ comes from the Greek taoa, the most 
ancient of the gods, and refers to the confused primordial state before the 
creation. The study of chaotic signals is quite the reverse; what can be fruit,- 
fully examined is the route taken from orderly (often periodic) behavior to 
the chaotic. Most of this section will be devoted to the study of the transition 
from periodic to chaotic behavior in the simplest possible setting. 

How can deterministic signals exhibit chaotic behavior? Turbulence of 
rapidly flowing liquids is one of the prototypes of chaos; although the equa- 
tions of fluid dynamics are well known, we cannot predict the exact behavior 
of twisting currents and whirlpools. When the flow is slow the behavior is 
understandable, so we can start with a slowly flowing liquid and gradually in- 
crease the flow until chaos sets in. Similarly, the future value of investments 
may become unpredictable when interest rates are high and the market 
volatile, but such prediction is straightforward under more subdued condi- 
tions. One can forecast the weather for the next day or two when conditions 
are relatively stable, but prediction becomes impossible over longer periods 
of time. 

There is a simple mathematical explanation for the appearance of chaos 
in a deterministic setting. Linear equations (whether algebraic, differential, 
or difference) have the characteristic that small changes in the input lead 
to bounded changes in output. Nonlinear equations do not necessarily have 
this attribute. In fact it is known that for nonlinear equations with three or 
more free parameters there always are values of these parameters for which 
infinitesimally small changes in initial conditions lead to drastic changes 
of behavior. Even one or two parameter nonlinear equations may become 
oversensitive. Such equations are said to exhibit chaotic behavior since our 
knowledge of the initial conditions is never sufficient to allow us to predict 
the output far enough from the starting point. For example, we may be 
able to predict tomorrow’s weather based on today’s, but the fundamental 
equations are so sensitive to changes in the temperature and air pressure 
distributions that we have no chance of accurately predicting the weather 
next week. 

Perhaps the simplest example of knowledge loss is the shift and truncate 
recursion 

zn+l = Trunc (lox,) (5.12) 
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which shifts the signal value’s decimal point to the right, and then removes 
the integer part. The first few values starting with ~0 = n - 3 are 

0.1415926535.. . , 0.4159265358.. . , 0.1592653589. . . , 
0.5926535897. . . , 0.9265358979 . . . , 0.2653589793 . . . 

which seem to oscillate wildly over the unit interval. Had we chosen ~0 
slightly different from x - 3, the deviation of the resulting xx;n from the 
above values would exponentially increase; for example, with a difference of 
10B5 all similarity is lost after only five iterations. 

The weather prediction example is similar. It turns out that the equations 
relating air pressure, temperature, wind velocity, etc. are highly nonlinear, 
even for rather simplistic models of atmospheric conditions. Weather pre- 
diction relies on running such models, with appropriate initial weather con- 
ditions, on large computers and observing the resulting weather conditions. 
The initial specification is rather coarsely defined, since only gross features 
such as average air temperature and pressure are known. This specification 
leads to specific predictions of the weather as a function of time. However, 
slight changes in the specification of the initial weather conditions lead to 
rather different predictions, the differences becoming more and more signif- 
icant as time goes on. This is the reason that the weather can be predicted 
well for the short term, but not weeks in advance. Lorenz, who discovered 
the instability of weather prediction models in the early 196Os, called this 
the ‘butterfly effect’; a butterfly flapping its wings in Peking will affect the 
weather in New York a month later! 

How can we hope to study such nonlinear equations? Isn’t chaos by 
definition incomprehensible and thus unresearchable? The trick is to study 
routes to chaos; we start at values of parameters for which the nonlinear 
equations are not chaotic, and then to vary the parameters in order to ap- 
proach the chaotic region. Before entering the chaotic region, the output 
signal, although increasingly bizarre, can be profitably investigated. In this 
section we will study Feigenbaum’s route to chaos. This route is easy to 
study since it occurs in a simple one-parameter setting, arguably the sim- 
plest nonlinear equation possible. It also seems to model well many interest- 
ing physical situations, including some of the examples mentioned above. 

We’ll introduce Feigenbaum’s route with a simple example, that of fish in 
a closed pond. Let us denote by x the present fish population divided by the 
maximum possible population (thus 0 < x < 1). We observe the population 
every day at the same hour, thus obtaining a digital signal xn. How does xn 
vary with time? Assuming a constant food supply and a small initial number 
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xn+1 

Figure 5.6: The logistics recursion relates the new signal value zn+l to the old one xn 
by a inverted parabola. As such it is the simplest nonlinear recursion relation. It can also 
be used to approximate any recursion with a single smooth maximum. 

of fish, we expect an initial exponential increase in population, 

but once the number of fish becomes large, we anticipate an opposite ten- 
dency due to overpopulation causing insufficient food and space, and possi- 
bly spread of disease. It makes sense to model this latter tendency by a 1 -xn 
term, since this leads to pressure for population decrease that is negligible 
for small populations, and increasingly significant as population increases. 
Thus we predict 

Xn+l = r G-t (1 - Xn) (5.13) 

which is often called the logistics equation. This equation is quadratic (see 
Figure 5.6) and thus nonlinear. It has a single free parameter r (which is 
related to the amount we feed the fish daily), which obey 0 5 r 5 4 in order 
for the signal x to remain in the required range 0 < x 5 1. Although a 
nonlinear equation with one free parameter is not guaranteed to be chaotic, 
we will see that there are values of r for which small changes in x0 will lead 
to dramatic changes in xn for large n. This means that when we overfeed 
there will be large unpredictable fluctuations in fish population from day to 
day. 

You may object to studying in depth an equation derived from such a 
fishy example. In that case consider a socialistic economy wherein the state 

wishes to close the socioeconomic gap between the poor and the wealthy. It 
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is decided to accomplish this by requiring everyone to deposit their money 
in a state-controlled bank that pays lower interest rates to the wealthy. Let 
yn be the amount invested as a function of time, gmas the maximum wealth 
allowed by law, and i the applicable interest. The usual financial formulas 
tell us 3fn+r = (1 + i>z~~, but here i must be a decreasing function of y, which 
we take to be i = io( 1 - Ymclz a). Substitution leads to 

a-&+1= (l+,,(l-k))& 

which by a simple change of variables becomes the logistics equation (5.13). 
We could continue to give examples that lead to the same equation. It is 

so ubiquitous simply because it is the simplest nonlinear recursion relation 
for a single bounded signal that contains a single free parameter. Any time we 
obtain a quadratic relationship we can transform it into the logistics equation 
by ensuring that the variable is constrained to the unit interval; indeed any 
time we have any nonlinear recursion with a single smooth maximum we can 
approximate it by the logistics equation in the vicinity of the maximum. 

Now that we are convinced that such a study is worthwhile, let us embark 
upon it. We expect the signal xn to eventually approach some limiting value, 
i.e., that the number of fish or the amount of money would approach a 
constant for long enough times. This is indeed the case for small enough r 
values. To find this value as a function of r we need to find a fixed point 
of the recursion, that is, a signal value that once attained forever remains 
unchanged. Since x,+1 = f(xn) must equal xn, we conclude that a fixed 
point zr must obey the following equation. 

x1 = f(xl) = 7-x1(1 - Xl) (5.14) 

Zero is obviously a fixed point of the logistics equation since x, = 0 
implies xn+l = rx,(l - x,) = 0 as well. When you have no fish at all, none 
are born, and an empty bank account doesn’t grow. Are there any nontrivial 
fixed points? Solving equation (5.14) we find the nonzero fixed points are 
given by x1 = p, G 1 - i. 

For this simplest of recursions we could algebraically find the fixed points 
with little trouble. For more complex cases we may fall back to a graphical 
method for finding them. In the graphical method you first plot the recursion 
function x,+1 = f&J (with x, on the x axis and x,+1 on the y axis). Then 
you overlay the identity line xn+l = xn. Fixed points must correspond to 
intersections of the recursion plot with the identity line. In our case the 

recursion is an inverted parabola, and we look for its intersections with the 
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xn+1 

--X n 

Figure 5.7: Graphical method of finding fixed points of the logistics equation. From 
bottom to top the inverted parabolas correspond to 7‘ = 0, 1,2,3,4. We see that for T < 1 
the parabola intersects the identity line only at z = 0, while for larger T there is an 
additional point of intersection. 

45” line (Figure 5.7). It is easy to see that for the parameter region 0 < r 5 1 
the only possible fixed point is ~0 = 0, but for r > 1 the new fixed point 
p, appears. For r 2 1 the new fixed point p, is close to the old one (zero), 
gradually moving away with increasing r. 

So we have found that the steady state behavior of the recursion is 
really very simple. For r < 1 we are underfeeding our fish, or the interest is 
negative, and so our fish or money disappear. An example of this behavior 
is displayed in Figure 5.8.A. For 1 < r < 3 the number or fish or amount of 
money approaches a constant value as can be seen in Figure 5.8.B. However, 
we are in for quite a shock when we plot the behavior of our fish or money 
for r > 3 (Figures 5.8.C and 5&D)! In the first case the signal oscillates 
and in the second it seems to fluctuate chaotically, with no possibility of 
prediction. In the chaotic case starting at a slightly different initial point 
produces a completely different signal after enough time has elapsed! We 
don’t yet understand these phenomena since we progressed along the route 
to chaos too quickly, so let’s backtrack and increase r more slowly. 

The most important feature of the behavior of the signal for small r is 
the existence of the fixed point. Fixed points, although perhaps interesting, 
are not truly significant unless they are attractive. An attractive fixed point 
is one that not only replicates itself under the recursion, but draws in neigh- 
boring values as well. For r 5 1 the zero fixed point is attractive-no matter 
where we start we rapidly approach x = 0; but for 1 < r < 3 the new fixed 
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A 
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D 

Figure 5.8: Signal produced by recursion of the logistics equation for different values of 
r. In (A) we have T = 0.9 and the signal decays to zero. In (B) we have T = 1.9 and the 
signal approaches a constant value. (C) depicts r = 3.1 and the signal oscillates between 
two values. In (D) we have r = 4 with two slightly different initial states; the signal is 
noise-like and irreproducible. 

point ‘draws in’ all signals that do not begin with ~0 = 0 or x0 = 1. This is 
hinted at in Figure 5.8, but it is both simple and instructive for the reader 
to experiment with various r and ~0 and become convinced. 

The idea of attraction can be made clear by using the ‘return map’, 
which is a graphical representation of the dynamics. First, as before, we 
plot the recursion x,+1 = f(z,) and the 45’ line x, = ~~-1. We start with 
a point on the line (x0, x0). Now imagine a vertical line that intersects this 
point; it crosses the recursion curve at some point xl. We draw the vertical 
line from (x0, x0) to this new point (x0, xl>. Next we imagine a horizontal 
line that intersects this new point. It crosses the 45” line at (xl, xl), and we 
proceed to draw a horizontal line to there. The net result of the previous two 
operations is to draw two lines connecting (x0, x0) to (xl, xl), corresponding 
to one iteration from x0 to x1. 

We can now continue to iterate (as in Figure 5.9) until an attractor is 
found. In part (A) of that figure we see that when r < 1 (no matter where 
we begin) we converge to the zero fixed point. Part (B) demonstrates that 
when 1 < r < 3, we almost always converge on the new fixed point (the 
exceptions being x0 = 0 and x0 = 1, which remain at the old zero fixed 
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Figure 5.9: Use of return maps to depict the dynamics of a simple recursion. Each 
iteration starts on the 45’ line, proceeds vertically until intersecting the recursion curve, 
and then returns to the diagonal line. Here we see that after enough iterations we converge 
on a fixed point, which is the intersection of the recursion curve with the diagonal line. In 
(A) we have T = 0.5 and the only fixed point is zero, while in (B) we see convergence to 
the nonzero fixed point p,-. 

point). We will see shortly that for r > 3 even this fixed point ceases being 
an attractor; if one starts exactly at it, one stays there, but if one strays 
even slightly the recursion drives the signal away. 

How can we mathematically determine if a fixed point p is an attractor? 
The condition is that the absolute value of the derivative of the recursive 
relation f must be less than unity at the fixed point. 

y&*l < 1 (5.15) 

This ensures that the distance from close points to the fixed point decreases 
with each successive recursion. It is now easy to show that for r > r2 = 3 the 
fixed point p, becomes unattractive; but what happens then? No new fixed 
point can appear this time, since the reasoning that led to the discovery of p, 
as the sole nonzero fixed point remains valid for all r! To see what happens 
we return to the return map. In Figure 5.10.A we see that starting from some 
initial point we approach a ‘square’, which translates to alternation between 
two points. Once the signal reaches its steady state it simply oscillates back 
and forth between these two values, as can be seen in Figures 5.10.B and 
5.11. This dual-valued signal is the new attractor; unless we start with 20 = 
O,l,l - + or f-l(1 - $) we eventually oscillate back and forth between two 
values. As r increases the distance between the two values that make up this 
attractor also increases. 

So attractors can be more complex than simple fixed points. What hap- 
pens when we increase r still further? You may have already guessed that 
this two-valued attractor also eventually becomes unattractive (although if 
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Figure 5.10: Return map representation of the logistics equation for r > 3. In (A) 
r = 3.2 and we see that from an arbitrary initial state 20 we converge on a ‘non fixed 
point’ attractor close to pr. The attractor contains two points, one on either side of pr. In 
(B) T = 3.4 and we display only the long time behavior (steady state behavior after the 
transient has died down). 

A 0.5 

OL t 

B * 
0 0.5 

Figure 5.11: The signal resulting from recursion of the logistics equation for T = 3.2. In 
(A) we see the steady state signal in the time domain. It oscillates between the two values 
that make up the attractor, which means that zn+l = f(zn) and xn+2 = f(zn+l) = zn. 
In (B) we see the same signal in the frequency domain. The DC component represents 
the nonzero average of the two points. Since the signal oscillates at the maximum possible 
frequency, we have a spectral line at digital frequency i. 

one starts at ezactly one of its points one stays trapped in it) and a new 
more complex attractor is born. In this case, this happens at rg = 1 + fi 

and the new attractor is composed of a cycle between four signal values, as 
depicted in Figure 5.12. If we call these points al, a2, as, and ~4, the require- 
ment is u2 = f(ar), a3 = f(c4, a4 = f(a3), and al = f(a4). Note that the 
2-cycle’s al split up into our present al and ~3, while its u2 became our new 
a2 and ~4. So the attractor’s components obey al < u3 < u2 < ~4, which 
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Figure 5.12: The return map, signal, and spectrum for the steady state behavior when 
T = 3.5. The attractor is a $-cycle. 

7 

0.‘ 
I.. . . . . . . . . . . 

O- 
0 ,,a 1,. 31. ,/a 

Figure 5.13: The return map, signal, and spectrum for the steady state behavior when 
T = 3.55. The attractor is a &cycle. 

Figure 5.14: The return map, signal, and spectrum for the steady state behavior when 
r = 3.5675. The attractor is a 16-cycle. 
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means that the closest together in time are the farthest in space and vice 
versa. This induces a spectrum wherein an additional spectral line appears 
at twice the period, or half the frequency of the previous line. 

We saw that when r increased above rg each component of the 2-cycle 
splits into two, just as the fixed point had earlier split. The same thing hap- 
pens in turn for the 4cycle when r goes above r4 and an &cycle is born. The 
critical feature is that at each stage all components of the present attrac- 
tor become unattractive simultaneously, a phenomenon known as pitchfork 
bifurcation. Due to the bifurcation, with increasing r we find 16-cycles, 32- 
cycles, and all possible 2n-cycles. Examples of such cycles are depicted in 
Figures 5.12 through 5.14. The rule of ‘closest in time are farthest in space’ 
continues to be obeyed, so that new spectral lines continue to appear at 
harmonics of half the previous basic frequency. Eventually the lines are so 
close together that the spectrum becomes white, and we have chaotic noise. 

The transition from periodicity to chaos can best be envisioned by plot- 
ting the attractors as a function of T, as in Figure 5.15. The transition points 
rn as a function of n approach a limit 

7?,-+00 

so that the regions where these cycles exist become smaller and smaller. By 
the time we reach roe we have finished all the 2n-cycles. 

Figure 5.15: The attractors of the recursion as a function of T. Observe the zero attractor 
for 0 < r < 1, the fixed point p,. for 1 < P < 3, the 2-cycle for 3 < T < 1 + 6, and the 
2”-cycles for 3 < f < roe. Certain odd cycle regions can also be clearly seen for r > Too. 
At r = 4 chaos reigns. 
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Figure 5.16: Non 2n-cycle attractors for r > roe. We present return maps for a 3-cycle 
(T = 3,83), a 6-cycle that results from bifurcation of that 3-cycle (r = 3.847), a quite 
different 6-cycle (T = 3.63), and a 5-cycle (T = 3.74). 

What happens between here and r = 4? It turns out that every length 
attractor is possible. For example, in Figure 5.16 we see 3-cycles, 5-cycles 
and 6-cycles. There is a theorem due to Sarkovskii that states that the order 
of first appearance of any given length is 

1,2,4,8,. . .2”, . . * 2” * 9, 2k * 7, 2k ’ 5, 2k ’ 3, * * ’ 4 ’ 9,4 * 7,4 * 5,4 * 3, * * * 9,7,5,3 

so that once a 3-cycle has been found we can be certain that all cycle lengths 
have already appeared. 

For roe < r < 4 there are other types of behavior as well. Let us start at 
r = 4 where all possible x values seem to appear chaotically and decrease 
r this time. At first x seems to occupy the entire region between i and 
r (1 - $) , but below a certain ri this band divides into two broad subbands. 
The signal always oscillates back and forth between the two subbands, but 
where it falls in each subband is unpredictable. Decreasing r further leads 
us past ri where each subband simultaneously splits into two somewhat 
narrower subbands. The order of jumping between these four subbands is 
‘closest in time are farthest in space’, but the exact location inside each sub- 
band is chaotic. Decreasing further leads us to a cascade of r6 in between 
which there are 2n chaotic subbands, a phenomenon known as ‘reverse bi- 
furcation’. Interspersed between the reverse bifurcations are regions of truly 
periodic behavior (such as the 3-, 5-, and 6-cycles we saw before). The rk 
converge precisely onto ra where the reverse bifurcations meet the previous 
bifurcations. 

We have seen that the simplest possible nonlinear recursion generates 
an impressive variety of periodic and chaotic signals; but although complex, 
these signals are still deterministic. In the next section we will see what a 
truly random signal is. 
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EXERCISES 

5.5.1 What is the change of variables that converts the socialistic economy equation 
into the fish pond one? 

5.5.2 Write a simulator that graphically depicts the behavior of the signal generated 
by the logistics equation (5.13). Vary r and by trying various starting points 
identify the attractors in the different regions. 

5.5.3 Write a program to plot the attractors as a function of r. For each r go 
through the possible xc systematically and identify when periodic behavior 
has been reached and plot all points in this attractor. Can you identify the 
various regions discussed in the text? 

5.5.4 Extend the simulator written above to display the spectrum as well. Repro- 
duce the results given in the text. 

5.5.5 Prove that equation (5.15) is indeed the criterion for attractiveness. Prove 
that for r 5 1 zero is indeed an attractor. Prove that for 1 < p 5 3 the fixed 
point p, is an attractor. 

5.5.6 At r = 4 a change of variable 

2 = $ (1 - cos 27re) 

brings us to a variable 8, which is homogeneously distributed. Show that x 
is distributed according to - 

&kj 
. 

5.5.7 Plot the signal and spectrum of the 3-, 5-, and 6-cycles. 

5.5.8 Henon invented 
for example, 

a number of area preserving two-dimensional chaotic signals, 

Xn+l = XnCOSa- (yn -xi)sina 

Yn+l = xnsina+ (yn - X~)COSCY 

which is dependent on a single parameter cy, which must obey 0 5 CK 5 T. 
Show that the origin is a fixed point, that large x diverge to infinity, and that 
there is a symmetry axis at angle a/2. Are there any other fixed points? 

5.5.9 Write a program to plot in the plane the behavior of the Henon map for 
various a. For each plot start from a large number of initial states (you 
can choose these along the 45’ line starting at the origin and increasing 
at constant steps until some maximal value) and recurse a large number 
of times. What happens at Q = 0 and cy = K? Increase QI from zero and 
observe the behavior. For what a are ‘islands’ first formed? Zoom in on these 
islands. When are islands formed around the islands? Observe the sequence 
of multifurcations. When is chaos achieved? 
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5.6 Stochastic Signals 

In this section we will briefly introduce the formal theory of stochastic 
signals. This topic is a more advanced mathematically, and we assume 
the reader has a working knowledge of basic probability theory (see Ap- 
pendix A.13). Since a full discussion of the theory would require a whole 
book we will have to content ourselves with presenting only the basic ter- 
minology. 

Recall that a signal is deterministic if we can precisely predict its value at 
any time; otherwise it is stochastic. What do we mean by a random signal? 
By our original definition a signal must be precisely defined for all times, 
how can it be random? When we speak of a random signal in the formal 
sense, we are actually not referring to a single signal at all, but to an infinite 
number of signals, known as an ensemble. Only individual realizations of 
the ensemble can be actually observed, (recall Figures 5.1, 5.2, and 5.3) 
and so determining a signal value requires specification of the realization in 
addition to the time. For this reason many authors, when referring to the 
entire ensemble, do not use the term ‘signal’ at all, prefering to speak of a 
stochastic process. 

Often a stochastic signal is the sum of a deterministic signal and noise. 

s’(t) = z(t) + v’(t) A D s; = xn + v; (5.16) 

Here the superscript r specifies the specific realization; for different r the 
deterministic component is identical, but the noise realization is different. 
Each specific realization is a signal in the normal sense of the word; although 
it might not be possible to find an explicit equation that describes such 
a signal, it nonetheless satisfies the requirements of signalhood, with the 
exception of those we usually ignore in any case. While taking a specific r 
results in a signal, taking a specific time t or r~ furnishes a random variable, 
which is a function of r over the real numbers that can be described via its 
probability distribution function. Only when both r and t or 72 are given do 
we get a numeric value; thus a stochastic signal can be better described as 
a function of two variables. 

When describing a stochastic signal we usually specify its ensemble statis- 
tics. For example, we can average over the ensemble for each time, thus ob- 
taining an average as a function of time. More generally, for each time we 
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can find the Probability Density Function (PDF) of the ensemble. 

f(t, s)ds = 
AD MN = 

Prob(s 5 s(t) 5 s + ds) Prob(s 5 sn 5 s + ds) 
(5.17) 

Here, even for the digital case we assumed that s was unquantized, fn (s)ds 
representing the probability that the signal value at time n will be between s 
and s+ds. Note that unlike the statistics of a regular random variable, statis- 
tics of stochastic signals are functions of time rather than simple numbers. 
Only for the special case of stationary signals are these statistics constants 
rather than time-dependent. 

As for regular random variables, in addition to the density function f(s) 
we can define the Cumulative Distribution Function (CDF) 

F(t, s) = Prob(s(t) 5 s) A D &(s) = Prob(s, 5 s) (5.18) 

and it is obvious that for every time instant the density is the derivative 
of the cumulative distribution. These distribution functions are in practice 
cumbersome to use and we usually prefer to use statistics such as the mean 
and variance. These can be derived from the density or cumulative distri- 
bution. For example, for analog signals the mean for all times is calculated 
from the density by integration over all x values 

and the variance is as one expects, 

o-Z(t) = Srn (s(t) - mso)” f(t, 4 ds -03 

(5.19) 

(5.20) 

There are also other statistics for stochastic signals, which have no coun- 
terpart for simple random variables. The simplest is the correlation between 
the signal at different times 

C&l, tz) = (s(t+(tz)) A D G(7-v2) = (wnz) (5-21) 

which for stationary signals is a function only of the time difference r = tl-t2 

or m = n1 - 722. 

G(T) = (SW - 4) A D w-4 = (wn-m) (5.22) 
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This correlation is usually called the autocorrelation, since there is also a 

crosscorrelation between two distinct signals C&&l, tz) = (Z(tl)Y(tp)) l 

The autocorrelation tells us how much the value of the signal at time tl 
influences its value at time t2, and is so important that we will devote all 
of Chapter 9 to its use. The single time variance is simply the autocor- 
relation when the two time variables coincide a:(t) = Cs (t, t), and so for 
stationary signals ai = Cs(0). We also sometimes use the autocovariance 

K$l, t2) = (u > s t1 - m&1)) (@a) - 77GzN) and it is easy to show that 

v,(h, t2) = G@l, t2) - m,(h) m&2)* 

More generally we can have statistics that depend on three or more time 
instants. Unlike single time statistics, which can be calculated separately for 
each time, these multitime statistics require that we simultaneously see the 
entire stochastic signal (i.e., the entire ensemble for all times). We often use 
only the mean as a function of time and the correlation as a function of two 
times. These are adequate when the probability density function for all times 
is Gaussian distributed, since Gaussians are completely defined by their 
mean and variance. For more general cases higher-order signal processing 
must be invoked (see Section 9.12), and we define an infinite number of 
moment functions 

M&l, t2, l l l , tk) = (s(h)s(tz) l ’ l @k)) (5.23) 

that should not be confused with ‘statistical moments’ 

ms = 
( > tSs(t) 

which are simply numbers. A stochastic signal is said to be ‘stationary to 
order Ic’ if its moments up to order Ic obey 

Ms(tl,t2,7tk) = MS(tl + T, t2 + 7,. . . > tl, + 7) 

and stationarity implies stationarity to order Ic for all finite Ic. 
A few concrete examples will be helpful at this point. An analog Markov 

signal is a stationary, zero mean stochastic signal for which the autocorre- 
lation dies down exponentially. 

I It241 

C(t1,t2) = e T 7 
Thus there is essentially only correlation between signal values separated 

by about 7 in time; for much larger time differences the signal values are 
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essentially uncorrelated. When T approaches zero we obtain white noise, 
which thus has a delta function autocorrelation. 

Wl, t2) = a26(t1 - t2) 

This means that for any two distinct times, no matter how close these times 
are, there is no correlation at all between signal values of white noise. 

For discrete time signals we define Markov signals of different orders. 
A first-order Markov signal is one for which sn depends on s,-1 but not 
directly on any previous value. A second-order Markov signal has the signal 
value depending on the two previous values. 

There is an important connection between white noise and Markov sig- 
nals; A Markov signal sn can be generated by filtering white noise v,. We 
cannot fully explain this result as our study of filters will only begin in 
the next chapter, but the main idea can be easily understood. Signal val- 
ues of white noise at different times can be independent because of the 
high-frequency components in the noise spectrum. Filtering out these high 
frequencies thus implies forcing the signal value at time n to depend on 
those at previous instants. A particular type of low-pass filtering produces 
precisely Markovian behavior. 

Sn = O!Sn-1 + vn 

Low-pass filtering of white noise returns us to a Markov signal; band- 
pass filtering results in what is often called ‘colored noise’. These signals 
have nonflat power spectra and nondelta autocorrelations. 

Note that although we often use Gaussian white noise, these two charac- 
teristics are quite independent. Noise can be white without being Gaussian 
and vice versa. If for any two times the signal is uncorrelated, and all mo- 
ments above the second-order ones are identically zero, we have Gaussian 
white noise. However, when the signal values at any two distinct times are 
statistically independent, but the distributions although identical at all times 
are not necessarily Gaussian, we can only say that we have an Independent 
Identically Distributed (IID) signal. Conversely, when there are correlations 
between the signal values at various times, but the joint probability func- 
tion of n signal values is n-dimensional Gaussian, then the signal is Gaussian 
noise that is not white. 

Stochastic signals are truly complex, but it is reassuring to know the 
most general stationary stochastic signal can be built from the elements we 
have already discussed. In the 1930s Wold proved the following theorem. 
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Theorem: Wold’s Decomposition 
Every stationary stochastic signal s can be written 

00 

s, = Xn + C hnWn-rn 
m=O 

as the sum of a deterministic signal x and filtered white noise. n 

In addition to the ensemble statistics we have been discussing, there 
is another type of statistics that can be computed for stochastic signals, 
namely time statistics. For these statistics we consider a single realization 
and average over the time variable, rather than hold the time constant and 
averaging over the ensemble. Thus the time average of a signal s at time 
zero is 

1 

J 

7+$ 
1 

v+% 
0 

S =- T s(t)dt A D 

T 2 

(s) = z 1 sn (5.25) 
r-- n=v-3 

where T or N are called the ‘integration windows’. This type of averaging is 
often simpler to carry out than ensemble averaging since for s(t) and sn we 
can use any realization of the signal s that is available to us, and we needn’t 
expend the effort of collecting multiple realizations. When we previously 
suggested combating noise for a narrow-band signal by averaging over time, 
we were actually exploiting time statistics rather than ensemble statistics. 

What is the connection between ensemble statistics and time statistics? 
In general, there needn’t be any relation between them; however, we often 
assume a very simple association. We say that a signal is ergodic if the 
time and ensemble statistics coincide. The name ‘ergodic’ has only historical 
significance, deriving from the ‘ergodic hypothesis’ in statistical physics that 
(wrongly) posited that the two types of statistics must always coincide. To 
see that in general this will not be the case, consider the ensemble of all 
different DC signals. The ensemble average will be zero, since for every 
signal in the ensemble there is another signal that has precisely the opposite 
value. The time average over any one signal is simply its constant value, and 
not zero! A less trivial example is given by the digital sinusoid 

sn = Asin 

with A chosen in the ensemble with equal probability to be either 1 or -1. 
Here both the ensemble and time averages are zero; but were we to have 
chosen A to be either 0 or 1 with equal probability, then the time average 
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would remain zero, while the ensemble average becomes the time-dependent 
ij sin(wn). 

What does ergodicity really mean ? Simply that rather than acquiring 
an ensemble of N signal generators we can use only a single generator but 
restart our experiment N times. If the signal with all the possible different 
initial times reproduces the entire ensemble of the stochastic signal, then the 
signal is ergodic. Not only must all possible realizations be reproduced, they 
must be reproduced the same number of times. When we thinking about it 
this way, ergodicity is rather too strong a statement; no signal can really be 
so random that a single realization completely samples all the possibilities 
of the ensemble! The number of realizations generated by restarting the 
experiment at all possible times equals the number of points on the real line, 
while there are many more different functions of time! However, ergodicity 
makes life so simple that we most often assume it anyway. 

For ergodic signals we can redefine the correlations in terms of time 
averages. For example, the autocorrelation becomes 

C&) = / s(t)s(t - T)& A D G(m) = &brn (5.26) 
n 

and it is these forms that we shall use in Chapter 9. 

EXERCISES 

5.6.1 Consider a stationary signal that can only take the values 0 and 1. What is 
the probability that the signal is nonzero at two times r apart? What is the 
meaning of moments for this type of signal? 

5.6.2 Derive the relation between autocovariance and autocorrelation V,(tl, t2) = 
G@lJ2> - 774074~2). 

5.6.3 Show that for white signals (for which all times are independent) the auto- 
covariance is zero except for when tl = t2. 

5.6.4 In the text we discussed the filtering of white noise, although white noise is 
not a signal and thus we have never properly defined what it means to filter 
it. Can you give a plausible meaning to the filtering of a stochastic signal? 

5.6.5 Prove that a first-order Markov signal can be obtained by low-pass filtering 
white noise. Assuming that sn is created from a noise signal u, by equa- 
tion 5.24 with 1~1 < 1, what is the probability distribution of sn given that 
we already observed s,+i? 

5.6.6 Show that the signal sn generated by the recursion sn = ars+r +cQs,-.~+v, 
(where V, is white) is a second-order Markov signal. 



198 NOISE 

5.6.7 Given the Markov signals of equation (5.24) and the previous exercise, can 
you recover the white noise signal u, . ? What can you learn from the expression 
for vn? 

5.6.8 What is the power (si) of the Markov signal of equation (5,24)? Why did we 
require Ial < l? The special case CI = 1 is called the random walk or Wiener 
signal. What happens here? 

5.6.9 Pink noise is a term often used for a noise whose power spectrum decreases 3 
dB per octave (doubling of frequency). What is the spectral density’s depen- 
dence on frequency? How does the power per octave depend on frequency? 

5.6.10 Blue noise is the opposite of pink, with power spectrum increasing 3 dB per 
octave; red noise has a 6 dB drop per octave. How do these spectral densities 
depend on frequency? 

5.7 Spectrum of Random Signals 

We know what the spectrum of a signal is, and thus we know what the 
spectrum of a single realization of a stochastic signal is; but can we give 
meaning to the spectrum of the entire stochastic signal? The importance of 
the frequency domain in signal processing requires us to find some consistent 
definition for the spectrum of noisy signals. Without such an interpretation 
the concept of filtering would break down, and the usefulness of DSP to 
real signals (all of which are noisy to some degree) would be cast in doubt. 
Fortunately, although a much more formidable task than it would seem, 
it is possible to define (and compute) the spectrum of a stochastic signal. 
Unfortunately, there are several different ways to do so. 

If we consider the entire ensemble and take the FT of each realization 
individually we obtain an ensemble of transforms. Well, almost all realiza- 
tions of a stationary stochastic signal will have infinite energy and therefore 
the FT won’t converge, but we already know (see Section 4.6) to use the 
STFT for this case. Similarly, for nonstationary signals whose statistics vary 
slowly enough we can use the STFT over short enough times that the signal 
is approximately stationary. Thus from here on we shall concentrate on the 
STFT of stationary random signals. 

We could consider the entire ensemble of spectra as the spectrum. Such a 
‘spectrum’ is itself stochastic, that is, for every frequency we have a complex 
random variable representing the magnitude and angle. To see why these are 
truly random variables consider a realization of a white noise signal. Many 
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more realizations of the same stochastic signal can be created by shifting 
this one in time by any arbitrary interval. Thus the phases of the spectrum 
of such a signal should be uniformly distributed random variables. There is 
no way to resolve this problem other than to avoid it. Thus we concentrate 
on the short time power spectrum of stationary stochastic signals. Returning 
to our ensemble of transforms we square the values and discard the phases 
and obtain an ensemble of power spectra. 

For well-behaved stationary stochastic signals (the type we are interested 
in) a unique (nonrandom) power spectrum can be defined. In practice we do 
not have access to the entire ensemble of signals but can observe one partic- 
ular realization of the stationary signal for some amount of time. Assuming 
ergodicity, this can be just as good. Thus, if we compute the short time 
power spectrum of the realization we happen to have, we expect to obtain 
a good estimate of the aforementioned true power spectrum. 

What do we mean by a ‘good’ estimate? An estimator is considered 
good if it is unbiased and has a small variance. For example, consider the 
mean value of a stationary signal s. Were we to have access to the entire 
ensemble we could take any single moment of time, and calculate the mean 
of the signal values in all realizations of the ensemble at that time. This 
calculation provides the true mean. Since the signal is assumed stationary, 
we could repeat this at any other time and would obtain precisely the same 
result. Alternately, assuming ergodicity, we could perform the average over 
time in a single realization. For a digital signal this entails adding all signal 
values from n = --00 to n = 00, which would take quite a long time to carry 
out. Instead we could estimate the mean by 

1 N m=- 
N c 4-b 

n=l 

summing over N consecutive signal values. Such an estimator is unbiased; it 
will be too large just as many times as it will be too small. More precisely, 
if we carry out the estimation process many times, the mean of the results 
will be the true mean. Also this estimator has a variance that decreases with 
increasing N as k. That is, if we double the number of times we estimate 
the mean, the average variance will drop by half; the variance vanishes in 
the limit N + 00. 

Returning to power spectra, we expect that our estimation of the power 
spectrum based on the STFT of a single realization to be unbiased and 
have variance that vanishes asymptotically. Unfortunately, neither of these 
expectations is warranted. If we calculate the power spectrum based on a 
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single realization, the estimated power spectrum thus obtained will be biased 
and will have a standard deviation of about the same size as the value being 
estimated. Increasing the size of the window of the STFT does reduce the 
bias but doesn’t reduce the variance at all! 

It is informative to understand the reasons for these enigmas. The bias 
problem is the less severe of the two and the easier one to understand. Sim- 
ply stated, the bias comes from comparing two different entities. When we 
use the STFT to estimate the energy at a given frequency, we are actu- 
ally dividing the frequency axis into bins, each of width determined by the 
number of signal points in the transform. The STFT estimated spectrum 
averages together the true spectrum’s values for all frequencies in the bin. 
Thus the STFT power spectrum’s value at some frequency f should not be 
expected to precisely replicate the true spectrum’s value there. However, as 
the number of points in the STFT becomes larger, the bins become smaller 
and the difference between the two decreases. Another way of looking at this 
is to think of the STFT as the FT of the original signal multiplied by the 
data window. This will of course equal the desired FT convolved with the 
FT of the window function. For any given window duration use of good win- 
dow functions can help (see Section 13.4), but the fundamental uncertainty 
remains. As the duration of the window increases the FT of the window 
function approaches a delta function and the bias disappears. 

The true problem is the variance of our estimator. The spectral vari- 
ance, unlike the variance of the mean, does not decrease with increasing the 
number of data points used. At first this seems puzzling but the reason (as 
first realized by T’ukey in the late 1940s) is quite simple. When we double 
the size of the STFT we automatically double the number of frequency bins. 
All the information in the new data goes toward providing more frequency 
resolution and not toward improving the accuracy of the existing estimates. 
In order to decrease the variance we must find a way to exploit more of the 
signal without increasing the frequency resolution. Two such methods come 
to mind. 

Assume that we increase the number of input signal values by a factor 
of M. Bartlett proposed performing M separate power spectra and aver- 
aging the results rather than performing a single (M times larger) STFT. 
This averaging is similar to the mean estimator discussed above, and re- 
duces the estimator’s variance by a factor of AL Welch further improved 
this method by overlapping the data (with 50% overlap being about ideal). 
Of course performing multiple transforms rather than a single large trans- 
form is somewhat less efficient if the FFT is being used, but this is a small 
price to pay for the variance reduction. The second way to reduce the vari- 
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ante does perform a single STFT but then sums adjacent bins to reduce the 
resolution. This effectively smooths the estimated power spectrum resulting 
in a similar variance reduction. We will delve further into these techniques 
in Section 13.3. 

Earlier we stated that a unique (nonrandom) power spectrum can be 
defined. This was first done by Wiener and Khintchine based on the following 
theorem. 

Theorem: Wiener-Khintchine 
The autocorrelation and the power spectral density are an FT pair. n 

In Chapter 9 we will prove this theorem for the deterministic case (after 
properly defining the autocorrelation for deterministic signals). Here we take 
this theorem as the definition for the stationary stochastic case. The basic 
idea behind the theorem is clear. If we are only interested in the square of 
the spectrum then we should only have to look at second-order entities in 
the time domain; and the autocorrelation is the most basic of these. 

Basing ourselves on Wiener-Khintchine we can now compute power spec- 
tra of noisy signals in a new way, due to Blackman and Tukey. Rather than 
directly computing the signal’s FT and squaring, we calculate the autocor- 
relation and then take the FT. All that we have seen above about bias and 
variance still holds, but averaging the computed spectra still helps. Since we 
can use the FFT here as well, the Blackman-Tukey technique is similar in 
computational complexity to the more direct Bartlett and Welch methods. 

EXERCISES 

5.7.1 Generate a finite-duration digital signal consisting of a small number of si- 
nusoids and create K realizations by adding zero-mean Gaussian noise of 
variance g2. Compute the power spectrum in the following three ways. Com- 
pute the FT of each of the realizations, average, and then square. Compute 
the FT, square, and then average. Compute the autocorrelation from the 
realizations and find the power spectrum from Wiener-Khintchine. Compare 
your results and explain. 

5.7.2 Generate a single long (a power of two is best) realization of a signal as 
above. Compare power spectrum estimates using windows without overlap, 
overlapping windows, and smoothing of a single long FFT. 
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5.8 Stochastic Approximation Methods 

Sometimes we are allowed access to the ensemble of signals, in which case 
rather different techniques can be employed. As a concrete example we will 
briefly consider the Robbins-Monro algorithm for finding a zero of a function 
corrupted by additive noise. The zero of a function f(t) is a x such that 
f(x) = 0. Finding the zero of a purely deterministic function is relatively 
straightforward. The standard way is to search for intervals [tr . . . tz] where 
the sign of f(t) changes, i.e., f(tr) < 0 and f(t2) > 0 or f(tl) > 0 and 
f(t2) < 0. Then we look at some t in the interval tl < t < t2, and check 
if f(t) = 0 to within the desired accuracy. If not, we replace either tl or t2 
with t, depending on the sign of f(t). The various algorithms differ only in 
the method of choosing t. 

In the Robbins-Monro scenario we can only observe the noisy signal 
g(t) = f(t) + 4% w h ere the noise is assumed to be zero-mean (y(t)) = 0 
and of finite variance ( y2(t)) < 00. However, we are allowed to make as 
many measurements of g(t) as we desire, at any t we wish. One way to 
proceed would be to imitate the standard procedure, but averaging out the 
noise by sampling g(t) a sufficient number of times. However, the smaller the 
absolute value of g(t), the more susceptible is its sign to noise. This causes 
the number of samples required to diverge. 

The Robbins-Munro algorithm recursively updates the present estimate 
XI, for the zero instead. 

zk+l = 
gh) 

z-- 
k 

(5.27) 

It can be shown that this procedure both converges to the desired root in 
the mean square, i.e., 

iima ((zk - z)‘) = 0 
- 

and converges with probability 1, i.e., 

Prob( i’“, Zk = x ) = 1 
4 

although the convergence may, in practice, be very slow. 

EXERCISES 

5.8.1 Is the division by k required for the deterministic case? Code the algorithm 
and check for a few polynomials and a sinusoid. 

5.8.2 Add noise to the signals you used in the previous exercise and run the full 
algorithm. How does the error in the zero location depend on the noise level? 
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5.9 Probabilistic Algorithms 

The Robbins-Monro algorithm is a way to combat noise, but we have men- 
tioned that there are probabilistic algorithms that actually exploit noise. 
The usual definition of ‘algorithm’ is a precisely defined (i.e., deterministic) 
prescription of the solution of a problem; why would we want to make an 
algorithm probabilistic? The reason has to do with practicalities; sometimes 
the standard deterministic algorithm takes too long to compute its answer, 
while a probabilistic algorithm may be able to come up with an usable esti- 
mate much faster. 

Numerical integration is a good example. The deterministic approach 
requires dividing the x axis into small intervals and summing the value 
of the function in these intervals. The function needs to be approximately 
constant over each interval so for rapidly varying functions many functional 
values must be evaluated and summed. Multidimensional integration is much 
more demanding; here all of the axes corresponding to independent variables 
must be divided into sufficiently small intervals, so that the computational 
complexity increases exponentially with the dimensionality. 

As a concrete example consider finding the area of a circle, which can 
be expressed as a two-dimensional integral. The standard numeric approach 
requires dividing two-dimensional space into a large number of small squares, 
and the integration is carried out by counting the number of squares inside 
the circle. Of course there will always be the problem of those squares that 
straddle the circumference of the circle; only by using small enough squares 
can we ensure that these questionable cases do not overly effect the answer. 

How can a probabilistic algorithm find the area? Circumscribe the circle 
by a square and choose at random any point inside this square. The prob- 
ability that this point is inside the circle is exactly the ratio of the area of 
the circle to that of the square. So by generating a large number of ran- 
dom points (using any of the random number generators of section 5.4) and 
counting up how many fall inside the circle we can get an estimate of the 
area. Note that there isn’t a well-defined end to this computation; each new 
random point simply improves the previous estimate. So there is a natural 
trade-off between accuracy and computational complexity. 

This lucky integration technique is often called Monte-Carlo integration 
(for obvious reasons), and you can bet that it can be generalized to any 
integration problem in any number of dimensions. 
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EXERCISES 

5.9.1 Compute 7r by Monte-Carlo determination of the area of the unit-radius 
circle. Monitor the error as a function of the number of points generated. 
How does the computation required to obtain a given accuracy compare with 
that of direct numerical integration? 

5.9.2 Find the volume of a unit-radius sphere and the hypervolume of a unit-radius 
hypersphere in four dimensions. Make the same computational complexity 
comparisons as in the previous exercise. 

5.9.3 In certain cases deterministic and probabilistic approaches to integration can 
be combined to obtain a faster and more accurate method. Explain the idea 
and apply to the previous exercise. (Hint: Inscribe the circle with a second 
square.) 

Bibliographical Notes 

Our treatment of noise has been very different, and a good deal less pedantic, than 
that found in engineering textbooks. For those who miss the formalistic treatment 
there are several good books on stochastic processes. The classic text is that of 
Papoulis [ 1901; only slightly less classic but much less friendly is van Trees [264]; 
but any text that has the words ‘stochastic’ and ‘process’ in its title will probably 
do. There are also texts with a major emphasis on stochastic processes that mix 
in a certain amount of straight signal processing, e.g., [250], and others with the 
opposite stress, such as [188]. 

Those interested in more information regarding radar systems can try anything 
by Skolnik [245, 243, 2441 or the book by Levanon [145]. 

The generation of pseudorandom signals is discussed at length in the second 
volume of Knuth [136]. The transformation from uniform to Gaussian distributed 
random numbers (also found in Knuth) was discovered by Box and Muller [22]. The 
standard text on shift register sequences is by Golomb [81]. 

Deterministic chaos is quite a popular subject, with many books, each with its 
own approach. A suitable text for physicists is [234], while there are other books 
suitable for engineers or for mathematicians. The popular account by Gleick [75] is 
accessible and interesting. 

Perhaps the earliest mathematical account of noise is [219,220], which presented 
a complete theory including power spectra, statistical properties, and the effect of 
nonlinear systems on noise. Many would claim that the most important book on 
stochastic processes is that of Papoulis mentioned above [190]. 

An accessible source from which one can gain insight regarding 
noise is to be found in much of what is called modern music. 
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Systems 

The study of signals, their properties in time and frequency domains, their 
fundamental mathematical and physical limitations, the design of signals 
for specific purposes, and how to uncover a signal’s capabilities through 
observation belong to signal analysis. We now turn to signal processing, 
which requires adding a new concept, that of the signal processing system. 

A signal processing system is a device that processes input signals and/or 
produces output signals. Signal processing systems were once purely analog 
devices. Older household radio receivers input analog radio frequency signals 
from an antenna, amplify, filter, and extract the desired audio from them 
using analog circuits, and then output analog audio to speakers. The original 
telephone system consisted of analog telephone sets connected via copper 
wire lines, with just the switching (dialing and connecting to the desired 
party) discrete. Even complex radar and electronic warfare systems were 
once purely analog in nature. 

Recent advances in microelectronics have made DSP an attractive al- 
ternative to analog signal processing. Digital signal processing systems are 
employed in a large variety of applications where analog processing once 
reigned, and of course newer purely digital applications such as modems, 
speech synthesis and recognition, and biomedical electronics abound. There 
still remain applications where analog signal processing systems prevail, 
mainly applications for which present-day DSP processors are not yet fast 
enough; yet the number of such applications is diminishing rapidly. 

In this chapter we introduce systems analogously to our introduction of 
signals in Chapter 2. First we define analog and digital signal processing 
systems. Then we introduce the simplest possible systems, and important 
classes of systems. This will lead us to the definition of a filter that will 
become a central theme in our studies. Once the concept of filter is under- 
stood we can learn about MA, AR, and combined ARMA filters. Finally we 
consider the problem of system identijication which leads us to the concepts 
of frequency response, impulse response, and transfer function. 

207 
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6.1 System Defined 

The first question we must ask when approaching 
processing is ‘What exactly do we mean by a signal 

the concept of signal 
processing system?’ 

Definition: signal processing system 
A signal processing system is any device that takes in zero or more signals 
as input, and returns zero or more signals as outputs. n 

According to this definition systems deal only with signals. Of course 
images may be considered two-dimensional signals and thus image processing 
is automatically included. Nevertheless, we will often extend the definition 
to include systems that may also input other entities, such as numeric or 
logical values. A system may output such other entities as well. An important 
output entity is a multiclass classification identifier, by which we mean that 
various signals may be input to the system as a function of time, and the 
system classifies them as they arrive as belonging to a particular class. The 
only practical requirement is that there should be at least one output, either 
signal, numeric, logical, or classification. Were one to build a system with 
no outputs, after possibly sophisticated processing of the input, the system 
would know the result (but you wouldn’t). 

What kind of system has no input signals? An example would be an 
oscillator or tone generator, which outputs a sinusoidal signal of constant 
frequency, irrespective of whatever may be happening around it. A simple 
modification would be to add a numeric input to control the amplitude of 
the sine, or a logical input to reset the phase. Such an oscillator is a basic 
building block in communications transmitters, radars, signaling systems, 
and music synthesizers. 

What kind of system has no signal output? An example would be a 
detector that outputs a logical false until a signal of specified parameters is 
detected. A simple modification would be to output a numeric value that 
relates the time of detection to a reference time, while a more challenging 
extension would continually output the degree to which the present input 
matches the desired signal (with 0 standing for no match, 1 for perfect 
match). Such a system is the basis for modem demodulators, radar receivers, 
telephone switch signaling detectors, and pattern analyzers. Systems that 
output only multiclass classifications are the subject of a discipline known 
as pattern recognition. 
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EXERCISES 

6.1.1 Which of the following are signal processing systems (we shall use 2 for inputs 
and y for outputs)? Explain. 

1. The identity y = x 
2. The constant y = k irrespective of x 
3. y=+/z 
4. A device that inputs a pizza and outputs a list of its ingredients 
5. y = sin(+) 

6. Y(t) = S4,z(t) 
7. The Fourier transform 
8. A television 
9. A D/A converter 

6.1.2 Given any two signals x(t) and y(t), is there always a system that inputs x 
and outputs y? Given a system that inputs x(t) and outputs y(t), is there 
always a system that inputs y and outputs x? 

6.2 The Simplest Systems 

Let us now present a few systems that will be useful throughout our studies. 
The simplest system with both an input signal x and an output signal y is 
the constant, y(t) = Ic in analog time or gn = k in digital time. This type of 
system may model a power supply that strives to output a constant voltage 
independent of its input voltage. We can not learn much from this trivial 
system, which completely ignores its input. The next simplest system is the 
identity, whose output exactly replicates its input, y(t) = z(t) or yn = xn. 

The first truly nontrivial system is the ampl$er, which in the analog 
world is y(t) = Ax(t) and in the digital world yn = Ax,. A is called the 
gain. When A > 1 we say the system umplifies the input, since the output 
as a function of time looks like the input, only larger. For the same reason, 
when A < 1 we say the system attenuates. Analog amplifiers are vital for 
broadcast transmitters, music electronics (the reader probably has a stereo 
amplifier at home), public address systems, and measurement apparatus. 

The ideal amplifier is a linear system, that is, the amplification of the 
sum of two signals is the sum of the amplifications, and the amplification 
of a constant times a signal is the constant times the amplification of the 
signal. 

A (XI (4 + m(t)) = AXI + Axz(t) and A (,x(t)) = cAx(t) 



210 SYSTEMS 

Such perfect linear amplification can only be approximated in analog cir- 
cuits; analog amplifiers saturate at high amplitudes, lose amplification at 
high frequencies, and do not respond linearly for very high amplitudes. Dig- 
itally amplification is simply multiplication by a constant, a calculation that 
may be performed reliably for all inputs, unless overflow occurs. 

We can generalize the concept of the amplifier/attenuator by allowing 
deviations from linearity. For example, real analog amplifiers cannot output 
voltages higher than their power supply voltage, thus inducing clipping. This 
type of nonlinearity 

y(t) = Clip0 (As(t)) A D yn = Clip, (Axn) (6 1) . 

where 
e x2e 

Clip,(x) z x -8 < x < e 
-8 -8 5 x 

is depicted in Figure 6.1. On the left side of the figure we see the output ver- 
sus input for an ideal linear amplifier, and on the right side the output when 

Figure 6.1: The effect of clipping amplifiers with different gains on sinusoidal signals. In 
(A) there is no clipping, in (B) intermediate gain and clipping, while (C) represents the 
infinite gain case (hard limiter). 
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a sinusoid is input. Figure 6.1.B represents an amplifier of somewhat higher 
gain, with a limitation on maximal output. The region where the output 
no longer increases with increasing input is called the region of saturation. 
Once the amplifier starts to saturate, we get ‘flat-topping’ of the output, as 
is seen on the ride side. The flat-topping gets worse as the gain is increased, 
until in 6.1.C the gain has become infinite and thus the system is always 
saturated (except for exactly zero input). This system is known as a ‘hard 
limiter’, and it essentially computes the sign of its input. 

Ye> = win (x(t)) A D Yn = sgn Xn ( > (6 2) . 

Hard limiting changes sinusoids into square waves, and is frequently em- 
ployed to obtain precisely this effect. 

These clipping amplifiers deal symmetrically with positive and negative 
signal values; another form of nonlinearity arises when the sign explicitly 
affects the output. For example, the gain of an amplifier can depend on 
whether the signal is above or below zero. Extreme cases are the half-wave 
rectifier, whose output is nonzero only for positive signal values, 

y(t) = 0 (x(t)) x(t) A D yn = 8 (xn) xn. 

and the full-wave rectifier, whose output is always positive 

y(t) = lx(t) 1 A D Yn = lxnl (6 4 . 

as depicted in Figure 6.2. 
Yet another deviation from linearity is termed power-law distortion; for 

example, quadratic power distortion is 

y(t) = x(t) + EX~(~) A D Yn = Xn + EX; 

for small E > 0. More generally higher powers may contribute as well. Real 
amplifiers always deviate from linearity to some degree, and power law dis- 
tortion is a prevalent approximation to their behavior. Another name for 
power law distortion is harmonic generation; for example, quadratic power 
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Figure 6.2: Half-wave and full-wave rectifiers. (A) depicts the output as a function of 
input of a half-wave rectifier, as well as its effect on a sinusoid. (B) depicts the same for 
a full-wave rectifier. 

distortion is called second-harmonic generation. The reasoning behind this 
name will become clear in Section 8.1. 

Let us summarize some of the systems we have seen so far: 

constant y(t) = k Yn - -k 
identity YW = x(t) Yn = Xn 

amplification y(t) = Ax(t) yn = Axn 

clipping 

hard limiter 

half-wave rectification 

full-wave rectification y(t) = Ix(t)1 Yn = X7-b I I 
quadratic distortion y(t) = X(t) + eX2(t) yn = Xn + 6X: 

This is quite an impressive collection. The maximal extension of this type 
of system is the general point transformation y(t) = f (x(t)) or yn = f (x,) . 
Here f is a completely general function, and the uninitiated to DSP might 
be led to believe that we have exhausted all possible signal processing sys- 
tems. Notwithstanding, such a system is still extremely simple in at least 
two senses. First, the output at any time depends only on the input at 
that same time and nothing else. Such a system is memoryless (i.e., does 
not retain memory of previous inputs). Second, this type of system is time- 
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invariant (i.e., the behavior of the system does not change with time). Clas- 
sical mathematical analysis and most non-DSP numerical computation deal 
almost exclusively with memoryless systems, while DSP almost universally 
requires combining values of the input signal at many different times. Time 
invariance, the norm outside DSP, is common in many DSP systems as well. 
However, certain important DSP systems do change as time goes on, and 
may even change in response to the input. We will see such systems mainly 
in Chapter 10. 

EXERCISES 

6.2.1 

6.2.2 

6.2.3 

The digital amplifier is a linear system as long as no overflow or underflow 
occur. What is the effect of each of these computational problems? Which is 
worse? Can anything be done to prevent these problems? 

Logarithmic companding laws are often used on speech signals to be quan- 
tized in order to reduce the required dynamic range. In North America the 
standard is called p-law and is given by 

y _ sgn(x)wl + /44> - 
logO + CL) (6.6) 

where x is assumed to be between -1 and +l and p = 255. In Europe A-law 
is used 

Y= 
sgn(~~~~ 0 < 1x1 < a 

! sgn(x),w + < 1x1 < 1 (6.7) 

where A = 87.6. Why are logarithmic curves used? How much difference is 
there between the two curves? 

Time-independent point transformations can nontrivially modify a signal’s 
spectrum. What does squaring signal values do to the spectrum of a pure 
sinusoid? To the sum of two sinusoids? If point operations can modify a 
signal’s spectrum why do you think systems with memory are needed? 

6.3 The Simplest Systems with Memory 

There are two slightly different ways of thinking about systems with memory. 
The one we will usually adopt is to consider the present output to be a 
function of the present input, previous inputs, and previous outputs. 

Yn = f (Xn, &a-1, G-2, * l * h-1, Yn-2 * * *) 
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The other line of thought, called the state-space description, considers the 
output to be calculated based on the present input and the present internal 
state of the system. 

Yn = f CZ,, S) (6.9) 

In the state-space description the effec; of tii input on the system is twofold, 
it causes an output to be generated and it changes the state of the system. 
These two ways of thinking are clearly compatible, since we could always 
define the internal state to contain precisely the previous inputs and outputs. 
This is even the best way of defining the system’s state for systems that 
explicitly remember these values. However, many systems do not actually 
remember this history; rather this history influences their behavior. 

The simplest system with memory is the simple delay 

y(t) = x(t -7) A D yn = x,-s, (6.10) 

where the time r or m is called the lug. From the signal processing point 
of view the simple delay is only slightly less trivial than the identity. The 
delay’s output still depends on the input at only one time, that time just 
happens not to be the present time, rather the present time minus the lag. 

We have said that the use of delays is one of the criteria for contrasting 
simple numeric processing from signal processing. Recall from Chapter 2 
that what makes signal processing special is the schizophrenic jumping back 
and forth between the time domain and the frequency domain. It is thus 
natural to inquire what the simple delay does to the frequency domain rep- 
resentation of signals upon which it operates. One way to specify what any 
signal processing system does in the frequency domain is to input simple 
sinusoids of all frequencies of interest and observe the system’s output for 
each. For the simple delay, when a sinusoid of amplitude A and frequency 
w is input, a sinusoid of identical amplitude and frequency is output. We 
will see later on that a system that does not change the frequency of sinu- 
soids and does not create new frequencies is called a filter. A filter that does 
not change the amplitude of arbitrary sinusoids, that is, one that passes all 
frequencies without attenuation or amplification, is called an all-puss filter. 
Thus the simple delay is an all-pass filter. Although an all-pass filter leaves 
the power spectrum unchanged, this does not imply that the spectrum re- 
mains unchanged. For the case of the delay it is obvious that the phase of 
the output sinusoid will usually be different from that of the input. Only if 
the lag is precisely a whole number of periods will the phase shift be zero; 
otherwise the phase may be shifted either positively or negatively. 



6.3. THE SIMPLEST SYSTEMS WITH MEMORY 215 

After a little consideration we can deduce that the phase is shifted by 
the frequency times the delay lag. When the phase shift is proportional 
to the frequency, and thus is a straight line when plotted as a function of 
frequency, we say that the system is linear-phase. The identity system y = x 
is also linear-phase, albeit with a trivial constant zero phase shift. Any time 
delay (even if unintentional or unavoidable such as a processing time delay) 
introduces a linear phase shift relation. Indeed any time-invariant linear- 
phase system is equivalent to a zero phase shift system plus a simple delay. 
Since simple delays are considered trivial in signal processing, linear-phase 
systems are to be considered ‘good’ or ‘simple’ in some sense. In contrast 
when the phase shift is not linear in frequency, some frequencies are delayed 
more than others, causing phase distortion. To appreciate the havoc this 
can cause imagine a nonlinear-phase concert hall. In any large concert hall a 
person in the balcony hears the music a short time after someone seated up 
front. When the room acoustics are approximately linear-phase this delay 
is not particularly important, and is more than compensated for by the 
reduction in ticket price. When nonlinear phase effects become important 
the situation is quite different. Although the music may be harmonious near 
the stage, the listener in the balcony hears different frequencies arriving 
after diflerent time delays. Since the components don’t arrive together they 
sum up to quite a different piece of music, generally less pleasant to the ear. 
Such a concert hall would probably have to pay people to sit in the balcony, 
and the noises of indignation made by these people would affect the musical 
experience of the people up front as well. 

How can the simple delay system be implemented? The laws of rela- 
tivity physics limit signals, like all information-carrying phenomena, from 
traveling at velocities exceeding that of light. Thus small analog delays can 
be implemented by delay lines, which are essentially appropriately chosen 
lengths of cable (see Figure 6.3.A). A voltage signal that exits such a delay 
line cable is delayed with respect to that input by the amount of time it 
took for the electric signal to travel the length of the cable. Since electric 
signals tend to travel quickly, in practice only very short delays can be imple- 
mented using analog techniques. Such short delays are only an appreciable 
fraction of a period for very high-frequency signals. The delay, which is a 
critical processing element for all signal processing, is difficult to implement 
for low-frequency analog signals. 

Digital delays of integer multiples of the sampling rate can be simply 
implemented using a FIFO buffer (see Figure 6.3.B). The content of this 
FIFO buffer is precisely the system’s internal state from the state-space 
point of view. The effect of the arrival of an input is to cause the oldest value 
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B 
Xn+ Xn-1 + Xn-2 -C- * l l -b- Xn-m-j-2 -b- Xn-m+l -b- Xn-m 

Figure 6.3: Implementation of the simple delay. In (A) we see how an analog delay of 
lag r can be obtained by allowing a voltage of current signal to travel at finite velocity 
through a sufficiently long delay line. In (B) a digital delay of lag m is implemented using 
a FIFO buffer. 

stored in the FIFO to be output and promptly discarded, for all the other 
values to ‘move over’, and for the present input to be placed in the buffer. Of 
course long delays will require large amounts of memory, but memory tends 
to drop in price with time, making DSP more and more attractive vis-a-vis 
analog processing. DSP does tend to break down at high frequencies, which 
is exactly where analog delay lines become practical. 

Leaving the simple delay, we now introduce a somewhat more complex 
system. Think back to the last time you were in a large empty room (or a 
tunnel or cave) where there were strong echoes. Whenever you called out 
you heard your voice again after a delay (that we will call 7) , which was 
basically the time it took for your voice to reach the wall from which it 
was reflected and return. If you tried singing or whistling a steady tone you 
would notice that some tones ‘resonate’ and seem very strong, while others 
seem to be absorbed. We are going to model such a room by a system whose 
output depends on the input at two different times, the present time and 
some previous time t - r. Our simple ‘echo system’ adds the signal values 
at the two times 

y(t) = X(t) + x(t - T) A D in = xn + xn-m (6.11) 

and is easily implemented digitally by a FIFO buffer and an adder. 
In the frequency domain this system is not all-pass; the frequency depen- 

dence arising from the time lag r (or m) corresponding to different phase 
differences at different frequencies. When we input a sinusoidal signal with 
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angular frequency w such that r corresponds to precisely one period (i.e., 
wr = 27r), the net effect of this system is to simply double the signal’s am- 
plitude. If, however, the input signal is such that r corresponds to a half 
period (we = ‘;rr), then the output of the system will be zero. This is the 
reason some frequencies resonate while others seem to be absorbed. 

More generally, we can find the frequency response, by which we mean 
the response of the system to any sinusoid as a function of its frequency. 
To find the frequency response we apply an input of the form sin(wt). The 
output, which is the sum of the input and its delayed copy, will be 

sin(wt) + sin w(t ( -4) = 2cos (y)sin(w(t- S,) 

which is easily seen to be a sinusoid of the same frequency as the input. It 
is, however, delayed by half the time lag (linear-phase!), and has an ampli- 
tude that depends on the product WT. This amplitude is maximal whenever 
wr = 2kn and zero when it is an odd multiple of 7r. We have thus completely 
specified the frequency response; every input sine causes a sinusoidal output 
of the same frequency, but with a linear phase delay and a periodic ampli- 
fication. A frequency that is canceled out by a system (i.e., for which the 
amplification of the frequency response is zero) is called a zero of the system. 
For this system all odd multiples of 7r are zeros, and all even multiples are 
maxima of the frequency response. 

Our next system is only slightly more complex than the previous one. 
The ‘echo system’ we just studied assumed that the echo’s amplitude was 
exactly equal to that of the original signal. Now we wish to add an echo or 
delayed version of the signal to itself, only this time we allow a multiplicative 
coefficient (a gain term). 

y(t) = x(t) + hx(t - r) A D yn = xn + hxnsm (6.12) 

When h = 1 we return to the previous case, while h < 1 corresponds to 
an attenuated echo, while h > 1 would be an amplified echo. We can also 
consider the case of negative h, corresponding to an echo that returns with 
phase reversal. 

y(t) = x(t) - Ihlx(t - T) A D yn = xn - Jhlx,-, 
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We leave the full mathematical derivation of the frequency response of 
our generalized echo system as an exercise. Still we can say a lot based on 
a little experimentation (using pen and paper or a computer graphing pro- 
gram). The first thing we notice is that a sinusoidal input will produce a 
sinusoidal output of the same frequency, but with amplitude between 1 - Ihl 
and 1 + lhl. Thus when lhl # 1 we can never perfectly cancel out a sinu- 
soidal input signal, no matter what frequency we try, and thus the frequency 
response will have no zeros: Of course when lhl < 1 we can’t double the am- 
plitude either; the best we can do is to amplify the signal by 1 + lhl. Yet 
this should be considered a mere quantitative difference, while the ability 
or inability to exactly zero out a signal is qualitative. The minima of the 
frequency response still occur when the echo is exactly out of phase with 
the input, and so for positive h occur whenever UT is an odd multiple of 
7r, while for negative h even multiples are needed. We present the graphs of 
amplification as a function of frequency for various positive h in Figure 6.4. 

We can generalize our system even further by allowing the addition of 
multiple echoes. Such a system combines the input signal (possibly multi- 
plied by a coefficient) with delayed copies, each multiplied by its own coeffi- 
cient. Concentrating on digital signals, we can even consider having an echo 
from every possible time lag up to a certain maximum delay. 

IH( 

-6 -4 -2 0 2 4 6 

Figure 6.4: Amplitude of the frequency response for the echo system with positive co- 
efficients. The amplitude is plotted as a function of WT. The coefficients are h = 0 (the 
straight line), 0.25,0.5,0.75, and 1.0 (the plot with zeros). 



6.3. THE SIMPLEST SYSTEMS WITH MEMORY 219 

yn = hoxn + hlxn-1 + h2xn-2 + l * l + hLxn-L = 

c 
hxn-1 (6.13) 

l=O 
This system goes under many different names, including Moving Average 
(MA) filter, FIR filter, and alZ-xero filter, the reasoning behind all of which 
will be elucidated in due course. The mathematical operation of summing 
over products of indexed terms with one index advancing and one retreating 
is called convolution. 

Now this system may seem awesome at first, but it’s really quite simple. 
It is of course linear (this you can check by multiplying x by a constant, 
and by adding xr + x2). If the input signal is a pure sine then the output 
is a pure sine of the same frequency! Using linearity we conclude that if 
the input signal is the sum of sinusoids of certain frequencies, the output 
contains only these same frequencies. Although certain frequencies may be 
zeros of the frequency response, no new frequencies are ever created. In this 
way this system is simpler than the nonlinear point transformations we saw 
in the previous section. Although limited, the FIR filter will turn out to be 
one of the most useful tools in DSP. 

What should be our next step in our quest for ever-more-complex digital 
signal processing systems? Consider what happens if echoes from the distant 
past are still heard-we end up with a nonterminating convolution! 

Yn = c hl X72-1 (6.14) 
l=-00 

In a real concert hall or cave the gain coefficients hl get smaller and smaller 
for large enough 1, so that the signal becomes imperceptible after a while. 
When an amplifier is involved the echoes can remain finite, and if they are 
timed just right they can all add up and the signal can become extremely 
strong. This is what happens when a microphone connected to an amplifier 
is pointed in the direction of the loudspeaker. The ‘squeal’ frequency de- 
pends on the time it takes for the sound to travel from the speaker to the 
microphone (through the air) and back (through the wires). 

The FIR filter owes its strength to the idea of iteration, looping on all 
input signal values from the present time back to some previous time. 

Yn = 0 
for i=O to L 

Yn + Yn + hlxn-1 
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More general than iteration is recursion, 

Yn = f (Xn, En-17 X7x-27 * * * , Yn-17 Yn-2,. . a) 

and the IIR filter exploits this by allowing yn to be a weighted sum of all 
previous outputs as well as inputs. 

Yn = aox, + alx,-1 + a a ’ + aLXn-L + blY,-1 + b2Yn-2 + * * * + bMYn-M 
L M 

= CalXn-l+ C &Yn-, (6.15) 
l=O m=l 

We see here two convolution sums, one on the inputs and one on the (previ- 
ous) outputs. Although even this system cannot create sinusoids of frequen- 
cies that do not exist in the input at all, it can magnify out of all proportion 
components that barely exist (see exercises). Of course even IIR filters are 
simple in a sense since the coefficients al and bm do not vary with time. 
More complex systems may have coefficients that depend on time, on other 
signals, and even on the input signal itself. We will see examples of such 
systems when we discuss adaptive filters. 

Are these time- and signal-dependent systems the most complex systems 
DSP has to offer? All I can say is ‘I hope not.’ 

EXERCISES 

6.3.1 Prove the following characteristics of the convolution. 

existence of identity s1*6 = Sl 

commutative law s1 * s2 = s2 * Sl 

associative law Sl * (s2 * sg) = (s1 * s2) * s3 

distributive law sr * (~2 + ~3) = (~1 * ~2) * (~1 * ~3) 

6.3.2 We saw that a generalized echo system y(t) = z(t) + hz(t -7) has no zeros in 
its frequency response for lhl < 1; i.e., there are no sinusoids that are exactly 
canceled out. Are there signals that are canceled out by this system? 

6.3.3 Find the frequency response (both amplitude and phase) for the generalized 
echo system. Use the trigonometric identity for the sine of a sum, and then 
convert a sin(&) +b cos(wt) to A sin(wt+$). Check that you regain the known 
result for h = 1. Show that the amplitude is indeed between 1 - 1 hl and 1 + 1 hi. 

6.3.4 Plot the amplitude found in the previous exercise for positive coefficients and 
check that Figure 6.4 is reproduced. Now plot for negative h. Explain. Plot 
the phase found in the previous exercise. Is the system always linear-phase? 
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6.3.5 The digital generalized echo system yn = zn + hxnem can only implement 
an echo whose delay is an integer number of sample intervals t,. How can a 
fractional sample delay echo be accommodated? 

6.3.6 Show that an IIR filter can ‘blow up’, that is, increase without limit even 
with constant input. 

6.3.7 Show that the IIR filter 

Yn = X7-b - UlYn-1 - Yn-2 Yn = 0 for n < 0 

when triggered with a unit impulse xn = Sn,fj can sustain a sinusoid. What 
is its frequency? 

6.3.8 The sound made by a plucked guitar string is almost periodic, but starts 
loud and dies out with time. This is similar to what we would get at the 
output of an IIR system with a delayed and attenuated echo of the output 
yn = xn + gyn-m with 0 < g < 1. What is the frequency response of this 
system? (Hint: It is easier to use xn = eiwn for n > 0 and zero for n < 0, 
rather than a real sinusoid.) 

6.3.9 All the systems with memory we have seen have been causc~l, that is, the 
output at time T depends on the input at previous times t 5 T. What can 
you say about the output of a causal system when the input is a unit impulse 
at time zero? Why are causal systems sensible? One of the advantages of DSP 
over analog signal processing is the possibility of implementing noncausal 
systems. How (and when) can this be done? 

6.4 Characteristics of Systems 

Now that we have seen a variety of signal processing systems, both with 
memory and without, it is worthwhile to note some general characteristics 
a system might have. We will often use operator notation for systems with 
a single input and a single output signal. 

y(t) = Hz(t) A D yn = Hz, (6.16) 

Here H is a system that converts one signal into another, not merely a 
function that changes numbers into numbers. 

A memoryless system is called invertible if distinct input values lead to 
distinct output values. The system yn = 2x, is thus invertible since every 
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finite value of xn leads to a unique yn. Such systems are called invertible 
since one can produce an inverse system H-l such that xn = H-‘y,. For 
the system just mentioned it is obvious that xn = iy,. Since 

Xn = H-ly, = H-lHz, (6.17) 

we can formally write 
H-lH = 1 (6.18) 

where 1 is the identity system. The system yn = xt is noninvertible since 
both xn = -1 and xn = +l lead to yn = +l. Thus there is no system H-l 
that maps yn back to xn. 

The notion of invertibility is relevant for systems with memory as well. 
For example, the simple FIR filter 

Yn=Xn-G-1 

has an inverse system 

Xn =Yn+Xn-1 

which is an IIR filter. Unraveling this further we can write 

Xn = Yn + (yn-1 + Xns2) 

= Yn +Yn-1 +(Yns2 +zns3) 

= yn + yn-1 + Yn-2 + ynm3 +. . . 

and assuming that the input signal was zero for n = 0 we get an infinite 
sum. 00 

Xn = c Yi (6.19) 
i=o 

Inverse systems are often needed when signals are distorted by a system 
and we are called upon to counteract this distortion. Such an inverse system 
is called an equalizer. An equalizer with which you may be familiar is the 
adjustable or preset equalizer for high-fidelity music systems. In order to 
reproduce the original music as accurately as possible, we need to cancel 
out distortions introduced by the recording process as well as resonances 
introduced by room acoustics. This is accomplished by dividing the audio 
spectrum into a small number of bands, the amplification of which can be 
individually adjusted. Another equalizer you may use a great deal, but with- 
out realizing it, is the equalizer in a modem. Phone lines terribly distort data 
signals and without equalization data transmission speeds would be around 
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2400 bits per second. By employing sophisticated adaptive equalization tech- 
niques to counteract the distortion, transmission speeds more than ten times 
faster can be attained. 

In a Section 6.2 we mentioned linearity, although in the restricted context 
of memoryless systems. The definition remains the same in the general case, 
namely 

H(x+y) =Hz+Hy and H(cx) = CHX (6.20) 

that is, H is a linear system if its output, when the input is a sum of two 
signals, is precisely the sum of the two signals that would have been the 
outputs had each signal been inputed to H separately. The second part 
states that when the input is a constant times a signal the output must 
be the constant times the output that would have been obtained were the 
unamplified signal input instead. We have already seen quite a few nonlinear 
systems, such as the squaring operation and the hard limiter. Nonlinear 
systems require special care since they can behave chaotically. We use the 
term chaos here in a technical sense-small changes to the input may cause 
major output changes. 

This last remark leads us to the subject of stability. A system is said 
to be stable if bounded input signals induce bounded output signals. For 
example, the system 

Yn = tan Xn - G 
( > 

is unstable near xn = 0 since the output explodes there while the input is 
zero. However, even linear systems can be unstable according to the above 
definition. For instance, the system 

L 

Yn = c Xl 
2=0 

is linear, but when presented with a constant input signal the output grows 
(linearly) without limit. 

We generally wish to avoid instability as much as possible, although the 
above definition is somewhat constraining. Systems with sudden singularities 
or exponentially increasing outputs should be avoided at all costs; but milder 
divergences are not as damaging. In any case true analog systems are always 
stable (since real power supplies can only generate voltages up to a certain 
level), and digital systems can not support signal values larger than the 
maximum representable number. The problem with this compelled stability 
is that it comes at the expense of nonlinearity. 
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The next characteristic of importance is time-invariance. A system H is 
said to be time-invariant if its operation is not time-dependent. This means 
that applying time delay or time advance operators to the input of a system 
is equivalent to applying them to the output. 

y(t) = Hz(t) - y(t + T) = Hx(t + T) (6.21) 

A time-variant system has some internal clock that influences its behavior. 
For example, 

Yn = (1 + sin(nt)) Xn 

is time-variant, as is any system that is turned on at some time (i.e., that 
has zero output before this time no matter what the input, but output 
dependent on the input after this time). 

The combination of linearity and time invariance is important enough 
to receive a name of its own. Some DSP engineers call a linear and time- 
invariant systems LTI systems, but most use the simpler name filter. 

Definition: filter 
A filter is a system H with a single input and single output signal that is 
both linear (obeys (6.20)) and time-invariant (obeys equation (6.21)). n 

As usual we often deviate from the precise definition and speak of nonlin- 
ear jilters, time-variant filters, and multidimensional filters, but when used 
without such qualifications the term ‘filter’ will be taken to be equivalent to 
LTI. 

We already know about systems with memory and without. The output 
value of a system without memory depends only on the input value at the 
same time. Two weaker characteristics that restrict the time dependence of 
the output are causality and streamability. A system is termed causal if the 
output signal value at time T is only dependent on the input signal values for 
that time and previous times t 5 T. It is obvious that a memoryless system 
is always causal, and it is easy to show that a filter is causal if and only if 
a unit impulse input produces zero output for all negative times. Noncausal 
systems seem somewhat unreasonable, or at least necessitate time travel, 
since they require the system to correctly guess what the input signal is 
going to do at some future time. The philosophical aspects of this dubious 
behavior are explored in an exercise below. Streamable systems are either 
causal or can be made causal by adding an overall delay. For example, neither 
yn = xmn nor gn = x,+1 are causal, but the latter is streamable while the 
former is not. 
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When working off-line, for instance with an input signal that is available 
as a file or known as an explicit function, one can easily implement noncausal 
systems. One need only peek ahead or precompute the needed input values, 
and then place the output value in the proper memory or file location. Ana- 
log systems can realize only causal systems since they must output values 
immediately without peeking forward in time, or going back in time to cor- 
rect the output values. Since analog systems are also required to be stable, 
stable causal systems are called realizable, meaning simply that they may be 
built in analog electronics. Real-time digital systems can realize only stable 
streamable systems; the amount of delay allowed is application dependent, 
but the real-time constraint requires the required delay to be constant. 

EXERCISES 

6.4.1 Find the inverse system for the following systems. If this is in IIR form find 
the FIR form as well (take xn = 0 for n 5 0). 

1. yn = 5, +&p-1 
2. yn = xn - ix,-1 
3. yn = x, -x,-1 -x,-2 

5. yn= Xn + Yn-1 

6. yn =Xn - &a-l+ Yn-1 

6.4.2 What can you say about the FIR and IIR characteristics of inverse systems? 

6.4.3 Which of the following systems are filters? Explain. 1. yn = x,-r + k 

2. Yn = Xn+lXn-1 

3. Yn = Xln 
4. yn=O 
5. Yn = Yn-1 

6.4.4 Show that a filter is causal if and only if its output, when the input is a unit 
impulse centered on time zero, is nonzero only for positive times. 

6.4.5 Show that if two signals are identical up to time t, then the output of a causal 
system to which these are input will be the same up to time t. 

6.4.6 Show that the smoothing operation yn = %(xn + xn-r) is causal while the 
similar yn = $(xn+l + Xn) is not. The system yn = $(xn+i - xn-1) is an 
approximation to the derivative. Show that it is not causal but is streamable. 
Find a causal approximation for the derivative. 

6.4.7 Consider the philosophical repercussions of noncausal systems by reflecting 
on the following case. The system in question outputs -1 for two seconds if 
its input will be positive one second from now, but fl for two seconds if its 
input will be negative. Now feed the output of the system back to its input. 
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6.4.8 Explain why streamable systems can be realized in DSP but not in analog 
electronics. What does the delay do to the phase response? 

6.4.9 The systems yn = xn + a (which adds a DC term) and yn = xi (which 
squares its input) do not commute. Show that any two filters do commute. 

6.4.10 Systems do not have to be deterministic. The Modulated Noise Reference 

Unit (MNRU) system, defined by yn = (1 + lo-%v~) x, (where v is wide- 

band noise) models audio quality degradation under logarithmic companding 
(exercise 6.2.2). Which of the characteristics defined in this section does the 
MNRU have? Can you explain how the MNRU works? 

6.5 Filters 

In the previous section we mentioned that the combination of linearity and 
time invariance is important enough to deserve a distinctive name, but did 
not explain why this is so. The explanation is singularly DSP, linking char- 
acteristics in the time domain with a simple frequency domain interpreta- 
tion. We shall show shortly that the spectrum of a filter’s output signal is 
the input signal’s spectrum multiplied by a frequency-dependent weighting 
function. This means that some frequencies may be amplified, while oth- 
ers may be attenuated or even removed; the amplification as a function of 
frequency being determined by the particular filter being used. For exam- 
ple, an ideal low-pass filter takes the input signal spectrum, multiplies all 
frequency components below a cutoff frequency by unity, but multiplies all 
frequency components over that frequency by zero. It thus passes low fre- 
quencies while removing all high-frequency components. A band-pass filter 
may zero out all frequency components of the input signal except those in 
a range of frequencies that are passed unchanged. 

Only filters (LTI systems) can be given such simple frequency domain 
interpretations. Systems that are not linear and time-invariant can create 
new frequency components where none existed in the input signal. For ex- 
ample, we mentioned at the end of Section 6.2 and saw in exercise 6.2.3 that 
the squaring operation generated harmonics when a sinusoidal signal was 
input, and generated combination frequencies when presented with the sum 
of two sinusoids. This is a general feature of non-LTI systems; the spectrum 
of the output will have frequency components that arise from complex com- 
binations of input frequency components. Just 51s the light emerging from a 
optical filter does not contain colors lacking in the light impinging upon it, 
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just as when pouring water into a coffee filter brandy never emerges, just so 
you can be sure that the output of a signal processing filter does not contain 
frequencies absent in the input. 

Let’s prove this important characteristic of filters. First, we expand the 
input in the SUI basis (as the sum of unit impulses weighted by the signal 
value at that time). 

Xn = fJ Xmb,m 
m=-oo 

Next, using the linearity of the filter H, we can show that 

but since the x, are simply constants multiplying the SUIs, linearity also 
implies that we can move them outside the system operator. 

Co 

Yn = c xrn H&m 
77-L=-M 

Now the time has come to exploit the time invariance. The operation of the 
system on the SUI HS,,, is precisely the same as its operation on the unit 
impulse at time zero, only shifted m time units. The impulse response hn is 
defined to be the response of a system at time n to the unit impulse. 

hn = H&a,0 (6.22) 

For causal systems hn = 0 for n < 0, and for practical systems hn must 
become small for large enough n. So time invariance means HS,,, = h,-, 
and we have found the following expression for a filter’s output. 

00 

Yn = c xmhn-m (6.23) 
m=-00 

For causal filters future inputs cannot affect the output. 

0 

Yn = c xmhn-m (6.24) 
m=-oo 

We have seen this type of sum before! We called it a convolution sum 
and saw in Section 4.8 that its LTDFT was particularly simple. Taking the 
LTDFT of both sides of equation (6.23) and using equation (4.44) we find 

Yk = Hkxk (6.25) 
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which states that the output at frequency k is the input at that frequency 
multiplied by a frequency-dependent factor Hk. This factor is the digital 
version of what we previously called the frequency response H(w). 

Using terminology borrowed from linear algebra, what we have proved 
is that the sinusoids are eigenfunctions or, using more fitting terminology, 
eigensignals of filters. If we allow complex signals we can prove the same for 
the complex sinusoids xn = eiwn . 

EXERCISES 

6.5.1 In exercise 6.3.7 we saw that the system yn = xn - aiyn-1 - yn-2 could 
sustain a sinusoidal oscillation even with no input. Yet this is a filter, and 
thus should not be able to create frequencies not in the input! Explain. 

6.5.2 Show that the system yn = xn+x+ is not a filter. Show that it indeed doesn’t 
act as a filter by considering the inputs xn = sin(wn+$) and xn = cos(wn+$). 

6.5.3 Prove the general result that zn are eigenfunctions of filters. 

6.5.4 Prove the filter property for analog signals and filters. 

6.6 Moving Averages in the Time Domain 

We originally encountered the FIR filter as a natural way of modeling a 
sequence of echoes, each attenuated or strengthened and delayed in time. We 
now return to the FIR filter and ask why it is so popular in DSP applications. 
As usual in DSP there are two answers to this question, one related to the 
time domain and the other to the frequency domain. In this section we delve 
into the former and ask why it is natural for a system’s output to depend 
on the input at more than one time. We will motivate this dependency in 
steps. 

Consider the following problem. There is a signal xn that is known to be 
constant zn = x, and we are interested in determining this constant. We are 
not allowed to directly observe the signal xn, only the signal 

where vn is some noise signal. We know nothing about the noise save that 
its average is zero, and that its variance is finite. 



6.6. MOVING AVERAGES IN THE TIME DOMAIN 229 

Since the noise averages to zero and the observed signal is the sum of the 
desired constant signal and this noise, the observed signal’s average value 
must be x. Our path is clear; we need to average the observed signal 

-J, L-l 

r, c Xl = x 

1=0 

(6.26) 

with the sum approaching z more and more closely as we increase L. For 
finite L our estimate of x will be not be exact, but for large enough L (the 
required size depending on the noise variance) we will be close enough. 

Now let us assume that xn is not a constant, but a slowly varying signal. 
By slowly varying we mean that z, is essentially the same for a great many 
consecutive samples. Once again we can only observe the noisy xn, and are 
interested in recovering 2,. We still need to average somehow, but we can 
no longer average as much as we please, since we will start ‘blurring’ the 
desired nonconstant signal. We thus must be content with averaging over 
several xn values, 

1 L-l 

Yn =- 
L c Xn+l M zn (6.27) 

1=0 
and repeating this operation every j samples in order to track xn. 

Yo Y j 
P 9 7 * * * XL-17 XL7 XL+17 . . . wXzj+l,+L, Xj+L+l, . * * 

We must take j small enough to track variations in xn, while L 2 j must 
be chosen large enough to efficiently average out the noise. Actually, unless 
there is some good reason not to, we usually take L = j precisely. 

Yo YL Y 2L 

io,lc1,- 
A / \ 

. . . XL-l, XL, xL+l, * - l x2&-1, X2L, X2L+1, *a .X3L--l? * ’ * 

Now we assume that xn varies a bit faster. We must reduce j in order to 
track zn sufficiently well, but we cannot afford to reduce L this much unless 
the noise is very small. So why can’t the averaging intervals overlap? Why 
can’t we even calculate a new average every sample? 

Y3 

Y2 

Yl 
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Well, we can; this type of averaging is called a moving average, which is often 
abbreviated MA. The moving average operation produces a new signal V.J~ 
which is an approximation to the original xn. Upon closer inspection we 
discover that we have introduced a delay of $ in our estimates of 2,. We 
could avoid this by using 

1 L 
Yn = 2~ + 1 lzwLxn+l c Xn c (6.28) 

but this requires breaking of causality. 
Our final step is to assume that xn may vary very fast. Using the moving 

average as defined above will indeed remove the noise, but it will also intoler- 
ably average out significant variations in the desired signal itself. In general 
it may be impossible to significantly attenuate the noise without harming 
the signal, but we must strive to minimize this harm. One remedy is to no- 
tice that the above averaging applies equal weight to all L points in its sum. 
We may be able to minimize the blurring that this causes by weighting the 
center of the interval more than the edges. Consider the difference between 
the following noncausal moving averages. 

The latter more strongly emphasizes the center term, de-emphasizing the 
influence of inputs from different times. Similarly we can define longer mov- 
ing averages with coefficients becoming smaller as we move away from the 
middle (zero) terms. 

The most general moving average (MA) filter is 

L 

Yn = c h XTl+l 
1=-L 

(6.29) 

where the coefficients hl need to be chosen to maximize the noise suppression 
while minimizing the signal distortion. If we are required to be realizable we 

0 L 

Yn = c bh-1 = c hl-LXn+l-L 
1=-L l=O 

(6.30) 

although L here will need to be about twice as large, and the output yn will 
be delayed with respect to zn. 
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EXERCISES 

6.6.1 Experiment with the ideas presented in this section as practical techniques for 
removing noise from a signal. Start with a signal that is constant 1 to which 
a small amount of Gaussian white noise has been added xn = 1 + EU~. Try 
to estimate the constant by adding iV consecutive signal values and dividing 
by N. How does the estimation error depend on E and N? 

6.6.2 Perform the same experiment again only this time take the clean signal to be 
a sinusoid rather than a constant. Attempt to reconstruct the original signal 
from the noisy copy by using a noncausal moving average with all coefficients 
equal. What happens when the MA filter is too short or too long? 

6.6.3 Now use an MA filter with different coefficients. Take the center coefficient 
(that which multiplies the present signal value) to be maximal and the others 
to decrease linearly. Thus for length-three use (a, f , a>, for length-five use 
i(l, 2,3,2, l), etc. Does this perform better? 

6.6.4 Find a noncausal MA differentiator filter, that is, one that approximates 
the signal’s derivative rather than its value. How are this filter’s coefficients 
different from those of the others we have discussed? 

6.6.5 A parabola in digital time is defined by p(n) = on2 + bn + c. Given any three 
signal values x _ 1, xc, x+1 there is a unique parabola that goes through these 
points. Given five values x-2, x-1, x0, x+1, x+2 we can find coefficients a, b 
and c of the best fitting parabola p(n), that parabola for which the squared 
error c2 = (p(-2) -x-2)” + (p(-1) - 2-1)~ + (p(0) -x~)~ + (p(+l) - x+~)~ + 
(p(+2) - x+Z)~ is minimized. We can use this best fitting parabola as a 
MA smoothing filter, for each n we find the best fitting parabola for the 5 
signal values xn-2, x ,+.I, xn, xn+r, xn+2 and output the center value of this 
parabola. Show that the five-point parabola smoothing filter is an MA filter. 
What are its coefficients? 

6.6.6 After finding the best fitting parabola we can output the value of its derivative 
at the center. Find the coefficients of this five-point differentiator filter. 

6.7 Moving Averages in the Frequency Domain 

The operation of an MA filter in the time domain is simple to understand. 
The filter’s input is a signal in the time domain, its output is once again 
a time domain signal, and the filter coefficients contain all the inform& 
tion needed to transform the former into the latter. What do we mean by 
the frequency domain description of a filter? Recall that the operation of a 
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filter on a signal has a simple frequency domain interpretation. The spec- 
trum of a filter’s output signal is the input signal’s spectrum multiplied by 
a frequency-dependent weighting function. This weighting function is what 
we defined in Section 6.3 as the filter’s frequency response. In Section 6.12 
we will justify this identification of the frequency response as the fundamen- 
tal frequency domain description. For now we shall just assume that the 
frequency response is the proper attribute to explore. 

We originally defined the frequency response as the output of a filter 
given a real sinusoid of arbitrary frequency as input. In this section we extend 
our original definition by substituting complex exponential for sinusoid. As 
usual the main reason for this modification is mathematical simplicity; it is 
just easier to manipulate exponents than trigonometric functions. We know 
that at the end we can always extract the real part and the result will be 
mathematically identical to that we would have found using sinusoids. 

Let’s start with one of the simplest MA filters, the noncausal, equally 
weighted, three-point average. 

Yn = 3 ‘(Xn-1 + Xn + &+I) (6.31) 

In order to find its frequency response H(w) we need to substitute 

Xn = e 
iwn 

and since the moving average is a filter, we know that the output will be a 
complex exponential of the same frequency. 

Yn = H(w)eiwn 

Substituting 

Yn = - i ( 
eiw(n-l) + ,iwn + eiw(nfl) 

> ( 
= i ,-iw + 1 + ,iw ,iwn 

> 

we immediately identify 

H(w) = $ (1 + eviw + eiw) = 5 (1 + 2 COS(W)) (6.32) 

as the desired frequency response. If we are interested in the energy at the 
various frequencies, we need the square of this, as depicted in Figure 6.5. 
We see that this system is somewhat low-pass in character (i.e., lower fre- 
quencies are passed while higher frequencies are attenuated). However, the 
attenuation does not increase monotonically with frequency, and in fact the 
highest possible frequency ifs is not well attenuated at all! 
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IH( 

Figure 6.5: The (squared) frequency response of the simple three-point average filter. 
The response is clearly that of a low-pass filter, but not an ideal one. 

At the end of the previous section we mentioned another three-point 
moving average. 

Yn = $&x-l + +Xn + $Xn+l (6.33) 

Proceeding as before we find 

1 Yn = ze i4n--1) + 1 
Ze 

iwn + +iw(nfl) = 
( 

$,-iw + 4 + +eiw> ,iun 

and can identify 

H(w) = (++ + t + $eiu) = f (1 + cos(u)) (6.34) 

a form known as a ‘raised cosine’. 
This frequency response, contrasted with the previous one in Figure 6.6 

is also low-pass in character, and is more satisfying since it does go to zero 
at ifs. However it is far from being an ideal low-pass filter that drops to 
zero response above some frequency; in fact it is wider than the frequency 
response of the simple average. 

What happens to the frequency response when we average over more 
signal values? It is straightforward to show that for the simplest case 

1 L 
Yn = 5xT-i l=-L xn+l c (6.35) 

the frequency response is 
sin( +) 

Lsin(?j) 
(6.36) 
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IH( 

Figure 6.6: The (squared) frequency responses of two simple three-point average filters. 
Both responses are clearly low-pass but not ideal. The average with coefficients goes to 
zero at $ ff, but is ‘wider’ than the simple average. 

IH( 

Figure 6.7: The (squared) frequency responses of simple averaging filters for L = 3,5,7 
and 9. We see that as L increases the pass-band becomes narrower, but oscillations con- 
tinue. 
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Figure 6.8: The (squared) frequency responses of a 16-coefficient low-pass filter. With 
these coefficients the lower frequency components are passed essentially unattenuated, 
while the higher components are strongly attenuated. 

as is depicted in Figure 6.7 for L = 3,5,7,9. We see that as L increases 
the filter becomes more and more narrow, so that for large L only very low 
frequencies are passed. However, this is only part of the story, since even 
for large L the oscillatory behavior persists. Filters with higher L have a 
narrower main lobe but more sidelobes. 

By using different coefficients we can get different frequency responses. 
For example, suppose that we need to pass frequencies below half the Nyquist 
frequency essentially unattenuated, but need to block those above this fre- 
quency as much as possible. We could use a 16-point moving average with 
the following magically determined coefficients 

0.003936, -0.080864, 0.100790, 0.012206, 
-0.090287, -0.057807, 0.175444, 0.421732, 

0.421732, 0.175444, -0.057807, -0.090287, 
0.012206, 0.100790, -0.080864, 0.003936 

the frequency response of which is depicted in Figure 6.8. While some os- 
cillation exists in both the pass-band and the stop-band, these coefficients 
perform the desired task relatively well. 

Similarly we could find coefficients that attenuate low frequencies but 
pass high ones, or pass only in a certain range, etc. For example, another 
simple MA filter can be built up from the finite difference. 

yn = AX, = xn - xn-1 (6.37) 
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Figure 6.9: The (squared) frequency response of a finite difference filter. With these 
coefficients the lower frequency components are passed essentially unattenuated, while 
the higher components are strongly attenuated. 

It is easy to show that its frequency response (see Figure 6.9) attenuates low 
and amplifies high frequencies. 

EXERCISES 

6.7.1 Calculate the frequency response for the simple causal moving average. 

1 
L-l 

Yn =- 
L c %x-k 

k=O 

Express your result as the product of an amplitude response and a phase 
response. Compare the amplitude response to the one derived in the text for 
equally weighted samples? Explain the phase response. 

6.7.2 Repeat the previous exercise for the noncausal case with an even number of 
signal values. What is the meaning of the phase response now? 

6.7.3 Verify numerically that the 16-point MA filter given in the text has the 
frequency response depicted in Figure 6.8 by injecting sinusoids of various 
frequencies. 

6.7.4 Find the squared frequency response of equation (6.37). 

6.7.5 Find an MA filter that passes intermediate frequencies but attenuates highs 
and lows. 

6.7.6 Find nontrivial MA filters that pass all frequencies unattenuated. 
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6.7.7 The second finite difference A2 is the finite difference of the finite difference, 
i.e., A2xn = A(x, - x,+1) = xn - 2x,- 1 + x,+2. Give explicit formulas 
for the third and fourth finite differences. Generalize your results to the kth 
order finite difference. Prove that yn = Akxn is an MA filter with k + 1 
coefficients. 

6.8 Why Convolve? 

The first time one meets the convolution sum 

x*y= c xi Yk-i 

one thinks of the algorithm 

Given x, y, k 
Initialize: conv +O; i, j 
Loop : 

increment conv by xi yj 
increment i 
decrement j 

and can’t conceive of any good reason to have the two indices moving in 
opposite directions. Surely we can always redefine yj and rephrase this as 
our original MA filter mowing average 

Given x, y 
Initialize : conv + 0; i, j 
Loop : 

increment conv by xi yi 
increment i 

saving a lot of confusion. There must be some really compelling reason for 
people to prefer this strange (or should I say convoluted) way of doing things. 
We will only fully understand why the convolution way of indexing is more 
prevalent in DSP in Section 6.12, but for now we can somewhat demystify 
the idea. 

We’ll start by considering two polynomials of the second degree. 

A(z) = a0 + al x + a2 x2 

B(x) = bo + bl x + b2 x2 
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Their product is easily found, 

A(x)B(x) = uobo + (aoh + a1bo)z + (uobs + Ulbl + azbo)g 

+ (U1b2 + &1)x3 + u2b2 x4 

and the connection between the indices seems somewhat familiar. More gen- 
erally, for any two polynomials 

A(Z) = caixi 
i=o 

B(x) = Ebjxj 
j=O 

we have 

N+M 
Xk = C (U * b)k Xk 

k=O 

and the fundamental reason for these indices to run in opposite directions 
is obvious-the two exponents must sum to a constant! 

Put this way the idea of indices running in opposite directions isn’t so 
new after all. In fact you probably first came across it in grade school. 
Remember that an integer is represented in base- 10 as a polynomial in 10, 
A = Cf/, uilOi (where dA is the number of digits). Thus multiplication of 
two integers A and B is also really a convolution. 

d/i+& 
AB = c (a * b)klok 

k=O 

The algorithm we all learned as long multiplication is simply a tabular device 
for mechanizing the calculation of the convolution. 

AN AN-~ a** Al Ao 
* BN BN-1 **a B1 BO 

BOAN BoAN-~ * ** BoAl BoAo 
&AN &AN-I . . . &A0 

BNAN *** BNA~ BNAO 

C2N cN+l CN c&l l ” cl 
co 
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We now understand why the symbol ‘*’ is used for convolution; there is a 
simple connection between convolution and multiplication! 

Anyone who is comfortable with multiplication of integers and polyno- 
mials is automatically at home with convolutions. There is even a formalism 
for turning every convolution into a polynomial multiplication, namely the x 
transform (see section 4.10). The basic idea is to convert every digital signal 
xn into an equivalent polynomial 

2,-X(d)=x&n 
n 

although it is conventional in DSP to use 2-l instead of d. Then the convo- 
lution of two digital signals can be performed by multiplying their respective 
z transforms. You can think of z transforms as being similar to logarithms. 
Just as logarithms transform multiplications into additions, z transforms 
transform convolutions into multiplications. 

We have seen an isomorphism between convolution and polynomial prod- 
ucts, justifying our statement that convolution is analogous to multiplica- 
tion. There is also an isomorphism with yet another kind of multiplication 
that comes in handy. The idea is to view the signal xn as a vector in N- 
dimensional space, and the process of convolving it with some vector hn as 
an operator that takes xn and produces some new vector yn. Now since linear 
operators can always be represented as matrices, convolution is also related 
to matrix multiplication. To see this explicitly let’s take the simple case of 
a signal xn that is nonzero only between times n = 0 and n = 4 so that 
it is analogous to the vector (x0, xl, x2, x3, x4). Let the filter hn have three 
nonzero coefficients h-1, ho, hl so that it becomes the vector (h-1, ho, hl). 
The convolution y = h * x can only be nonzero between times n = -1 and 
n = 5, but we will restrict our attention to times that correspond to nonzero 
xn. These are given by 

Yo = hoxo + helxl 

Yl = helxO + hoxl + hw1x2 

Y2 = hmlxl + hOx2 + he1x3 

Y3 = hm1x2 + h0x3 + hs1x4 

Y4 = h-lx3 + hox4 
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and more compactly written in matrix form. 

The matrix has quite a distinctive form, all elements on each diagonal being 
equal. Such a matrix is said to be Toeplitx in structure, and Toeplitz matrices 
tend to appear quite a lot in DSP. 

EXERCISES 

6.8.1 N.G. Kneer, the chief DSP hardware engineer at NeverWorks Incorporated, 
purchases pre-owned DSP processors on an as-is basis from two suppliers, 
Alpha Numerics and Beta Million. From Alpha Numerics one gets a perfect 
lot 30% of the time, but 10% of the time all five chips are bad. Prom Beta one 
never gets a completely bad lot, but only gets a perfect lot 10% of the time. 
In fact, N.G. has come up with the following data regarding the probability 
of k defective chips out of a lot of five. 

k Al, Bk 
0 0.3 0.1 
1 0.2 0.2 
2 0.2 0.4 
3 0.1 0.2 
4 0.1 0.1 
5 0.1 0.0 

In order to reduce his risk, N.G. buys from both suppliers. Assuming he buys 
ten chips, five chips from each, what should he expect to be the distribution 
of defective chips? What is the connection between this and convolution? 

6.8.2 Dee Espy has to purchase 100 DSPs, and decides that she should strive to 
minimize the number of defective chips she purchases. How many should she 
buy from each of the above suppliers? 

6.8.3 Convolve the signal xn = . . . . 0,0,1,1,1,1,1,1,1,1,0,0... with the filter 
h = (1, 1,1) and plot xn, h, and the output yn. Convolve vn with h, resulting 
in y1211n and again this new signal to get yn , etc. Plot 273 = [31 y!?, Yn = y!l? 
y1211,, y1311n, one under the other. What can be said about the effect of this 
consecutive filtering? 
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6.9 Purely Recursive Systems 

In this section we will deal with purely recursive systems, that is systems 
for which gn depends on previous y values and the present xn, but not on 
previous x values. You should know that DSP engineers call such systems 
AutoRegressive (AR) systems, a name coined by G. Udny Yule in 1927. 
The word regression here refers to regression analysis, a well-known statis- 
tical method for finding the relationship of a variable to other variables. 
Yule was studying the number of sunspots observed as a function of time 
and decided to attempt to relate the present sunspot activity to previous 
values of the same quantity using regression analysis. He thus called this 
technique autoregression analysis. We prefer the name ‘purely recursive’ to 
autoregressive, but will nonetheless adopt the prevalent abbreviation ‘AR’. 

For AR systems the output yn is obtained from the input xn by 

M 

Yn = xn + C hyn-m 
m=l 

(6.38) 

and to start up the recursion we have to make some assumption as to earlier 
outputs (e.g., take them to be zero). If the input signal was zero before time 
n = 0 then any causal system will have yn = 0 for all negative n. However, if 
we choose to start the recursion at n = 0 but the input actually preexisted, 
the zeroing of the previous outputs is contrived. 

Let’s return to the problem introduced in Section 6.6 of finding the true 
value of a constant signal obscured by additive noise. Our first attempt was 
to simply average up some large number L of signal values. 

1 L-l 

YL-1 =- L c x1 
I=0 

Were we to determine that L values were not sufficient and we wished to 
try L + 1, we do not have to add up all these values once again. It is easy to 
see that we need only multiply yLL- 1 by L to regain the sum, add the next 
input x~, and divide by the new number of signal values L + 1. 

YL = & WYL-1 + XL) 

This manipulation has converted the original iteration into a recursion 

yL = axL + PYL-I 
1 

wherea= -, 
L p 

L =- 
L+l 
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and we have the relation a! + p = 1. Changing the index to our more usual 
12 we can now write 

Yn = (I- P)Xn + PYn-1 Olp<l (6.39) 

which is of the AR form with A4 = 1. 
The nice thing about equation (6.38) is that it is already suitable for 

rapidly varying signals. We needn’t go through all the stages that lead to the 
MA filter with coefficients; by changing ,8 this AR filter can be set to track 
rapidly varying signals or to do a better job of removing noise from slowly 
varying ones. When ,0 = 0 (corresponding to L = 0) the AR filter output 
yn is simply equal to the input, no noise is averaged out but no bandwidth 
lost either, As p increases the past values assume more importance, and the 
averaging kicks in at the expense of not losing the ability to track the input 
as rapidly. When /3 + 1 (corresponding to infinite L) the filter paradoxically 
doesn’t look at the current input at all! 

Equation (6.39) is similar to the causal version of the moving average 
filter of equation (6.30) in that it moves along the signal immediately out- 
putting the filtered signal. However, unlike the moving average filter, equa- 
tion (6.39) never explicitly removes a signal value that it has seen from its 
consideration. Instead, past values are slowly ‘forgotten’ (at least for ,0 < 1). 
For large p signal values from relatively long ago are still relatively impor- 
tant, while for small p past values lose their influence rapidly. You can think 
of this AR filter as being similar to an MA filter operating on L previous 
values, the times before n - L having been forgotten. To see this, unravel 
the recursion in equation (6.39). 

We see that the coefficient corresponding to xn-1 is smaller than that of 
xn by a factor of ,@, and so for all practical purposes we can neglect the 
contributions for times before some 1. For example, if p = 0.99 and we 
neglect terms that are attenuated by e-l, we need to retain about 100 terms; 
however for ,B = 0.95 only about 20 terms are needed, for p = 0.9 we are 
down to ten terms, and for ,8 = 0.8 to 5 terms. It is not uncommon to use 
p = 0.5 where only the xn and x,.+1 terms are truly relevant, the xn-2 term 
being divided by 4. 

We should now explore the frequency response H(w) of our AR filter. 
Using the technique of Section 6.7 we assume 

Xn = e iwn 
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Figure 6.10: The (squared) frequency response of the simple AR low-pass filter for several 
different values of p. From top to bottom /3 = 0.5,0.6,0.7,0.8,0.9,0.95. 

and since the AR filter is a filter, we know that the output will be a complex 
exponential of the same frequency. 

yn = H(Ld)eiwn 

Substituting from equation (6.40) and using equation (A.47) 

Yn = (1 - ppJn + P(l- pp+l~ + @(I- /q&@-2) + , . . 

= (1 - p> ~(~e-iw)keiwn 
= 

P-i,” 
= (1 - p&w) 

,iwn 

and we immediately identify 

(1 - P> 
H(w) = (1 _ p,-iw) (6.41) 

as the desired frequency response, and 

lW>12 = 
I- 2p + P2 

I - 2Pcos(w) + p2 
(6.42) 

as its square. We plot this squared frequency response, for several values of 
,0, in Figure 6.10. 
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Another useful AR filter is 

Yn = Xn + Yn-1 (6.43) 

which unravels to the following infinite sum: 

00 

Yn =Xn+Xn-1 +X,-2 + . . . = c Xn-m 
m=O 

We can write this in terms of the time delay operator 

y = (1 + 2-l + C2 + * . .)x = Yx 

where we have defined the infinite accumulator operator 

00 

Y Z C ZsmXn 

m=O 
(6.44) 

which roughly corresponds to the integration operator for continuous signals. 
The finite difference A z (1 - z-l ) and the infinite accumulator are related 
through AY = 1 and YA = 1, where 1 is the identity operator. 

What happens when the infinite accumulator operates on a constant 
signal? Since we are summing the same constant over and over again the 
sum obviously gets larger and larger in absolute value. This is what we called 
instability in Section 6.4, since the output of the filter grows without limit 
although the input stays small. Such unstable behavior could never happen 
with an MA filter; and it is almost always an unwelcome occurrence, since 
all practical computational devices will eventually fail when signal values 
grow without limit. 

EXERCISES 

6.9.1 What is the exact relation between ,0 in equation (6.39) and the amount of 
past time r that is still influential? Define ‘influential’ until the decrease is 
by a factor of e -‘. Graph the result. 

6.9.2 Quantify the bandwidth BW of the AR filter as a function of ,!!I and compare 
it with the influence time T. 

6.9.3 Contrast the squared frequency response of the AR filter (as depicted in Fig- 
ure 6.10) with that of the simple averaging MA filter (Figure 6.7). What can 
you say about the amount of computation required for a given bandwidth? 
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6.9.4 Find an AR filter that passes high frequencies but attenuates low ones. Find 
an AR filter that passes intermediate frequencies but attenuates highs and 
lows. 

6.9.5 Calculate the effect of the infinite accumulator operator Y’ on the following 
signals, and then check by generating the first 10 values. 

1. xn = un where un is the unit step of equation (2.4) 
2. xn = (-l)Y& = 1, -l,l, -1,. . . 
3. xn =nu,=0,1,2,3 ,... 
4. xn = anun where Q! # 1 

6.9.6 Apply the finite difference operator to the results obtained in the previous 
exercise, and show that AT = 1. 

6.9.7 Prove that ‘Y’A = 1. (Hint: Prove that the ‘telescoping’ series x1 - x0 + x2 - 
Xl...Un -Un-l=X()+Xn.) 

6.9.8 What is the condition for gn = axn + ,8yn-r to be stable? (Hint: Take a 
constant input xn = 1 and compute yn when n --) XI.) 

6.10 Difference Equations 

We have seen that there are MA filters, with output dependent on the present 
and previous inputs, and AR filters, with output dependent on the present 
input and previous outputs. More general still are combined ARMA filters, 
with output dependent on the present input, L previous inputs, and M 
previous outputs. 

L M 

Yn = Calxn-l+ C bnYn-m (6.45) 
I=0 ?Tl=l 

When M =0 (i.e., all b, are zero), we have an MA filter yn = CfZo alx,-1, 
while L = 0 (i.e., all al = 0 except au), corresponds to the AR filter yn = 

xn + C,M,l bnyn-ma 
To convince yourself that ARMA relationships are natural consider the 

amount of money yn in a bank account at the end of month n, during which 
xn is the total amount deposited (if x n < 0 more was withdrawn than 
deposited) and interest from the previous month is credited according to a 
rate of i. 

Yn = Yn-1 + Xn + i&l--:! 

A slightly more complex example is that of a store-room that at the end 
of day n contains yn DSP chips, after xn chips have been withdrawn from 
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stock that day. The requisitions clerk orders new chips based on the average 
usage over the past two days i (zn + xn-r), but these are only delivered the 
next day. The number of chips in stock is thus given by an ARMA system. 

Yn = Yn-1 - Xn + f(Xn-1 +&z-2) 

Equation (6.45) can also be written in a more symmetric form 

M L 

cp mYn-m = c QlXn-1 (6.46) 
m=O l=O 

where 

w = al po c 1 pm = -bm for m = 1. . . M 

although this way of expressing the relationship between y and x hides the 
fact that yn can be simply derived from previous x and y values. This form 
seems to be saying that the x and y signals are both equally independent, 
but happen to obey a complex relationship involving present and past values 
of both x and y. In fact the symmetric form equally well describes the inverse 
system. 

Xn = Yn - E bmyn-m - f&x,-l 
m=l l=l 

We can formally express equation (6.46) using the time delay operator 

M L 

cp mZBrnyn = C CklZslXn 
m=O l=O 

(6.47) 

and (as you will demonstrate in the exercises) in terms of finite differences. 

5 Bm Arnyn = k& A’xn 
m=O l=O 

(6.48) 

Recalling from Section 2.4 that the finite difference operator bears some 
resemblance to the derivative, this form bears some resemblance to a linear 
differential equation 

M 

cp mY [n-ml (t) = & Qlx[“-ll (t> 
m=O I=0 

(6.49) 

where xLkI is the kth derivative of x(t) with respect to t. For this reason 
ARMA systems are often called &jJerence equations. 
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Derivatives are defined using a limiting process over differences. In DSP 
the time differences cannot be made smaller than the sampling interval T, 
and thus finite differences take the place of differentials, and difference equa- 
tions replace differential equations. 

There are many similarities between differential equations and difference 
equations. The recursion (6.45) is a prescription for generating yn given ini- 
tial conditions (e.g., all xn and yn are zero for rz < 0); similarly solutions 
to differential equations need initial conditions to be specified. The most 
general solution of a difference equation can be written as a solution to the 
equation with zero input xn = 0 and any particular solution with the actual 
input; readers familiar with differential equations know that general solu- 
tions to linear differential equations are obtained from the homogeneous so- 
lution plus a particular solution. Linear differential equations with constant 
coefficients can be solved by assuming solutions of the form y(t) = Aext; 
solutions to linear difference equations can be similarly found by assuming 
Yn = X. n, which is why we have been finding frequency responses by assuming 
yn = elUE all along. 

Differential equations arise naturally in the analysis and processing of 
analog signals, because derivatives describe changes in signals over short 
time periods. For example, analog signals that have a limited number of 
frequency components have short time predictability, implying that only a 
small number of derivatives are required for their description. More complex 
signals involve more derivatives and extremely noisy analog signals require 
many derivatives to describe. Similarly digital signals that contain only a 
few sinusoids can be described by difference equations of low order while 
more complex difference equations are required for high-bandwidth signals. 

EXERCISES 

6.10.1 Difference equations are not the only tool for describing ARMA systems; the 
state-space description explicitly uses the system’s memory (internal state). 
Denoting the input xn, the output yn, and the vector of internal state vari- 
ables at time n by sn, the state equation description relates the output to 
the present input ana system state and furthermore describes how to update 
the state given the input. 

Yn = f ’ 27-t-l + 9% 

Sn+l = ASn + XnC 
-- - 

Relate the state equation parameters f, g, A, and c to those of the ARMA 
= - 

description, a and b. - 
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6.10.2 Devise a circumstance that leads to an ARMA system with L = 2 and M = 2. 
L = 1 and M = 3. 

6.10.3 For any digital signal s, we recursively define AmI, the finite diference of 
order m. 

$1 = Jn-11 - $-;l 
n 

For example, given the sequence an = 2n + 1 we find the following. 

a0 = 1 3 5 7 9 . * * 
al = 2 2 2 2 * . . 
a2 = 0 0 o... 
a3 = 0 0 . . . 
a4 = 0 . * . 

We see here that the second and higher finite differences are all zero. In 
general, when the sequence is of the form sn = cmnm + cm-mm-’ + . . . + 
tin + Q, the m + 1 order finite differences are zero. This fact can be used 
to identify sequences. Find the finite differences for the following sequences, 
and then identify the sequence. 

3 6 9 12 15 18 a.. 
3 6 11 18 27 38 . . . 
3 6 13 24 39 58 . . . 
3 6 17 42 87 158 . . . 
3 6 27 84 195 378 . . . 

6.10.4 Find the first, second, and third finite difference sequences for the following 
sequences. 

1. sn =an 
2. sn = bn2 
3. Sn = cn3 

4. sn = bn2 + an 
5. sn = cn3 + bn2 + an 

6.10.5 Show that if xn = ci aknk then the (L + l)th finite difference is zero. 

6.10.6 Plot the first, second and third differences of sn = sin(27rfn) for frequencies 
f = 0.1,0.2,0.3,0.4. 

6.10.7 UOXn +UlX n-1 can be written Aoxn +ArAs, where al = -Al and uo = A0 + 
Al. What is the connection between the coefficients of acxn+arx,-1 +cQx~-~ 
and Aex,+AiAz,+A2A2~,? What about aOx,+alx,-1+a2x,-2+a3xn-3 
and Aax,+AiAxn+A2A2x,+AsA3x,? Generalize and prove that all ARMA 
equations can be expressed as difference equations. 
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6.11 The Sinusoid’s Equation 

The usefulness of MA and AR filters can be clarified via a simple example. 
The analog sinusoid s(t) = Asin(Slt + 4) not only has a simple spectral 
interpretation, but also obeys the second-order diferential equation 

S(t) + s12s(t) = 0 (6.50) 

commonly called the equation of simple harmonic motion. Indeed this equa- 
tion can be considered to be the defining equation for the family of analog 
sinusoidal signals, and its simplicity can be used as an alternate explanation 
of the importance of these signals. 

In the digital domain we would expect digital sinusoids to obey a second- 
order diference equation. That this is indeed the case can be shown using 
the trigonometric identities (A.23) 

sin 
( 
O(t - 2T)) = sin fit cos 20T - cos i;2t sin 2StT 

= sin SZt (2 cos2 flT - 1) + cos Rt (2 sin RT cos RT) 

= - sin Rt + 2 cos SZT 
( 
2 sin RT cos RT 

> 
= - sin Ot + 2 cos RT sin i2(t - T) 

which can easily be shown to be 

s(t - 2T) - 2cos(S1T)s(t - T) + s(t) = 0 (6.51) 

or in digital form 
Sn + ClSn-1 + C2S7-~-2 = 0 (6.52) 

where cl = -2cosClT and c2 = 1. 
This difference equation, obeyed by all sinusoids, can be exploited in 

several different ways. In the most direct implementation it can be used as a 
digital oscillator or tone generator, i.e., an algorithm to generate sinusoidal 
signals. Given the desired digital oscillation frequency tid, amplitude A, and 
initial phase 4, we precompute the coefficient 

f-2 
Cl = -2 cos flT = -2 cos - = -2 cos f&j 

f 5 
and the first two signal values 

SO = Asin 

Sl = Asin(SZT + 4) = Asin(% -I- 4) 
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where Szd is the digital frequency (we will omit the subscript from here on). 
The difference equations now recursively supply all signal values: 

s2 = - (Wl + so> 

s3 = - (w2 + Sl) 

sq = - (ClS3 + s2) 

and so on. This digital oscillator requires only one multiplication, one ad- 
dition, and one sign reversal per sample point! This is remarkably efficient 
when compared with alternative oscillator implementations such as approxi- 
mation of the sine function by a polynomial, table lookup and interpolation, 
or direct application of trigonometric addition formulas. The main prob- 
lems with this implementation, like those of al purely recursive algorithms, 
are those of accuracy and stability. Since each result depends on the previ- 
ous two, numerical errors tend to add up, and eventually swamp the actual 
calculation. This disadvantage can be rectified in practice by occasionally 
resetting with precise values. 

Another application of the difference equation (6.51) is the removal of an 
interfering sinusoid. Given an input signal xn contaminated with an interfer- 
ing tone at known frequency R; we can subtract the sinusoidal component 
at this frequency by the following MA filter 

Yn = Xn + ClX:,-1 + Xn-2 

where cl is found from Q. The frequency 
an arbitrary complex exponential eiwn 

response is found by substituting 

Yn = e 
iwn _ 2 cos neiw(n-I) + ,iw(n-2) 

= 
( 

1 _ 2 cos ne-iw + ,-2iw 
) 

,iwn 

= e--L eiw 
( 

- 2 cos 0 + emiw > eiun 

= e -iw 
(2 cos w - 2 cos Cl) eiwn 

which can be written in the form yn = H(w)xn. The square of H(w) is 
depicted in Figure 6.11 for digital frequency i. Note that no energy remains 
at the interfering frequency; the system is a notch filter. 

Finally the difference equation (6.52) can be used to estimate the fre- 
quency of a sine buried in noise. The idea is to reverse the equation, and 
using observed signal values to estimate the value of cl. From this the fre- 
quency w can be derived. Were no noise to be present we could guarantee 

X7-t + G-2 
Cl = - 

G-1 
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Figure 6.11: The (squared) frequency response of the MA notch filter set to one-half the 
Nyquist frequency. Note that no energy remains at the notched frequency. 

but with noise this only holds on average 

the second form being that most commonly used. 

EXERCISES 

6.11.1 Show that the signal sn = eqn obeys the equation sn = as,-1 where a = eQ. 

6.11.2 Show that the signal sn = sin(S2n) obeys the equation sn = ars,-1 +azsn-2 
with coefficients ai determined by the equation 1 - alz-’ - CZ~Z-~ = 0 having 
solutions z = efm, 

6.11.3 Show that if a signal is the sum of p exponentials 

P 

sn = 
c 

&y&n 

i=l 

then the equation 1 - ‘& akzek = 0 has roots z = eqi. 

6.11.4 Generalize the previous exercises and demonstrate that the sum of p sines 
obeys a recursion involving 2p previous values. What is the equation and how 
are its coefficients determined? 
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6.12 System Identification-The Easy Case 

Assume that someone brings you a signal processing system enclosed in a 
black box. The box has two connectors, one marked input and the other 
output. Other than these labels there are no identifying marks or documen- 
tation, and nothing else is known about what is hidden inside. What can you 
learn about such a system? Is there some set of measurements and calcula- 
tions that will enable you to accurately predict the system’s output when 
an arbitrary input is applied? This task is known as system identifkation. 

You can consider system identification as a kind of game between your- 
self and an opponent. The game is played in the following manner. Your 
opponent brings you the black box (which may have been specifically fabri- 
cated for the purpose of the game). You are given a specified finite amount 
of time to experiment with the system. Next your opponent specifies a test 
input and asks you for your prediction- were this signal to be applied what 
output would result? The test input is now applied and your prediction put 
to the test. 

Since your opponent is an antagonist you can expect the test input to be 
totally unlike any input you have previously tried (after all, you don’t have 
time to try every possible input). Your opponent may be trying to trick you 
in many ways. Is it possible to win this game? 

This game has two levels of play. In this section we will learn how to 
play the easy version; in the next section we will make a first attempt at 
a strategy for the more difficult level. The easy case is when you are given 
complete control over the black box. You are allowed to apply controlled 
inputs and observe the resulting output. The difficult case is when you are 
not allowed to control the box at all. The box is already hooked up and 
operating. You are only allowed to observe the input and output. 

The latter case is not only more difficult, it may not even be possible 
to pass the prediction test. For instance, you may be unlucky and during 
the entire time you observe the system the input may be zero. Or the input 
may contain only a single sinusoid and you are asked to predict the output 
when the input is a sinusoid of a different frequency. In such cases it is quite 
unreasonable to expect to be able to completely identify the hidden system. 
Indeed, this case is so much harder than the first that the term system 
identification is often reserved for it. 

However, even the easy case is far from trivial in general. To see this 
consider a system that is not time-invariant. Your opponent knows that 
precisely at noon the system will shut down and its output will be zero 
thereafter. You are given until 11:59 to observe the system and give your 
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prediction a few seconds before noon. Of course when the system is tested 
after noon your prediction turns out to be completely wrong! I think you 
will agree that the game is only fair if we limit ourselves to the identification 
of time-invariant systems. 

Your opponent may still have a trick or two left! The system may have 
been built to be sensitive to a very specific trigger. For example, for almost 
every input signal the box may pass the signal unchanged; but for the trigger 
signal the output will be quite different! A signal that is different from the 
trigger signal in any way, even only having a slightly different amplitude 
or having an infinitesimal amount of additive noise, does not trigger the 
mechanism and is passed unchanged. You toil away trying a large variety 
of signals and your best prediction is that the system is simply an identity 
system. Then your opponent supplies the trigger as the test input and the 
system’s output quite astounds you. 

The only sensible way to avoid this kind of pitfall is to limit ourselves to 
linear systems. Linear systems may still be sensitive to specific signals. For 
example, think of a box that contains the identity system and in parallel a 
narrow band-pass filter with a strong amplifier. For most signals the output 
equals the input, but for signals in the band-pass filter’s range the output is 
strongly amplified. However, for linear systems it is not possible to hide the 
trigger signal. Changing the amplitude or adding some noise will still allow 
triggering to occur, and once the effect is observed you may home in on it. 

So the system identification game is really only fair for linear time- 
invariant systems, that is, for filters. It doesn’t matter to us whether the 
filters are MA, AR, ARMA, or even without memory; that can be deter- 
mined from your measurements. Of course since the black box is a real 
system, it is of necessity realizable as well, and in particular causal. There- 
fore from now on we will assume that the black box contains an unknown 
causal filter. If anyone offers to play the game without promising that the 
box contains a causal filter, don’t accept the challenge! 

Our task in this section is to develop a winning strategy for the easy 
case. Let’s assume you are given one hour to examine the box in any way 
you wish (short of prying off the top). At the end of precisely one hour 
your opponent will reappear, present you with an input signal and ask you 
what you believe the box’s response will be. The most straightforward way 
of proceeding would be to quickly apply as many different input signals as 
you can and to record the corresponding outputs. Then you win the game 
if your opponent’s input signal turns out to be essentially one of the inputs 
you have checked. Unfortunately, there are very many possible inputs, and 
an hour is to short a time to test even a small fraction of them. To economize 
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we can exploit the fact that the box contains a linear time-invariant system. 
If we have already tried input x7, there is no point in trying uxn or xnwm, 
but this still leaves a tremendous number of signals to check. 

Our job can be made more manageable in two different ways, one of 
which relies on the time domain description of the input signal, and the 
other on its frequency domain representation. The frequency domain ap- 
proach is based on Fourier’s theorem that every signal can be written as the 
weighted sum (or integral) of basic sinusoids. Assume that you apply to the 
unknown system not every possible signal, but only every possible sinusoid. 
You store the system’s response to each of these and wait for your opponent 
to appear. When presented with the test input you can simply break it down 
to its Fourier components, and exploit the filter’s linearity to add the stored 
system responses with the appropriate Fourier coefficients. 

Now this task of recording the system outputs is not as hard as it appears, 
since sinusoids are eigensignals of filters. When a sinusoid is input to a filter 
the output is a single sinusoid of the same frequency, only the amplitude 
and phase may be different. So you need only record these amplitudes and 
phases and use them to predict the system output for the test signal. For 
example, suppose the test signal turns out to be the sum of three sinusoids 

xn = X1 sin&n) + X2 sin(w2n) + X3 sin@374 

the responses of which had been measured to be 

HI sin(wln + $I>, HZ sin(w2n + +2), and H3 sin(w37-h + 43) 

respectively. Then, since the filter is linear, the output is the sum of the 
three responses, with the Fourier coefficients. 

yn = HlXl sin(wln + 41) + &.X2 sir&n + 42) + H3X3 sin(w3n + 43) 

More generally, any finite duration or periodic test digital signal can be 
broken down by the DFT into the sum of a denumerable number of complex 
exponentials 

1 N-l 

X7-b =- 
N c 

Xkei+h 

k=O 

and the response of the system to each complex exponential is the same 
complex exponential multiplied by a number Hk. 
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Using these Hk we can predict the response to the test signal. 

I N-l 

Yn =- 
c 

i2”kn 

N 
&&e N 

k=O 

The Hk are in general complex (representing the gains and phase shifts) and 
are precisely the elements of the frequency response. A similar decomposition 
solves the problem for nonperiodic analog signals, only now we have to test 
a nondenumerable set of sinusoids. 

The above discussion proves that the frequency response provides a com- 
plete description of a filter. Given the entire frequency response (i.e., the 
response of the system to all sinusoids), we can always win the game of 
predicting the response for an arbitrary input. 

The frequency response is obviously a frequency domain quantity; the 
duality of time and frequency domains leads us to believe that there should 
be a complete description in the time domain as well. There is, and we 
previously called it the impulse response. To measure it we excite the system 
with a unit impulse (a Dirac delta function s(t) for analog systems or a unit 
impulse signal 6,,0 for digital systems) and measure the output as a function 
of time (see equation 6.22). For systems without memory there will only be 
output for time t = 0, but in general the output will be nonzero over an 
entire time interval. A causal system will have its impulse response zero for 
times t < 0 but nonzero for t 2 0. A system that is time-variant (and hence 
not a filter) requires measuring the response to all the SUIs, a quantity 
known as the Green’s function. 

Like the frequency response, the impulse response may be used to predict 
the output of a filter when an arbitrary input is applied. The strategy is 
similar to that we developed above, only this time we break down the test 
signal in the basis of SUIs (equation (2.26)) rather than using the Fourier 
expansion. We need only record the system’s response to each SUI, expand 
the input signal in SUIs, and exploit the linearity of the system (as we 
have already done in Section 6.5). Unfortunately, the SUIs are not generally 
eigensignals of filters, and so the system’s outputs will not be SUIs, and we 
need to record the entire output. However, unlike the frequency response 
where we needed to observe the system’s output for an infinite number of 
basis functions, here we can capitalize on the fact that all SUIs are related by 
time shifts. Exploiting the time-invariance property of filters we realize that 
after measuring the response of an unknown system to a single SUI (e.g., the 
unit impulse at time zero), we may immediately deduce its response to all 
SUIs! Hence we need only apply a single input and record a single response 
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in order to be able to predict the output of a filter when an arbitrary input 
is applied! The set of signals we must test in order to be able to predict 
the output of the system to an arbitrary input has been reduced to a single 
signal! This is the strength of the impulse response. 

The impulse response may be nonzero only over a finite interval of time 
but exactly zero for all times outside this interval. In this case we say the 
system has a finite impulse response, or more commonly we simply call it 
an FIR filter. The MA systems studied in Sections 6.6 and 6.7 are FIR 
filters. To see this consider the noncausal three-point averaging system of 
equation (6.33). 

yn = ix,-1 + fxn + ix,+1 

As time advances so does this window of time, always staying centered on 
the present. What happens when the input is an impulse? At time n = fl 
we find a i multiplying the nonzero signal value at the origin, returning i; 
of course, the n = 0 has maximum output $. At any other time the output 
will be zero simply because the window does not overlap any nonzero input 
signal values. The same is the case for any finite combination of input signal 
values. Thus all the systems that have the form of equation (6.13), which 
we previously called FIR filters, are indeed FIR. 

Let’s explicitly calculate the impulse response for the most general causal 
moving average filter. Starting from equation (6.30) (but momentarily re- 
naming the coefficients) and using the unit impulse as input yields 

L 

Yn = ~dl-L+l,O 
I=0 

= SOSn-L,O +g16n-L+l,O + g2&-L+2,0 + **. +gL-l&--1,0 +gL&z,O 

which is nonzero only when n = 0 or n = 1 or . . . or n = L. Furthermore, 
when n = 0 the output is precisely ho = gL, when n = 1 the output is 
precisely hl = gL-1, etc., until hL = go. Thus the impulse response of 
a general MA filter consists exactly of the coefficients that appear in the 
moving average sum, but in reverse order! 

The impulse response is such an important attribute of a filter that it is 
conventional to reverse the definition of the moving average, and define the 
FIR filter via the convolution in which the indices run in opposite directions, 
as we did in equation (6.13). 

It is evident that were we to calculate the impulse response of the nonter- 
minating convolution of equation (6.14) it would consist of the coefficients 
as well; but in this case the impulse response would never quite become zero. 
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If we apply a unit impulse to a system and its output never dies down to 
zero, we say that the system is Infinite Impulse Response (IIR). Systems of 
the form (6.15), which we previously called IIR filters, can indeed sustain 
an impulse response that is nonzero for an infinite amount of time. To see 
this consider the simple case 

Yn = Xn + ;Yn-1 

which is of the type of equation (6.15). For negative times n the output is 
zero, Yn = 0, but at time zero yc = 1, at time one yi = i and thereafter 
yn is halved every time. It is obvious that the output at time r~ is precisely 
Yn = 2 -+, which for large 72 is extremely small, but never zero. 

Suppose we have been handed a black box and measure its impulse 
response. Although there may be many systems with this response to the 
unit impulse, there will be only one filter that matches, and the coefficients 
of equation (6.14) are precisely the impulse response in reverse order. This 
means that if we know that the box contains a filter, then measuring the 
impulse response is sufficient to uniquely define the system. In particular, we 
needn’t measure the frequency response since it is mathematically derivable 
from the impulse response. 

It is instructive to find this connection between the impulse response 
(the time domain description) and the frequency response (the frequency 
domain description) of a filter. The frequency response of the nonterminating 
convolution system 

00 
Yn = c hixn-i 

i=-00 

is found by substituting a sinusoidal input for xn, and for mathematical 
convenience we will use a complex sinusoid xn = eiwn. We thus obtain 

H(U) xn = yn = 2 hkeiw(n-k) 
k=-co 

00 

= 
c 

hk ,-iwk eiwn 

k=-oo 

= Hk Xn 

(6.53) 

where we identified the Fourier transform of the impulse response hk and 
the input signal. We have once again shown that when the convolution 
system has a sinusoidal input its output is the same sinusoid multiplied 
by a (frequency-dependent) gain. This gain is the frequency response, but 
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here we have found the FT of the impulse response; hence the frequency 
response and the impulse response are an FT pair. Just as the time and 
frequency domain representations of signals are connected by the Fourier 
transform, the simplest representations of filters in the time and frequency 
domains are related by the FT. 

EXERCISES 

6.12.1 Find the impulse response for the following systems. 
1. yn =xn 
2. yn = Xn + Xn-2 +X72-4 

3. yn = Xn + 2X,-1 + 3Xn-2 

4. yn = xi aix,-i 
5. Yn=Xn+Yn-1 

6. Yn = xn + i(yn-1 + yn-2) 

6.12.2 An ideal low-pass filter (i.e., one that passes without change signals under 
some frequency but entirely blocks those above it) is unrealizable. Prove this 
by arguing that the Fourier transform of a step function is nonzero over the 
entire axis and then invoking the connection between frequency response and 
impulse response. 

6.12.3 When determining the frequency response we needn’t apply each sinusoidal 
input separately; sinusoid orthogonality and filter linearity allow us to apply 
multiple sinusoids at the same time. This is what is done in probe signals 
(cf. exercise 2.6.4). Can we apply all possible sinusoids at the same time and 
reduce the number of input signals to one? 

6.12.4 Since white noise contains all frequencies with the same amplitude, applying 
white noise to the system is somehow equivalent to applying all possible 
sinusoids. The white noise response is the response of a system to white 
noise. Prove that for linear systems the spectral amplitude of the white noise 
response is the amplitude of the frequency response. What about the phase 
delay portion of the frequency response? 

6.12.5 The fact that the impulse and frequency responses are an FT pair derives 
from the general rule that the FT relates convolution and multiplication 
FT(x * y) = FT(x)FT(y). P rove this general statement and relate it to the 
Wiener-K hintchine theorem. 

6.12.6 Donald S. Perfectionist tries to measure the frequency response of a system 
by measuring the output power while injecting a slowly sweeping tone of 
constant amplitude. Unbeknownst to him the system contains a filter that 
passes most frequencies unattenuated, and amplifies a small band of frequen- 
cies. However, following the filter is a fast Automatic Gain Control (AGC) 
that causes all Donald’s test outputs to have the same amplitude, thus com- 
pletely masking the filter. What’s wrong? 



6.13. SYSTEM IDENTIFICATION-THE HARD CASE 259 

6.13 System Identification-The Hard Case 

Returning to our system identification game, assume that your opponent 
presents you with a black box that is already connected to an input. We 
will assume first that the system is known to be an FIR filter of known 
length L + 1. If the system is FIR of unknown length we need simply assume 
some extremely large L + 1, find the coefficients, and discard all the zero 
coefficients above the true length. 

The above assumption implies that the system’s output at time n is 

Yn = u()xn + a1x 
n-l + @P&-2 + l l * + ULXn-L 

and your job is to determine these coefficients al by simultaneously observing 
the system’s input and output. It is clear that this game is riskier than the 
previous one. You may be very unlucky and during the entire time we observe 
it the system’s input may be identically zero; or you may be very lucky and 
the input may be a unit impulse and we readily derive the impulse response. 

Let’s assume that the input signal was zero for some long time (and the 
output is consequently zero as well) and then suddenly it is turned on. We’ll 
reset our clock to call the time of the first nonzero input time zero (i.e., xn is 
identically zero for n < 0, but nonzero at n = 0). According to the defining 
equation the first output must be 

Yo = a()xo 

and since we observe both x0 and yo we can easily find 

which is well defined since by definition x0 # 0. Next, observing the input 
and output at time n = 1, we have 

Yl = aox + a1xo 

which can be solved 
Yl - a0xl al = 

x0 

since everything needed is known, and once again x0 # 0. 
Continuing in this fashion we can express the coefficient a, at time n in 

terms of ~0.. . xn, 90.. . yn, and ~0.. . an-r, all of which are known. To see 
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this explicitly write the equations 

Yo = aoxo 

Yl = Npl + a120 

Y2 = aox2 + a121 + u2xt-j 

Y3 = aox3 + am + a221 + ~3x0 

Y4 = ~ox4+~lx3+a2x2+a3xl +u4q-) 

and so on, and note that these can be recursively solved 

al = 
Yl - aox 

x0 
Y2 - aox2 - ~1x1 

a2 = 
X0 

Y3 - aoxg - a122 - a2xl 
a3 = 

X0 
Y4 - aox4 - alxg - a222 - aax1 

a4 = 
x0 

(6.54) 

(6.55) 

one coefficient at a time. 
In order to simplify the arithmetic it is worthwhile to use linear algebra 

notation. We can write equation (6.54) in matrix form, with the desired 
coefficients on the right-hand side 

(6.56) 

and identify the matrix containing the input values as being lower triangu- 
lar and Toeplitz. The solution of (6.55) is simple due to the matrix being 

lower triangular. Finding the Ith coefficient requires I multiplications and 
subtractions and one division, so that finding all L + 1 coefficients involves 
LL L + 1) multiplications and subtractions and L + 1 divisions. 2 ( 

The above solution to the ‘hard’ system identification problem was based 
on the assumption that the input signal was exactly zero for n < 0. What 
can we do in the common case when we start observing the signals at an 
arbitrary time before which the input was not zero? For notational simplicity 
let’s assume that the system is known to be FIR with L = 2. Since we 
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need to find three coefficients we will need three equations, so we observe 
three outputs, yn, gn+r and yn+2. Now these outputs depend on five inputs, 
x,-2, x,-r, x,, xn+r, and xn+2 in the following way 

Yn = ao% + al&-l + U2Xn-2 

Yn+l = aoXn+i + al% + QXn-1 (6.57) 

Yn+2 = (Jo%+2 + al%+1 + RG-8 

which in matrix notation can be written 

92 Xn-1 G-2 
Xn+l Xn G-1 (6.58) 

Xn+2 Xn+l Xn 

or in other words y = X a, where X is a nonsymmetric Toeplitz matrix. The - -- - 
solution is obviously a = X-‘y but the three-by-three matrix is not lower 

triangular, and so itsinv=ion is no longer trivial. For larger number of 
coefficients L we have to invert an N = L + 1 square matrix; although most 
direct N-by-N matrix inversion algorithms have computational complexity 
O(N3), it is possible to invert a general matrix in O(N’Og2 7, N O(N2a807) 
time. Exploiting the special characteristics of Toeplitz matrices reduces the 
computational load to O(IV2). 

What about AR filters? 

M 

Yn = xn + C b,y,-, 
m=l 

Can we similarly find their coefficients in the hard system identification 
case? Once again, for notational simplicity we’ll take M = 3. We have three 
unknown b coefficients, so we write down three equations, 

Yn = G-t + hyn-1 + bzyn-2 + b3yn-3 

Yn+l = Xn+l + hyn + hyn-1 + b3yn-2 (6.59) 

Yn+2 = Xn+2 + hyn+l + b2yn + bayn-1 

or in matrix notation 

(g,,)=( 2)’ 
Yn-1 Yn-2 Yn-3 

Yn Yn-1 Yn-2 

lyn+l Yn Yn-1 

(6.60) 
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or simply y = x + Y b. The answer this time is b = Y -’ ( y - x), which once - - -- - - 
again necessitates inverting a nonsymmetric Toeplit; matrix. 

Finally, the full ARMA with L = 2 and &! = 3 

L M 

Yn = xalxn-l+ C bmyn-m 
l=O m=l 

has six unknowns, and so we need to take six equations. 

Yn = aoXn + ai%-1 + a2x n-2+hYn-1 +b2Yn-2+b3Yn-3 

Yn+l = aoXn+i + ai% + a22 n-l+hYn+b2Yn-l+b3Yn-2 

Yn+2 = aoxn+z+alxn+l+aaxn+blyn+l +bzYn+b~Yn--I 

Yn+3 = aoxn+3 + alxn+2 + a2xn+l+ hYn+2 + b2Yn+l+ b3Yn 

Yn+4 = aoxn+4+a1xn+3+a2xn+2+blYn+3+b2Yn+2+b3Yn+l 

Yn+5 = aOxn+5+ alxn+4+a2xn+3+blYn+4+b2Yn+3+b3Yn+2 

This can be written compactly 

’ Yn 
Yn+l 

Yn+2 

Yn+3 

Yn+4 

\ Yn+5 

= 

/ Xn Xn- 1 h-2 Yn-1 Yn-2 h-3 

Xn+l Xn h-1 Yn Yn-1 Yn-2 

X734-2 %+l X72 Yn+l Yn Yn-1 

Xn+3 Xn-k2 Xn+l Yn+2 Yn+l Yn 

xn+4 Xn+3 Xn+2 Yn+3 Yn+2 Yn+l 

\ Xn+5 Xn+4 Xn+3 Yn+4 Yn+3 Yn+2 

f a0 

al 

a2 

bl 

kit 

\ b3 

(6.61) 

and the solution requires inverting a six-by-six nonsymmetric non-Toeplitz 
matrix. The ARMA case is thus more computationally demanding than the 
pure MA or AR cases. 

Up to now we have assumed that we observe xn and yn with no noise 
whatsoever. In all practical cases there will be at least some quantization 
noise, and most of the time there will be many other sources of additive 
noise. Due to this noise we will not get precisely the same answers when 
solving equations (6.58), (6.60), or (6.61) for two different times. One rather 
obvious tactic is to solve the equations many times and average the result- 
ing coefficients. However, the matrix inversion would have to be performed a 
very large number of times and the equations (especially (6.60) and (6.61)) 
often turn out to be rather sensitive to noise. A much more successful tac- 
tic is to average before solving the equations, which has the advantages of 
providing more stable equations and requiring only a single matrix inversion. 
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Let’s demonstrate how this is carried out for the MA case. 

L 

Yn = c akxn-k (6.62) 
k=O 

In order to average we multiply both sides by xn-q and sum over as many 
n as we can get our hands on. 

c Yn%-q = t ak c%-kxn-q 
n k=O n 

We define the x autocorrelation and the x-y crosscorrelation (see Chapter 9) 

c3c(k) = ~&x%-k &z(k) = c %x%-k 
n n 

and note the following obvious symmetry. 

Cx(-k) = Cx(k) 

The deconvolution equations can now be written simply as 

cgx(d = c akC,h - k) 
k 

(6.63) 

and are called the Wiener-Hopf equations. For L = 2 the Wiener-Hopf equa- 
tions look like this: 

Cx(O) Cx(-1) Cx(-2) 
Cx(l> Cx(O) Cx(-1) 

Cx(2) Cx(l) 

and from the aforementioned symmetry we immediately recognize the matrix 
as symmetric Toeplitz, a fact that makes them more stable and even faster 
to solve. 

For a black box containing an AR filter, there is a special case where the 
input signal dies out (or perhaps the input happens to be an impulse). Once 
the input is zero 

Yn = 5 bmYn-m 
??a=1 

multiplying by Yn-q and summing over n we find 

c YnYn-q = 5 bmxYn-mYn-q 
n m=l n 
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in which we identify y autocorrelations. 

F Cdb - alha = C&l) 
m=l 

For M = 3 these equations look like this. 

WV c,(l) c,(2) 

c,(l) c,(O) c,(l) 

c,(2) c,(l) c,(O) 

(6.64) 

These are the celebrated Yule-Walker equations, which will turn up again 
in Sections 9.8 and 9.9. 

EXERCISES 

6.13.1 Write a program that numerically solves equation (6.55) for the coefficients of 
a causal MA filter given arbitrary inputs and outputs. Pick such a filter and 
generate outputs for a pseudorandom input. Run your program for several 
different input sequences and compare the predicted coefficients with the 
true ones (e.g., calculate the squared difference). What happens if you try 
predicting with too long a filter? Too short a filter? If the input is a sinusoid 
instead of pseudorandom? 

6.13.2 Repeat the previous exercise for AR filters (i.e., solve equation (6.60)). If the 
filter seems to be seriously wrong, try exciting it with a new pseudorandom 
input and comparing its output with the output of the intended system. 

6.13.3 In the text we assumed that we knew the order 
the order of the system being identified? 

L and M. How can we find 

6.13.4 Assume that gn is related to xn by a noncausal MA filter with coefficients 
a-M . . . aM. Derive equations for the coefficients in terms of the appropriate 
number of inputs and outputs. 

6.13.5 In deriving the Wiener-Hopf equations we could have multiplied by Y~.-~ to 
get the equations 

k 

rather than multiplying by x+.*. Why didn’t we? 

6.13.6 In the derivation of the Wiener-Hopf equations we assumed that Cz and CYz 
depend on Ic but not n. What assumption were we making about the noisy 
signals? 
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6.13.7 In an even harder system identification problem not only don’t you have 
control over the system’s input, you can’t even observe it. Can the system 
be identified based on observation of the output only? 

6.13.8 Assume that the observed input sequence X~ is white, i.e., that all autocor- 
relations are zero except for CZ(0). What is the relationship between the 
crosscorrelation CPZ(n) and the system’s impulse response? How does this 
simplify the hard system identification task? 

6.14 System Identification in the z Domain 

In the previous section we solved the hard system identification problem 
in the time domain. The solution involved solving sets of linear equations, 
although for many cases of interest these equations turn out to be relatively 
simple. Is there a method of solving the hard system identification problem 
without the need for solving equations? For the easy problem we could in- 
ject an impulse as input, and simply measure the impulse response. For the 
hard problem we extended this technique by considering the input to be the 
sum of SUIs x, = C x,&2 - m and exploiting linearity. Realizing that each 
output value consists of intertwined contributions from many SUI inputs, 
we are forced to solve linear equations to isolate these individual contribu- 
tions. There is no other way to disentangle the various contributions since 
although the SUI basis functions from which the input can be considered to 
be composed are orthogonal’and thus easily separable by projection without 
solving equations, the time-shifted impulse responses are not. 

This gives us an idea; we know that sinusoids are eigenfunctions of fil- 
ters, and that they are mutually orthogonal. Hence the input at w can be 
derived from the output at that same frequency, with no other frequencies 
interfering. We can thus recover the frequency response by converting the 
input and output signals into the frequency domain and merely dividing the 
output at every frequency by the input at that same frequency. 

Y(w) = H(w)X(w) + H(w) = z 
W 

What could be easier? If we wish we can even recover the impulse response 
from the frequency response, by using equation (6.53). So it would seem best 
to solve the easy system identification problem in the time domain and the 
hard problem in the frequency domain. 
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One must be careful when using this frequency domain approach to the 
hard system identification problem. To see why, think of an MA all-pass 
system that simply delays the input by L samples yn = x~-L. Had we 
observed the system when the input was of the form xn = sin(2nF + 4) for 
any k we would conclude that we were observing the identity system yn = x,! 
This mistake is obviously due to the input being periodic and the system 
looking back in time by precisely an integer number of periods; equivalently 
in the frequency domain this input consists of a single line, and thus we can 
only learn about H(w) at this single frequency. The lesson to be learned 
is more general than this simple example. In order to uniquely specify a 
system the input must excite it at all frequencies. There are often frequencies 
for which the system produces no output at all, and based on these we 
certainly would not be able to identify the system. The unit impulse is a 
single excitation that squeezes all possible information out of the system; due 
to orthogonality and the eigenfunction property a single sinusoid contributes 
only an infinitesimal amount of information about the system. 

The frequency response is a great tool for FIR systems, but not as good 
for IIR systems since they may become unstable. When an IIR system’s 
output increases without limit for a frequency w, this is a sign that its fre- 
quency response is infinite there. For example, a typical frequency response 
is depicted in Figure 6.12. As usual, the horizontal axis is from DC to half 
the sampling rate. We see that the frequency response goes to zero for a 
digital frequency of 0.2. This means that when the input is a sinusoid of 

Figure 6.12: The frequency response of an ARMA filter with a zero at frequency 0.2fs 
and a pole at 0.35f,. 



6.14. SYSTEM IDENTIFICATION IN THE Z DOMAIN 267 

this frequency there will be no output. We call such frequencies zeros of 
the frequency response. Around digital frequency 0.35 something different 
occurs. Input signals in this region are strongly amplified, and at 0.35 it- 
self the output grows without limit. We recall from Section (4.11) that the 
Fourier transform is not the proper tool to describe this type of behavior; 
the z transform is. 

So let’s see how the zT can be used in system identification. We know 
that the effect of any filter can be expressed as convolution by the impulse 
response y = h t CC, although for non-FIR systems this convolution is in 
principle infinite. In view of the connection between convolution and multi- 
plication (see Section 6.8) we would like somehow to write h = y/x, a process 
known as deconvolution. The zT is the tool that transforms convolutions into 
algebraic multiplications, so we apply it now. 

Similarly to the result for FT and DFT, convolution in the time domain 
becomes multiplication in the z domain 

Y(z) = H(z) X(z) (6.65) 

and this is simple to prove. 

00 

Y(z) = c ynifn 
n=-00 

= C hk C xn-kZsn 
k=-m n=-W 00 = c hkz-k 5 xmfm 
k=-co m=-cm 

= W) X(4 

The z transform of the impulse response h is called the transfer function, 
and this name implies that we can think of the operation of the system as 
transferring X(z) into Y(Z) by a simple multiplication. Of course, thinking of 
2 = reiw, the transfer function is seen to be a generalization of the frequency 
response. Evaluated on the unit circle r = 1 (i.e., z = eiw) the transfer 
function is precisely the frequency response, while for other radii we obtain 
the response of the system to decaying (r < 1) or growing (r > 1) sinusoids 
as in equation (2.12). 
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So the complete solution of the hard system identification problem is 
easy. The transfer function of the system in question is 

Y(4 
w4 = x(z> 

with frequency response obtainable by evaluating H(z) on the unit circle 
2 = eiw and impulse response derivable from the frequency response. 

Let’s use this method to identify a nontrivial system. Assume that the 
unknown system is equation (6.39) with ,B = $ 

Yn = i(Yn-1 + 2,) (6.66) 

and that the input is observed to turn on at n = 0 and is DC from then on 
Xn = Un- Observing the input and output you compose the following table: 

Using the time domain method of equation (6.55) after some work you 
could deduce that the coefficients of the nonterminating convolution are 
h, = ;-@+l) , but some inspiration would still be required before the ARMA 
form could be discovered. So let’s try the zT line of attack. The zTs of the 
input and output are easily 

X(z) = ZT un 

zT 2n+‘-1 
p+i U7-i 

found by using equation (4.63). 

1 
=n ROC Izl > 1 

1 1 =--- 
1 - z-1 :: 1 - iz-l 

= i 

(1 - z-1)(1 - +z-‘) 
ROC Izl > ; 

Now the transfer function is the ratio 

w i 
H(z) = x(z> = 1 _ 4,-l 

so that the difference equation Y(z) = H(z)X(z) is 

( 1 - $z-1) Y(z) = $X(z) 
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which from the meaning of z-l in the time domain is simply 

Yn -- ;Yn-1 = +Xn 

and equation (6.66) has magically appeared! 

EXERCISES 

6.14.1 As we shall learn in Chapter 18, modem signals are distorted by the tele- 
phone lines through which they travel. This distortion can be modeled as a 
filter, and removed by appropriate inverse filtering (equalizing). Can you ex- 
plain why modems transmit known pseudonoise signals during their start-up 
procedures? 

6.14.2 You observe a system when its input consists of the sum of two different 
sinusoids. Find two systems that cannot be distinguished based on this input. 
Do the same for an input composed of M sinusoids. 

6.14.3 What is the transfer function of two systems connected in series (cascaded 
so that y = HOW, w = Hiz)? Of two systems connected in parallel (i.e., so 
that y = Hlx + Hgy)? 

6.14.4 Prove that ARMA systems commute. 

6.14.5 Deconvolution is equivalent to finding the inverse system for a filter. Explain 
how to carry out deconvolution using the transfer function. 

6.14.6 Prove (as in exercise 6.4.1) that the inverse system of an MA filter is AR and 
vice versa. 

6.14.7 Many communication channels both distort the information carrying signal 
by an unknown filter and add nonwhite noise to it. The frequency charac- 
teristics of both the channel filter and the noise can be directly measured 
by inputting a signal consisting of a comb of equidistant sinusoids each with 
known amplitude and phase, and measuring the output at these frequencies. 
The input signal is conveniently generated and the output recovered using 
the DFT. In order to combat noise the procedure should be repeated N times 
and the output averaged. We denote the input in bin k by XI, and the mea- 
sured output at repetition m by Yi”]. Explain how to measure the SNR of 
bin k. 

6.14.8 Continuing the previous exercise, a Frequency EQualizer (FEQ) tries to 
remove the frequency distortion introduced by the channel filter by directly 
multiplying each output Yk by complex number ek in order to recover the 
input XI, = f?!kYk. Explain how to find the FEQ coefficients ek. 

6.14.9 Continuing the previous exercises, the frequency magnitude response lHk12 
(the ratio of the output to input energies) as measured at repetition m is 

(Yy2 
) Him1 I2 = -J+ . Express IHk I2 in terms of ek and SNRk. 

k 
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Bibliographical Notes 

Signal processing systems are treated in all the standard signal processing texts, 
[186, 185, 187, 200, 189, 252, 159, 1671, as well as books specifically on system 
design [126]. 

The word convolution was used as early as 1935 by mathematicians, but seems 
to have been picked up by the signal processing community rather later. Norbert 
Wiener, in his classic 1933 text [277], uses the German Faltung noting the lack of 
an appropriate English-language word. In his later book of the 1940s [278] there is 
a conspicuous absence of the word. Rice, in an influential 1944-45 article on noise 
[220] gives the FT of a product in an appendix, calling the convolution simply ‘the 
integral on the right’. In 1958 Blackman and Tukey [19] use the word convolution 
freely, although they mention several other possible names as well. 

The impulse response, known in other fields as the Green’s function, was first 
published by Green in 1828 [86]. 

Amazingly, the Wiener-Hopf equations were originally derived in the early 1930s 
to solve a problem involving radiation equilibrium in stars [281]. While working on 
defense-related problems during World War II, Wiener discovered that these same 
equations were useful for prediction and filtering. Several years before Eberhard 
Hopf had returned to Nazi Germany in order to accept a professorship at Leipzig 
that had been vacated by a cousin of Wiener’s who had fled Germany after the 
rise of Hitler ([280]). Despite this turn of events Wiener always referred to the 
‘Hopf-Wiener’ equations. 

The great Cambridge statistician George Udny Yule formulated the Yule-Walker 
equations for signals containing one or two sinusoidal components in the late 1920s 
in an attempt to explain the periodicity of sunspot numbers [289]. A few years later 
Sir Gilbert Walker expanded on this work [267], discovering that the autocorrela- 
tions were much smoother than the noisy signal itself, and applying this technique 
to a meteorological problem. 

Otto Toeplitz was one of the founders of operator theory, as well as a great 
teacher and historian of math [21, 141. In operator theory he was one of Hilbert’s 
principle students, emphasizing matrix methods and considering Banach’s methods 
too abstract. In teaching he was a disciple of Felix Klein (who considered group 
theory too abstract). In Bonn he would lecture to packed audiences of over 200 
students, and was said to recognize each student’s handwriting and writing style. He 
indirectly influenced the development of Quantum Mechanics by teaching his friend 
Max Born matrix methods; Born later recognized that these were the mathematical 
basis of Heisenberg’s theory. Toeplitz was dismissed from his university position on 
racial grounds after the Niirnberg laws of 1935, but stayed on in Germany until 
1939 representing the Jewish community and helping minority students emigrate. 
He finally left Germany in 1939, traveling to Jerusalem where he assumed the post 
of scientific advisor to the Hebrew University, a position he held less than a year 
until his death in 1940. 
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Filters 

In everyday parlance a ‘filter’ is a device that removes some component 
from whatever is passed through it. A drinking-water filter removes salts 
and bacteria; a coffee filter removes coffee grinds; an air filter removes pol- 
lutants and dust. In electronics the word ‘filter’ evokes thoughts of a system 
that removes components of the input signal based on frequency. A notch 
filter may be employed to remove a narrow-band tone from a received trans- 
mission; a noise filter may remove high-frequency hiss or low-frequency hum 
from recordings; antialiasing filters are needed to remove frequencies above 
Nyquist before A/D conversion. 

Less prevalent in everyday usage is the concept of a filter that empha- 
sizes components rather than removing them. Colored light is created by 
placing a filter over a white light source; one filters flour retaining the finely 
ground meal; entrance exams filter to find the best applicants. The electronic 
equivalent is more common. Radar filters capture the desired echo signals; 
deblurring filters are used to bring out unrecognizable details in images; 
narrow-band audio filters lift Morse code signals above the interference. 

In signal processing usage a filter is any system whose output spectrum 
is derived from the input’s spectrum via multiplication by a time-invariant 
weighting function. This function may be zero in some range of frequencies 
and as a result remove these frequencies; or it may be large in certain spectral 
regions, consequently emphasizing these components. Or it may half the 
energy of some components while doubling others, or perform any other 
arbitrary characteristic. 

However, just as a chemical filter cannot create gold from lead, a signal 
processing filter cannot create frequency components that did not exist in 
the input signal. Although definitely a limitation, this should not lead one to 
conclude that filters are uninteresting and their output trivial manipulation 
of the input. To do so would be tantamount to concluding that sculptors 
are not creative because the sculpture preexisted in the stone and they only 
removed extraneous material. 
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In this chapter we will learn how filters are specified in both frequency 
and time domains. We will learn about fundamental limitations that make 
the job of designing a filter to meet specifications difficult, but will not cover 
the theory and implementation of filter design in great detail. Whole books 
are devoted to this subject and excellent software is readily available that 
automates the filter design task. We will only attempt to provide insight 
into the basic principles of the theory so that the reader may easily use any 
of the available programs. 

7.1 Filter Specification 

Given an input signal, different filters will produce different output signals. 
Although there are an infinite number of different filters, not every output 
signal can be produced from a given input signal by a filter. The restrictions 
arise from the definition of a filter as a linear time-invariant operator. Filters 
never produce frequency components that did not exist in the input signal, 
they merely attenuate or accentuate the frequency components that exist in 
the input signal. 

Low-pass filters are filters that pass DC and low frequencies, but block or 
strongly attenuate high frequencies. High-pass filters pass high frequencies 
but block or strongly attenuate low frequencies and DC. Band-pass filters 
block both low and high frequencies, passing only frequencies in some ‘pass- 
band’ range. Band-stop filters do the opposite, passing everything not in a 
defined ‘stop-band’. Notch filters are extreme examples of band-stop filters, 
they pass all frequencies with the exception of one well defined frequency 
(and its immediate vicinity). All-pass filters have the same gain magnitude 
for all frequencies but need not be the identity system since phases may still 
be altered. 

The above definitions as stated are valid for analog filters. In order to 
adapt them for DSP we need to specify that only frequencies between zero 
and half the sampling rate are to be considered. Thus a digital system that 
blocks low frequencies and passes frequencies from quarter to half the sam- 
pling frequency is a high-pass filter. 

An ideal filter is one for which every frequency is either in its pass- 
band or stop-band, and has unity gain in its pass-band and zero gain in 
its stop-band. Unfortunately, ideal filters are unrealizable; we can’t buy one 
or even write a DSP routine that implements one. The problem is caused 
by the sharp jump discontinuities at transitions in the frequency domain 
that cannot be precisely implemented without peeking infinitely into the 
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Figure 7.1: Frequency response of ideal and nonideal filters. In (A) we see the low-pass 
filters, in (B) the high-pass filters, in (C) the band-pass filters and in (D) the band-stop 
(notch) filters. 

future. On the left side of Figure 7.1 we show the frequency response of 
ideal filters, while the right side depicts more realistic approximations to 
the ideal response. Realistic filters will always have a finite transition region 
between pass-bands and stop-bands, and often exhibit ripple in some or all 
of these areas. When designing a filter for a particular application one has 
to specify what amount of ripple and how much transition width can be 
tolerated. There are many techniques for building both analog and digital 
filters to specification, but all depend on the same basic principles. 

Not all filters are low-pass, high-pass, band-pass, or band-stop, any fre- 
quency dependent gain is admissible. The gain of a pre-emphasis filter in- 
creases monotonically with frequency, while that of a de-emphasis filter de- 
creases monotonically. Such filters are often needed to compensate for or 
eliminate the effects of various other signal processing systems. 

Filtering in the analog world depends on the existence of components 
whose impedance is dependent on frequency, usually capacitors and induc- 
tors. A capacitor looks like an open circuit to DC but its impedance de- 
creases with increasing frequency. Thus a series-connected capacitor effec- 
tively blocks DC current but passes high frequencies, and is thus a low-pass 
filter. A parallel-connected capacitor short circuits high frequencies but not 
DC or low frequencies and is thus a high-pass filter. The converse can be 
said about series- and parallel-connected inductors. 

Filtering in DSP depends on mathematical operations that remove or 
emphasize different frequencies. Averaging adjacent signal values passes DC 
and low frequencies while canceling out high frequencies. Thus averaging 
behaves as a low-pass filter. Adding differences of adjacent values cancels 
out DC and low frequencies but will pass signals with rapidly changing 

signs. Thus such operations are essentially high-pass filters. 
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One obvious way to filter a digital signal is to ‘window’ it in the fre- 
quency domain. This requires transforming the input signal to the frequency 
domain, multiplying it there by the desired frequency response (called a ‘win- 
dow function’), and then transforming back to the time domain. In practice 
the transformations can be carried out by the FFT algorithm in O(N log N) 
time (N being the number of signal points), while the multiplication only 
requires O(N) operations; hence this method is 0( N log N) in complexity. 
This method as stated is only suitable when the entire signal is available in a 
single, sufficiently short vector. When there are too many points for a single 
DFT computation, or when we need to begin processing the signal before it 
has completely arrived, we may perform this process on successive blocks of 
the signal. How the individually filtered blocks are recombined into a single 
signal will be discussed in Section 15.2. 

The frequency domain windowing method is indeed a straightforward 
and efficient method of digital filtering, but not a panacea. The most sig- 
nificant drawback is that it is not well suited to real-time processing, where 
we are given a single input sample, and are expected to return an output 
sample. Not that it is impossible to use frequency domain windowing for 
real-time filtering. It may be possible to keep up with real-time constraints, 
but a processing delay must be introduced. This delay consists of the time it 
takes to fill the buffer (the buffer delay) plus the time it takes to perform the 
FFT, multiplication, and iFFT (the computation delay). When this delay 
cannot be tolerated there is no alternative to time domain filtering. 

EXERCISES 

7.1.1 Classify the following filters as low-pass, high-pass, band-pass, or notch. 
1. Human visual system, which has a persistence of $ of a second 
2. Human hearing, which cannot hear under 30 Hz or above 25KHz 
3. Line noise filter used to remove 50 or 60 Hz AC hum 
4. Soda bottle amplifying a specific frequency when air is blown above it 
5. Telephone line, which rejects below 200 Hz and above 3800 Hz 

7.1.2 Design an MA filter, with an even number of coefficients N, that passes a 
DC signal (a, a, a,. . .) unchanged but completely kills a maximal frequency 
signal (a, -a, a, -a,. . .). For example, for N = 2 you must find two numbers 
gr and g2 such that gia + g2a = a but gas + 92(-u) = 0. Write equations 
that the gi must obey for arbitrary N. Can you find a solution for odd N? 

7.1.3 Design a moving average digital filter, with an even number of coefficients N, 
that passes a maximal frequency signal unchanged but completely kills DC. 
What equations must the gi obey now? What about odd N? 
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7.1.4 The squared frequency response of the ideal low-pass filter is unity below the 
cutoff frequency and zero above. 

What is the full frequency response assuming a delay of N samples? 

7.1.5 Show that the ideal low-pass filter is not realizable. To do this start with the 
frequency response of the previous exercise and find the impulse response 
using the result from Section 6.12 that the impulse response is the FT of the 
frequency response. Show that the impulse response exists for negative times 
(i.e., before the impulse is applied), and that no amount of delay will make 
the system causal. 

7.1.6 Show that results similar to that of the previous exercise hold for other ideal 
filter types. (Hint: Find a connection between the impulse response of ideal 
band-pass or band-stop filters and that of ideal low-pass filters.) 

7.1.7 The Paley-Wiener theorem states that if the impulse response h, of a filter 
has a finite square sum then the filter is causal if and only if J 1 In [H(w) 1 dw is 
finite. Use this theorem to prove that ideal low-pass filters are not realizable. 

7.1.8 Prove the converse to the above, namely that any signal that is nonzero 
some time can’t be band-limited. 

over 

7.2 Phase and Group Delay 

The previous section concentrated on the specification of the magnitude of 
the frequency response, completely neglecting its angle. For many applica- 
tions power spectrum specification is sufficient, but sometimes the spectral 
phase can be important, or even critical. A signal’s phase can be used for 
carrying information, and passing such a phase-modulated signal through 
a filter that distorts phase may cause this information to be lost. There 
are even many uses for all-pass filters, filters that have unity gain for all 
frequencies but varying spectral phase! 

Let’s return to fundamentals. The frequency response H(w) is defined 

by the relation 

which means that 

Y(u) = H(w)X(w) 

LY(w) = LX(w) + m(w) 
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or in words, the input spectral magnitude at each frequency is multiplied by 
the frequency response gain there, while the spectral phase is delayed by the 
angle of the frequency response at each frequency. If the spectral phase is 
unchanged by the filter, we say that the filter introduces no phase distortion; 
but this is a needlessly harsh requirement. 

For example, consider the simple delay yn = znern. This FIR filter is all- 
pass (i.e., the absolute value of its frequency response is a constant unity), 
but delaying sinusoids effectively changes their phases. By how much is the 
phase delayed? The sinusoid z,Asin(wn) becomes 

Yn = Xn-m = Asin 
( 
w(n - 

mO 
= A sin(wn - wm) 

so the phase delay is wm, which is frequency-dependent. When the signal 
being delayed is composed of many sinusoids, each has a phase delay pro- 
portional to its frequency, so the simple delay causes a spectral phase shift 
proportional to frequency, a characteristic known as linear phase. 

Some time delay is often unavoidable; the noncausal FIR filter y = h * x 
with coefficients 

h-L, h-L+l, . . . h-1, ho, hl, . . . hL-1, hL 

introduces no time delay since the output yn corresponds to the present 
input xn. If we require this same filter to be causal, we cannot output yn 
until the input XL is observed, and so a time delay of L, half the filter length, 
is introduced. 

90 = h-L, gl = h-L+,, gL = ho, . . . g2L = h, 

This type of delay is called bufler delay since it results from buffering the 
inputs. 

It is not difficult to show that if the impulse response is symmetric (or 
antisymmetric) then the linear phase shift resulting from buffer delay is the 
only phase distortion. Applying the symmetric noncausal FIR filter with an 
odd number of coefficients 

hL, h,-,, . . . hl,ho,hl,. . . hl;-l,hr, 

to a complex exponential eiwn we get 

+L L 

Yn = c 
h,,, ,idn-m) = hoeiwn + 2eiwn c hi,1 cos(mw) 

m=-L m=l 
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so that the frequency response is real and thus has zero phase delay. 

L 

We can force this filter to be causal by shifting it by L 

g,,=hL, gl=hL.vl, . . . gL=ho, . . . gzL=hL 

and the symmetry is now somewhat hidden. 

90 = 92L, 91 = Q2L-1, . . + gm  = Q2L-m 

Once again applying the filter to a complex exponential leads to 

Yn = 5 gmeW-4 
L-l 

= 9s i4n-L) + 2eiQne-iuL C gm cos(mw) 

so that the frequency response is 

H(w) = 
( 

gr, + 2 ‘2 gm COS(WW) 

) 

esiwL = (H(u)le-iWL 

m=O 

(the important step is isolating the imaginary portion) and the filter is seen 
to be linear-phase, with phase shift corresponding to a time delay of L. 

The converse is true as well, namely all linear-phase filters have impulse 
responses that are either symmetric or antisymmetric. We can immediately 
conclude that causal IIR filters cannot be linear-phase, since if the impulse 
response continues to the end of time, and must be symmetric, then it must 
have started at the beginning of time. This rules out the filter being causal. 

From now on we will not consider a linear phase delay (constant time 
delay) to be phase ‘distortion’. True phase distortion corresponds to nonlin- 
earities in the phase as a function of frequency. To test for deviation from 
linearity it is useful to look at the first derivative, since linear phase response 
will have a constant derivative, and deviations from linearity will show up as 
deviations from a constant value. It is customary to define the group delay 

T(W) = -$LH(w) (7 1) . 

where the phase must be unwrapped (i.e., the artificial discontinuities of 27r 
removed) before differentiation. What is the difference between phase delay 
and group delay? 
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Figure 7.2: The difference between phase delay and group delay. In (A) we see the input 
signal, consisting of the sum of two sinusoids of nearly the same frequency. (B) depicts 
the output of a filter with unity gain, phase delay of vr, and zero group delay, while the 
graph in (C) is the output of a filter with unity gain, no phase delay, but nonzero group 
delay. Note that the local phase in (C) is the same as that of the input, but the position 
of the beat amplitude peak has shifted. 

In Figure 7.2 we see the effect of passing a signal consisting of the sum of 
two sinusoids of nearly the same frequency through two filters. Both filters 
have unity gain in the spectral area of interest, but the first has maximal 
phase delay and zero derivative (group delay) there. The second filter has 
zero phase delay but a group delay of one-half the beat period. Both filters 
distort phase, but the phase distortions are different at the frequency of the 
input signal. 

EXERCISES 

7.2.1 Show that an antisymmetric FIR filter (h, = -Ln) has zero phase and 
when made causal has linear phase. 

7.2.2 Prove that all linear-phase filters have impulse responses that are either sym- 
metric or antisymmetric. 

7.2.3 Assume that two filters have phase delay as a function of frequency @i(w) 
and @Q(W). What is the phase delay of the two filters in series? What about 
the group delay? 

7.2.4 In a non-real-time application a nonlinear-phase filter is run from the end of 
the signal buffer toward the beginning. What phase delay is introduced? 
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7.2.5 Stable IIR filters cannot be truly linear-phase. How can the result of the 
previous exercise be used to create a filter with linear phase based on IIR 
filtering? How can this technique be used for real-time linear-phase IIR fil- 
tering with delay? (Hint: Run the filter first from the beginning of the buffer 
to the end, and then back from the end toward the beginning.) 

7.2.6 What is the phase delay of the IIR filter of equation (6.39)? What is the 
group delay? 

7.2.7 Can you think of a use for all-pass filters? 

7.3 Special Filters 

From the previous section you may have received the mistaken impression 
that all filters are used to emphasize some frequencies and attenuate others. 
In DSP we use filters to implement almost every conceivable mathematical 
operation. Sometimes we filter in order to alter the time domain character- 
istics of a signal; for example, the simple delay is an FIR filter, although 
its specification is most natural in the time domain. The DSP method of 
detecting a narrow pulse-like signal that may be overlooked is to build a 
filter that emphasizes the pulse’s particular shape. Conversely, a signal may 
decay too slowly and be in danger of overlapping other signals, in which case 
we can narrow it by filtering. In this section we will learn how to implement 
several mathematical operations, such as differentiation and integration, as 
filters. 

A simple task often required is smoothing, that is, removing extraneous 
noise in order to recover the essential signal values. In the numerical analysis 
approach smoothing is normally carried out by approximating the data by 
some appropriate function (usually a polynomial) and returning the value 
of this function at the point of interest. This strategy works well when the 
chosen function is smooth and the number of free parameters limited so that 
the approximation is not able to follow all the fluctuations of the observed 
data. Polynomials are natural in most numeric analysis contexts since they 
are related to the Taylor expansion of the function in the region of interest. 
Polynomials are not as relevant to DSP work since they have no simple 
frequency domain explanation. The pertinent functional form is of course 
the sum of sinusoids in the Fourier expansion, and limiting the possible 
oscillation of the function is equivalent to requiring these sinusoids to be of 
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low frequency. Hence the task of smoothing is carried out in DSP by low- 
pass filtering. The new interpretation of smoothing is that of blocking the 
high-frequency noise while passing the signal’s energy. 

The numerical analysis and DSP approaches are not truly incompatible. 
For the usual case of evenly sampled data, polynomial smoothing can be 
implemented as a filter, as was shown for the special case of a five-point 
parabola in exercise 6.6.5. For that case the smoothed value at time n was 
found to be the linear combination of the five surrounding input values, 

Yn = 612Xn-2 + alx n-l + aoxn + al%+1 + a2%+2 

which is precisely a symmetric MA filter. Let’s consider the more general 
case of optimally approximating 2L + 1 input points xn for n = 4. . . + L 
by a parabola in discrete time. 

Yn = a2n2 + aln + a0 

For notational simplicity we will only consider retrieving the smoothed value 
for n = 0, all other times simply requiring shifting the time axis. 

The essence of the numerical analysis approach is to find the coefficients 
a2, al, and a0 that make yn as close as possible to the 2L + 1 given xn 

( 72 = --A.. +L). Th is is done by requiring the squared error 

+L +L 
E= C( Yn - Xn)2 = C ( a2n2 + a172 + a0 - 2n)2 

n=-L n=-L 

to be minimal. Differentiating with respect to a, b, and c and setting equal 
to zero brings us to three equations, known as the normal equations 

B00a0 + B0m + B02a2 = CO 

&0a0 + &la1 + &2a2 = Cl (7 2) . 

B20a0 + B2m + B22a2 = C2 

where we have defined two shorthand notations. 

+L 
Bij = C ,i+.i and 

n=- L 72=-L 

The B coefficients are universal, i.e., do not depend on the input xn, 
and can be precalculated given L. It is obvious that if the data are evenly 
distributed around zero (n = -L, -L + 1,. . . - 1,0, +l, . . . L - 1, L) then 
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Bij = 0 when i + j is odd, and the other required values can be looked up 
in a good mathematical handbook. 

Boo = c,‘=“-, 1 = 2L + 1 z x3() 

B02 = B2o = B11 = c,‘=“-,n2 = m + l)W + 1) = B2 
3 - 

B22 = C,‘=“-, n4 = 
L(L +1)(2L+ 1)(3L2 + 3L - 1) ~ a 

15 
4 

The three C values are simple to compute given the inputs. 

+L 
Cl = c n% n=- L 

+L 

c2 = c n2Xn 

n=-L 

In matrix notation the normal equations are now 

(7 3) . 

and can be readily solved by inverting the matrix 

(z)=(z 4 7-)( ;) (7.4) 

and the precise expressions for the D elements are also universal and can be 
found by straightforward algebra. 

vo = y- 

v1 = 
1 

ig 

a2 
D2 = -2 

D 
x3oB2 

v3 = 7 
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Now that we have found the coefficients ao, al, and a2, we can finally 
find the desired smoothed value at n = 0 

+L 

YO = a2 = V&O + D&2 = c (Do + Dzn2)3h 

n=-L 

which is seen to be a symmetric MA filter. So the numerical analysis ap- 
proach of smoothing by parabolic approximation is equivalent to a particular 
symmetric MA filter, which has only a single adjustable parameter, L. 

Another common task is the differentiation of a signal, 

Y@> = 
d 

,,m (7 5) . 

a common use being the computation of the instantaneous frequency from 
the phase using equation (4.67). The first approximation to the derivative 
is the finite difference, 

Yn = Xn - h-1 

but for signals sampled at the Nyquist rate or only slightly above the sample 
times are much too far apart for this approximation to be satisfactory. The 
standard numerical analysis approach to differentiation is derived from that 
for smoothing; first one approximates the input by some function, and then 
one returns the value of the derivative of that function. Using the formal- 
ism developed above we can find that in the parabolic approximation, the 
derivative at n = 0 is given by 

n=- L 

which is an antisymmetric MA filter, with coefficients proportional to Inl! 
The antisymmetry is understandable as a generalization of the finite differ- 
ence, but the idea of the remote coefficients being more important than the 
adjacent ones is somewhat hard to embrace. In fact the whole idea of as- 
suming that values of the derivative to be accurate just because we required 
the polynomial to approximate the signal values is completely ridiculous. If 
we do not require the derivative values to be close there is no good reason 
to believe that they will be; quite the contrary, requiring the polynomial 
approximation to be good at sampling instants will cause the polynomial to 
oscillate wildly in between these times, resulting in meaningless derivative 
estimates. 
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Figure 7.3: Frequency and impulse responses of the ideal differentiation filter. 

Differentiation is obviously a linear and time-invariant operation and 
hence it is not surprising that it can be performed by a filter. To understand 
this filter in the frequency domain note that the derivative of s(t) = eiwt 
is iws(t), so that the derivative’s frequency response increases linearly with 
frequency (see Figure 7.3.A) and its phase rotation is a constant 90”. 

H(w) = iw (7 6) . 

This phase rotation is quite expected considering that the derivative of sine 
is cosine, which is precisely such a 90” rotation. The impulse response, given 
by the iFT of the frequency response, 

i 

( 

&t 
( 

1 
> 

e-i7d 
( 

1 
= y.g -7r -- 

it 
in -it--/r--- 

in > 
) 

= 44 sin(7rt) --- 
t 7rt2 

is plotted in Figure 7.3.B. 
We are more interested in digital differentiators than in the analog one 

just derived. When trying to convert the frequency response to the digital 
domain we run into several small snags. First, from the impulse response we 
see that the ideal differentiator is unrealizable. Second, since the frequency 
response is now required to be periodic, it can no longer be strictly linear, 
but instead must be sawtooth with discontinuities. Finally, if the filter has an 
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h(t) 
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Figure 7.4: Frequency and impulse responses of digital differentiation filters with even 
and odd numbers of coefficients. In (A) we see the frequency response of an odd length 
differentiator; note the linearity and discontinuities. (B) is the impulse response for this 
case. In (C) we see the real and imaginary parts of the frequency response of an even 
length differentiator. (D) is its impulse response; note that fewer coefficients are required. 

even number of coefficients it can never reproduce the derivative at precisely 
time t = 0, but only one-half sample before or after. The frequency response 
for a time delay of -i is 

(7 7) . 

which has both real and imaginary parts but is no longer discontinuous. We 
now need to recalculate the impulse response. 

The frequency and impulse responses for the odd and even cases are de- 
picted in Figure 7.4. We see that FIR differentiators with an even number 
of coefficients have no discontinuities in their frequency response, and hence 
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their coefficients vanish quickly. In practical applications we must truncate 
after a finite number of coefficients. For a given amount of computation an 
even-order differentiator has smaller error than an odd-order one. 

After studying the problem of differentiation it will come as no surprise 
that the converse problem of integration 

ye> - J t - X(T) dr 
-co 

(7 8) t 

can be implemented by filtering as well. Integration is needed for the re- 
covery of running phase from instantaneous frequency, and for discovering 
the cumulative effects of slowly varying signals. Integration is also a popular 
function in analog signal processing where capacitors are natural integrators; 
DSP integration is therefore useful for simulating analog circuits. 

The signal processing approach to integration starts by noting that the 
integral of s(t) = eiwt is &s(t), so that the required frequency response is 
inversely proportional to the frequency and has a phase shift of 90”. 

H(w) = J- (7 9) . 
iw 

The standard Riemann sum approximation to the integral 

J 
nT 

x(t) dt = T(xo + x1 + . . . x,-~) 
0 

is easily seen to be an IIR filter 

Yn = yn-1 + TX, (7.10) 

and we’ll take T = 1 from here on. What is the frequency response of 
this filter? If the input is xn = eiwn the output must be yn = H(w)eiwn 
where H(w) is a complex number that contains the gain and phase shift. 
Substituting into the previous equation 

H(w)eiwn = yn = yn-l + xn = H(w)eiw(n-‘) + Iawn 

we find that 

H(w) = 1 -‘,-iw 

lH(w)1* = l 
2(1 - cos(w) 

LH(w) = $(7r+w) 
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IH( 

Figure 7.5: The (squared) frequency response of integrators. The middle curve is that 
of the ideal integrator, the Riemann sum approximation is above it, and the trapezoidal 
approximation below. 

which isn’t quite what we wanted. The phase is only the desired z at DC 
4 and deviates linearly with w. For small w, where cos(w) N 1 - 2w2, the 

gain is very close to the desired 3, but it too diverges at higher frequencies 
(see Figure 7.5). What this means is that this simple numeric integration is 
relatively good when the signal is extremely oversampled, but as we approach 
Nyquist both gain and phase response strongly deviate. 

A slightly more complex numeric integration technique is the trapezoidal 
rule, which takes the average signal value (x,-r + 2,) for the Riemann 
rectangle, rather than the initial or final value. It too can be written as an 
IIR filter. 

Yn = Yn-1 + 4(%-l + %> (7.11) 

Using the same technique we find 

H(W)f2wn = Yn = yn-1 + !j(lXn-1 + 2,) = H(W)t2iw(n-1) + !j(,iw(n-l) + tZiwn) 

which means that 

LH(w) = f 

so that the phase is correct, and the gain (also depicted in Figure 7.5) is 
about the same as before. This is not surprising since previous signal values 
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contribute just as in the Riemann sum, only the first and last values having 
half weight. 

Integrators are always approximated by IIR filters. FIR filters cannot be 
used for true integration from the beginning of all time, since they forget 
everything that happened before their first coefficient. Integration over a 
finite period of time is usually performed by a ‘leaky integrator’ that grad- 
ually forgets, which is most easily implemented by an IIR filter like that of 
equation (6.39). While integration has a singular frequency response at DC, 
the frequency response of leaky integration is finite. 

Our final special filter is the Hilbert transform, which we introduced in 
Section 4.12. There are two slightly different ways of presenting the Hilbert 
transform as a filter. We can consider a real filter that operates on z(t) 
creating y(t) such that z(t) = z(t) + iy(t) is the analytic representation, or 
as a complex filter that directly creates z(t) from x(t). The first form has 
an antisymmetric frequency response 

H(w) = (7.12) 

which means IH( = 1 and its phase is A$. The impulse response for 
delay r is not hard to derive 

2sin2 @(t-T)) 
w = - t 7 (7.13) 

7r - 

except for at t = 0 where it is zero. Of course the ideal Hilbert filter is unre- 
alizable. The frequency response of the second form is obtained by summing 
X(w) with i times the above. 

H(w) = 
2 w>o 
0 WI0 

(7.14) 

The factor of two derives from our desire to retain the original energy after 
removing half of the spectral components. 

The Hilbert transform can be implemented as a filter in a variety of 
ways. We can implement it as a noncausal FIR filter with an odd number of 
coefficients arranged to be antisymmetric around zero. Its impulse response 

w 2 sin2($t) 
=- 

7r t 
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-W 

Figure 7.6: Imaginary portion of the frequency response of a realizable digital Hilbert 
filter with zero delay. The ideal filter would have discontinuities at both DC and half the 
sampling frequency. 

decays slowly due to the frequency response discontinuities at w  = 0 and 
W= 7~ With an even number of coefficients and a delay of r = -i the 
frequency response 

H(w) = -i sgn(w)eBiz 

leads to a simpler-looking expression; 

f&(t) = l 
?r(t + +) 

but simplicity can be deceptive, and for the same amount of computation 
odd order Hilbert filters have less error than even ones. 

The trick in designing a Hilbert filter is bandwidth reduction, that is, re- 
quiring that it perform the 90” phase shift only for the frequencies absolutely 
required. Then the frequency response plotted in Figure 7.6 can be used as 
the design goal, rather than the discontinuous one of equation (7.12). 

EXERCISES 

7.3.1 Generate a signal composed of a small number of sinusoids and approximate 
it in a small interval by a polynomial. Compare the true derivative to the 
polynomial’s derivative. 

7.3.2 What are the frequency responses of the polynomial smoother and differen- 
tiator? How does the filter length affect the frequency response? 

7.3.3 What is the ratio between the Riemann sum integration gain and the gain 
of an ideal integrator? Can you explain this result? 

7.3.4 Show that the odd order Hilbert filter when discretized to integer times has 
all even coefficients zero. 
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7.4 Feedback 

While FIR filters can be implemented in a feedfomvard manner, with the 
input signal flowing through the system in the forward direction, IIR filters 
employ fee&a&. Feedforward systems are simple in principle. An FIR with 
N coefficients is simply a function from its N inputs to a single output; but 
feedback systems are not static functions; they have dynamics that make 
them hard to predict and even unstable. However, we needn’t despair as 
there are properties of feedback systems that can be easily understood. 

In order to better understand the effect of feedback we will consider the 
simplest case, that of a simple amplifier with instantaneous feedback. It is 
helpful to use a graphical representation of DSP systems that will be studied 
in detail in Chapter 12; for now you need only know that in Figure 7.7 an 
arrow with a symbol above it represents a gain, and a circle with a plus sign 
depicts an adder. 

Were it not for the feedback path (i.e., were a = 0) the system would be 
a simple amplifier y = Gz; but with the feedback we have 

y=Gw (7.15) 

where the intermediate signal is the sum of the input and the feedback. 

W =x+ay (7.16) 

Substituting 
y=G(x+ay) =Gx+aGy 

and solving for the output 

G 
Y =gx (7.17) 

we see that the overall system is an amplifier like before, only the gain has 
been enhanced by a denominator. This gain obtained by closing the feedback 

Figure 7.7: The DSP diagram of an amplifier with instantaneous feedback. As will be 
explained in detail in Chapter 12, an arrow with a symbol above it represents a gain, a 
symbol above a filled circle names a signal, and a circle with a plus sign depicts an adder. 
The feedforward amplifier’s gain is G while the feedback path has gain (or attenuation) a. 
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Figure 7.8: An amplifier with delayed feedback. As will be explained in detail in Chap- 
ter 12, a circle with zWN stands for a delay of N time units. Here the feedforward amplifier’s 
gain is G while the feedback path has delay of N time units and gain (or attenuation) a. 

loop is called the closed loop gain. When a is increased above zero the closed 
loop gain increases. 

What if a takes precisely the value a = $? Then the closed loop gain 
explodes! We see that even this simplest of examples produces an instability 
or ‘pole’. Physically this means that the system can maintain a finite output 
even with zero input. This behavior is quite unlike a normal amplifier; ac- 
tually our system has become an oscillator rather than an amplifier. What 
if we subtract the feedback from the input rather than adding it? Then for 
a= $ the output is exactly zero. 

The next step in understanding feedback is to add some delay to the 
feedback path, as depicted in Figure 7.8. Now 

Yn = Gwn 

with 

Wn = Xn + a&-N 

where N is the delay time. Combining 

Yn = G(xn + aYn-zv) = Gxn + aGYn-N (7.18) 

and we see that for constant signals nothing has changed. What happens to 
time-varying signals? A periodic signal xn that goes through a whole cycle, 
or any integer number of whole cycles, during the delay time will cause 
the feedback to precisely track the input. In this case the amplification will 
be exactly like that of a constant signal. However, consider a sinusoid that 
goes through a half cycle (or any odd multiple of half cycles) during the 
delay time. Then yn-N will be of opposite sign to yn and the feedback will 
destructively combine with the input; for aG = 1 the output will be zero! 
The same is true for a periodic signal that goes through a full cycle (or 
any multiple) during the delay time, with negative feedback (i.e., when the 
feedback term is subtracted from rather than added to the input). 

Wn = Xn - a&-N (7.19) 
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So feedback with delay causes some signals to be emphasized and others 
to be attenuated, in other words, feedback can fdter. When the feedback 
produces a pole, that pole corresponds to some frequency, and only that 
frequency will build up without limit. When a ‘zero’ is evoked, no matter 
how much energy we input at the particular frequency that is blocked, no 
output will result. Of course nearby frequencies are also affected. Near a 
pole sinusoids experience very large but finite gains, while sinusoids close to 
a zero are attenuated but not eliminated. 

With unity gain negative feedback it is possible to completely block a 
sinusoid; can this be done with aG # l? For definiteness let’s take G = 
1,a = i. Starting at the peak of the sinusoid zo = 1 the feedback term to be 
subtracted a cycle later is only ay,-~ = i. Subtracting this leads to w = f , 
which a cycle later leads to the subtraction of only a?.&+N = f . In the steady 
state the gain settles down to i, the prediction of equation (7.17) with a 
taken to be negative. So nonunity gain in the negative feedback path causes 
the sinusoid to be attenuated, but not notched out. You may easily convince 
yourself that the gain can only be zero if aG = 1. Similarly nonunity gain 
in a positive feedback path causes the sinusoid to be amplified, but not by 
an infinite amount. 

So a sinusoid cannot be completed blocked by a system with a delayed 
negative feedback path and nonunity feedback gain, but is there a nonsinu- 
soidal signal that is completely notched out? The only way to compensate 
for nonunity gain in the feedback term to be subtracted is by having the sig- 
nal vary in the same way. Hence for aG > 1 we need a signal that increases 
by a factor of aG after the delay time N, i.e., 

sn = e 

while for aG < 1 the signal needs to decrease in the same fashion. This 
is a general result; when the feedback gain is not unity the signals that 
are optimally amplified or notched are exponentially growing or damped 
sinusoids. 

Continuing our argument it is easy to predict that if there are several de- 
layed feedback paths in parallel then there will be several frequency regions 
that are amplified or attenuated. We may even put filters in the feedback 
path, allowing feedback at certain frequencies and blocking it at others. In- 
deed this is the way filters are designed in analog signal processing; feedback 
paths of various gains and phases are combined until the desired effect is 
approximated. 
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Figure 7.9: The general feedback amplifier. The boxes represent general filters, with 
transfer functions as marked. The amplifier’s transfer function is H while that of the 
feedback path is F. 

In the most general setting, consider a digital system with transfer func- 
tion H(z-l) to which we add a feedback loop with transfer function F(z-l), 
as depicted in Figure 7.9. The closed loop transfer function is given by 

H(z-l) 
H’(z-l) = 1 _ J’(z-l)H(z-l) (7.20) 

which has a pole whenever the denominator becomes zero (i.e., for those z 
for which F(z-l) H (z-1> = 1). The value of z determines the frequency of 
the oscillation. 

EXERCISES 

7.4.1 When the microphone of an amplification system is pointed toward the 
speaker a squealing noise results. What determines the frequency of the 
squeal? Test your answer. What waveform would you expect? 

7.4.2 A feedback pole causes an oscillation with frequency determined by the delay 
time. This oscillation is sustained even without any input. The system is 
linear and time-invariant, and so is a filter; as a filter it cannot create energy 
at a frequency where there was no energy in the input. Resolve this paradox. 

7.4.3 What is the effect of a delayed feedback path with unity gain on a sinusoid of 
frequency close, but not equal, to the instability? Plot the gain as a function 
of frequency (the frequency response). 

7.4.4 Find a signal that destabilizes a system with a delayed positive feedback path 
and nonunity feedback gain. 

7.4.5 Show that for G = ’ ?, a = 1 a sinusoid of frequency corresponding to the 
delay is amplified by the gain predicted by equation (7.17). 



7.5. THE ARMA TRANSFER FUNCTION 293 

7.4.6 What is the effect of a delayed feedback path with nonunity gain G on a 
sinusoid of frequency corresponding to the delay? Plot the effective gain as a 
function of G. 

7.4.7 Simulate a system that has a causal MA filter in the feedback path. Start 
with a low-pass filter, then a high-pass, and finally a band-pass. Plot the 
frequency response. 

7.5 The ARMA Transfer Function 

In Section 6.14 we defined the transfer function of a filter. The transfer 
function obeys 

Y(z) = H(z)X(z) 

where X(z) is the zT of the input to the filter and Y(z) is the zT of the 
output. Let’s find the transfer function of an ARMA filter, The easiest way 
to accomplish this is to take the z transform of both sides of the general 
ARMA filter in the symmetric form (equation (6.46)) 

M L 

cp mYn-m = c QlXn-1 

m=O l=O 

the zT of the left side being 

00 M 

= (c 
Pmyn-m Zen = 5 &, E 

1 
Yn--mX -n = 

n=-ca m=O m=O n=-00 

M 00 

cp mZarn C yviZev = 
m=O u=--00 

{ ~04,z~m} y(z) 

and similarly that of the right side. 

l=O u=--00 

Putting these together 

/M 

! cp mZAm 
m=O ) 

Y(z) = 
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and comparing with equation (6.65) we find that the transfer function is the 
ratio of two polynomials in 2-l. 

(7.21) 

This can be also expressed in terms of the coefficients in equation (6.45) 

-1 

H(z) = = - iL_0 w  
1 - C,M,i b,x-m 

(7.22) 

a form that enables one to build the transfer function ‘by inspection’ from 
the usual type of difference equation. 

For an AR filter L = 0 and neglecting an uninteresting gain (i.e., taking 
a0 = 1) 

H(z) = 
1 

1 - C,M,r bmxBrn 
(7.23) 

while for an MA filter all the bm are zero and the transfer function is a 
polynomial. 

H(z) = ea& (7.24) 
l=O 

It is often burdensome to have to deal with polynomials in z-l, so we 
express the transfer function in terms of .Z instead. 

L-l 
H(z) = x M-L c,“=, al2 

C,M,o PrnzMsrn 
(7.25) 

We see that H(z) is a rational function of 2. 
The fact that the transfer function H(z) of the general ARMA filter is 

a rational function, has interesting and important ramifications. The funda- 
mental theorem of algebra tells us that any polynomial of degree M can be 
completely factored over the complex numbers 

D 

c CiXi = G fi(x - Ci) 
i=o i=l 

where the D roots <i are in general complex numbers. When the coefficients 
ci are real, the sum itself is always real, and so the roots must either be 
real, or appear in complex conjugate pairs. Thus we can rewrite the transfer 
function of the general ARMA filter as 

(7.26) 
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where the roots of the numerator <i are called ‘zeros’ of the transfer function, 
and the roots of the denominator 7rr, its ‘poles’. So other than an simple 
overall gain G, we need only specify the zeros and poles to completely de- 
termine the transfer function; no further information is needed. 

From equations 7.23 and 7.24 we see that the transfer function of the 
MA filter has zeros but no poles while that of the AR filter has poles but no 
zeros. Hence the MA filter is also called an all-zero filter and the AR filter 
is called an all-pole filter. 

What is the meaning of these zeros and poles? A zero of the transfer 
function is a complex number c = reiw that represents a complex (possibly 
decaying or increasing) exponential signal that is attenuated by the ARMA 
filter. Poles 7r represent complex exponential signals that are amplified by 
the filter. If a zero or pole is on the unit circle, it represents a sinusoid that 
is either completely blocked by the filter or destabilizes it. 

Since the positions in the complex plane of the zeros and poles provide a 
complete description of the transfer function of the general ARMA system, 
it is conventional to graphically depict them using a pole-zero plot. In such 
plots the position of a zero is shown by a small filled circle and a pole is 
marked with an X. Poles or zeros at x = 0 or x = co that derive from the 
xMdL factor in equation (7.25) are not depicted, but multiple poles and/or 
zeros at the same position are. This single diagram captures everything one 
needs to know about a filter, except for the overall gain. 

A few examples are in order. First consider the causal equally weighted 
L+ l-point average MA filter (since we intend to discard the gain we needn’t 
normalize the sum). 

L 

Yn = c G-1 
I=0 

By inspection the transfer function is 

1 _ x-1-L-’ 

H(z) = + = 1 _ z-l $ z”:l, l =- 

z=o 

and we seem to see L poles at the origin, the L+ 1 zeros of xLfl - 1 and a pole 

at x = 1. The zeros are the L + 1 roots of unity, z = e i2x*, one of which 
is x = 1 itself; hence that zero cancels the putative pole at z = 1. The L 
poles at the origin are meaningless and may be ignored. We are therefore left 
with L zeros equally spaced around the unit circle (not including x = l), as 
displayed in Figure 7.10.A. It is not difficult to verify that the corresponding 
sinusoids are indeed blocked by the averaging MA filter. 
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Figure 7.10: The pole-zero plots of two simple systems. In (A) we see the pole-zero plot 
for the MA filter that averages with equal weights eight consecutive input values. In (B) 
is the simple AR low-pass filter y,, = (1 - p)sn + fly,+ 1. 

Our second example is our favorite AR filter of equation (6.39). 

Yn = Cl- p>Gz + PYn-1 o<p<1 

By inspection we can write 

H(z) (1 -PI 1-P 
= 1 - pz-1 = zz-p 

which has a trivial zero at the origin and a single pole at p, as depicted in 
Figure 7.10.B. 

As our last 
ARMA system 

This is a useful 

example we choose a general first-order section, that is, an 
with a single zero and a single pole. 

Yn = aoxn + alxn-1 + blyn-1 

system since by factorization of the polynomials in both the 
numerator and denominator of the transfer function we can break down any 
ARMA filter into a sequence of first-order sections in cascade. By inspection 
the transfer function 

a0 + alz-l 
H(z) = 1 b + = aoT 

- 1 z- 

has its zero at z = -2 and its pole at z = bl. To find the frequency response 

we substitute x = elw 

H(w)= a0 + ale+ 

1 - bleviw 
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which at DC is e and at Nyquist w  = 7r is w. To find the impulse 
response we need the inverse zT, which generally is difficult to calculate. 
Here it can be carried out using a trick 

H(z) = a0 
(z - h) + (2 + h) 

z- h 

’ + 1 -b z-L’ 
(2 + h)z 

1 

and the desired result is obtained. 

h, = a0 n=O 

(a+ aoh)b, ~4 n#O 

EXERCISES 

7.5.1 Sometimes it is useful to write difference equations as yn = Gx, +C ulxn-l + 
C b,y,-, where G is called the gain. Write the transfer function in rational- 
function- and factored-form for this case. 

7.5.2 Derive equation (7.21) more simply than in the text by using the time shift 
relation for the zT. 

7.5.3 Consider the system with a single real pole or zero. What signal is maximally 
amplified or attenuated? Repeat for a complex pole or zero. 

7.5.4 Calculate the transfer function H(z) for the noncausal MA system of equa- 
tion (6.35). Relate this to the transfer function of the causal version and to 
the frequency response (equation (6.36)) previously calculated. 

7.5.5 Show that stable ARMA filters have all their poles inside the unit circle. 

7.5.6 Prove that real all-pass filters 
locations. 

have poles and zeros in conjugate reciprocal 

7.5.7 Show that the first-order section is stable when Ibi) < 1 both by considering 
the pole and by checking the impulse response. 

7.5.8 Plot the absolute value of the frequency response of the first-order section 
for frequencies between DC and Nyquist. When is the filter low-pass (passes 
low frequencies better than highs)? 

7.5.9 If the maximum input absolute value is 1, what is the maximal output abso- 
lute value for the first-order section? If the input is white noise of variance 
1, what is the variance of the output of the first-order section? 
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7.5.10 In general, when breaking down ARMA systems into first-order sections the 
zeros and poles may be complex. In such cases we most often use real-valued 
second-order sections instead. 

W) = 
a0 + alz-l + a2zm2 

1 _ b-l 
1 - b2r2 

What is the frequency 
conjugate poles? 

response for the second-order section with complex 

7.6 Pole-Zero Plots 

The main lesson from the previous section was that the positions of the 
zeros and poles of the transfer function determine an ARMA filter to within 
a multiplicative gain. The graphical depiction of these positions such as 
in Figure 7.10 is called a pole-zero plot. Representing filters by pole-zero 
plots is analogous to depicting signals by the z-plane plots introduced in 
Section 4.10. Indeed there is a unique correspondence between the two since 
z-plane plots contain a complete frequency domain description of signals, 
and filters are specified by their effect in the frequency domain. 

The pole-zero plot completely specifies an ARMA filter except for the 
overall gain. At first sight it may seem strange that the positions of the 
zeros and poles are enough to completely specify the transfer function of an 
ARMA filter. Why can’t there be two transfer functions that have the same 
zeros and poles but are different somewhere far from these points? The fact 
is that were we to allow arbitrary systems then there could indeed be two 
different systems that share zeros and poles; but the transfer function of 
an ARMA filter is constrained to be a rational function and the family of 
rational functions does not have that much freedom. For instance, suppose 
we are given the position of the zeros of an MA filter, <I, 52 . . . CL. Since the 
transfer function is a polynomial, is must be 

since any other polynomial will have different zeros. 
In addition to being mathematically sufficient, pole-zero plots are graph- 

ically descriptive. The pole-zero plot provides the initiated at a glance ev- 

erything there is to know about the filter. You might say that the pole-zero 
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plot picture is worth a thousand equations. It is therefore worthwhile to 
become proficient in ‘reading’ pole-zero plots. 

We can place restrictions on the poles and zeros before we even start. 
Since we wish real inputs to produce real outputs, we require all the co&i- 
cients of the ARMA filter to be real. Now real-valued rational functions will 
have poles and zeros that are either real valued, or that come in complex 
conjugates. For example, the three zeros 1, 1 + i and 1 - i form the real 
polynomial (x - 1) (z - i) (z + i) = x3 - z2 + z - 1, while were the two complex 
zeros not complex conjugates the resulting polynomial would be complex! 
So the pole-zero plots of ARMA systems with real-valued coefficients are 
always mirror-symmetric around the real axis. 

What is the connection between the pole-zero plots of a system and its 
inverse? Recall from equation (6.17) that when the output of a system is 
input to its inverse system the original signal is recovered. In exercise 6.14.3 
we saw that the transfer function of the concatenation of two systems is the 
product of their respective transfer functions. So the product of the transfer 
functions of a system and its inverse must be unity, and hence the transfer 
functions reciprocals of each other. Hence the pole-zero plot of the inverse 
system is obtained by replacing all poles with zeros and all zeros with poles. 
In particular it is easy now to see that the inverse of an all-zero system is 
all-pole and vice versa. 

In Section 7.4 we saw what it means when a pole or a zero is on the 
unit circle. A zero means that the frequency in question is swallowed up by 
the system, and nearby frequencies are attenuated. A pole means that the 
system is capable of steady state output without input at this frequency, 
and nearby frequencies are strongly amplified. For this reason poles on the 
unit circle are almost always to be avoided at all costs. 

What if a pole or zero is inside the unit circle? Once again Section 7.4 
supplied the answer. The signal that is optimally amplified or blocked is a 
damped sinusoid, exactly the basic signal represented by the pole or zero’s 
position in the z-plane. If the pole or zero is outside the unit circle the signal 
most affected is the growing sinusoid represented by that point. Although 
we don’t want poles on the unit circle, we want them even less outside it. A 
pole corresponding to an exponentially growing sinusoid would mean that 
we have an unstable system that could explode without notice. Thus IIR 
system designers must always ensure that all poles are inside the unit circle. 



300 FILTERS 

The pole-zero plot directly depicts the transfer function, but the fre- 
quency response is also easily inferred. Think of the unit circle as a circular 
railroad track with its height above sea level representing the gain at the 
corresponding frequency. In this analogy poles are steep mountains and ze- 
ros are craters. As the train travels around the track its height increases and 
decreases because of proximity to a mountain or crater. Of course at any 
position there may be several poles and/or craters nearby, and the overall 
height is influenced by each of them according to its distance from the train. 
Now let’s justify this analogy. Substituting x = &’ into equation (7.26) we 
find that the frequency response of an ARMA systems is 

rI~l@~ - c> 
H(w) = Gn~=l(,i~ _ n,) (7.27) 

with magnitude and angle given by the following. 

kl m=l 

The Zth factor in the numerator of the magnitude is the distance between 
the point on the unit circle and the Zth zero, and the mth factor in the 

denominator is the distance to the mth pole. The magnitude is seen to be 
the product of the distances to all the zeros divided by the product to all 
the poles. If one of the zeros or poles is very close it tends to dominate, but 
in general the train’s height is influenced by all the mountains and craters 
according to their distances from it. The Zth term in the numerator of the 
angle is the direction of the vector between the point on the unit circle and 

the lth zero and the mth term in the denominator is the angle to the mth 
pole. Therefore the phase of the frequency response is seen to be the sum 
of the angles to all the zeros minus the sum of the angles to the poles. If 
one of the zeros or poles is very close its angle changes rapidly as the train 
progresses, causing it to dominate the group delay. 

Suppose we design a filter by some technique and find that a pole is 
outside the unit circle. Is there some way to stabilize the system by moving 
it back inside the unit circle, without changing the frequency response? 
The answer is affirmative. Let the pole in question be ~0 = PC?. You can 
convince yourself that the distance from any point on the unit circle to ~0 is 
exactly P2 times the distance to ;~rb = $ele, the point along the same radius 
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but with reciprocal magnitude. Thus to within a gain term (that we have 
been neglecting here) we can replace any pole outside the unit circle with 
its ‘reciprocal conjugate’ 7r&. This operation is known as ‘reflecting a pole’. 
We can also reflect a zero from outside the unit circle inward, or from the 
inside out if we so desire. For real filters we must of course reflect both the 
pole and its complex conjugate. 

Let’s see how the concept of a pole-zero plot enables us to design some 
useful filters. Assume we want a DC blocker, that is, a filter that blocks DC 
but passes AC frequencies. A first attempt might be to simply place a zero 
at DC 

H(z) = x - 1 = z(1 - z-l) =k- Yn = Xn - Xn-1 

discarding the term representing a zero at z = 0; but this filter is simply the 
finite difference, with frequency response 

IH( = II- e-iw(2 = 2(1- cosw) 

not corresponding to a sharp notch. We can sharpen the response by placing 
a pole on the real axis close to, but inside, the unit circle. The reasoning 
behind this tactic is simple. The zero causes the DC frequency response to 
be zero, but as we move away from w  = 0 on the unit circle we immediately 
start feeling the effects of the pole. 

H(z) = 5 = 1’ -$ * Yn = PYn-1 + (Xn - Xn-1) 
- z 

Here p < 1 but the closer ,0 is to unity the sharper the notch will be. There 
is a minor problem regarding the gain of this filter. We would like the gain to 
be unity far away from DC, but of course pole-zero methods cannot control 
the gain. At x = -1 our DC blocker has a gain of 

z- 1 -1-1 1 -z-z 
x- P -1-p 1-g 

where we defined the small positive number QI via ,0 = 1 - Q. We can com- 
pensate for this gain by multiplying the x terms by a factor g = 1 - f. 

Yn = (1 - a) Yn-1 + (1 - ia) (xn - xn-l) 

In addition to a DC blocker we can use the same technique to make a 
notch at any frequency R. We need only put a conjugate pair of zeros on the 
unit circle at angles corresponding to 44 and a pair of poles at the same 
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angles but slightly reduced radius. We can also make a sharp band-pass filter 
by reversing the roles of the zeros and poles. Wider band-pass or band-stop 
filters can be approximated by placing several poles and/or zeros along the 
desired band. Every type of frequency-selective filter you can imagine can 
be designed by careful placement of poles and zeros. 

EXERCISES 

7.6.1 Although practically every filter you meet in practice is ARMA, they are 
not the most general LTI system. Give an example of a linear time-invariant 
system that is not ARMA. 

7.6.2 Make a pole-zero plot for the system 

H(z) = 
(z - 4(x - ;I 
( 2 - ?Yl)(z - 5) 

. 
where CL = em and T 2 1. Sketch the frequency response. What kind of filter 
is this? 

7.6.3 Why did we call XL the reciprocal conjugate? Prove that the distance from 
any point on the unit circle to ~0 is exactly P2 times the distance to the 
reciprocal conjugate 7rb. 

7.6.4 A stable system whose inverse is stable as well is said to be minimum phase. 
What can you say about the pole-zero plot of a minimum phase system? 

7.6.5 Prove that reflecting poles (or zeros) does not change the frequency response. 

7.6.6 What can be said about the poles and zeros of an all-pass filter? What is the 
connection between this question and the previous one? 

7.6.7 A notch filter can be designed by adding the outputs of two all-pass filters 
that have the same phase everywhere except in the vicinity of the frequency 
to be blocked, where they differ by 180”. Design a notch filter of the form 
H(z) = 4 (1 + A( z)) where A(z) is the transfer function of an all-pass filter. 
How can you control the position and width of the notch? 

7.6.8 Consider the DC blocking IIR filter yh = 0.9992(x1, - 21~~1) + 0.9985yk-r. 
Draw its frequency response by inputting pure sinusoids and measuring the 
amplitude of the output. What is its pole-zero plot? 
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7.7 Classical Filter Design 

Classical filter design means analog filter design. Why are we devoting a sec- 
tion in a book on DSP to analog filter design? There are two reasons. First, 
filtering is one of the few select subjects in analog signal processing about 
which every DSP expert should know something. Not only are there always 
analog antialiasing filters and reconstruction filters, but it is often worth- 
while to perform other filtering in the analog domain. Good digital filters 
are notoriously computationally intensive, and in high-bandwidth systems 
there may be no alternative to performing at least some of the filtering using 
analog components. Second, the discipline of analog filter design was already 
well-developed when the more complex field of digital filter design was first 
developing. It strongly influenced much of the terminology and algorithms, 
although its stranglehold was eventually broken. 

IH( 
A 

Figure 7.11: Desired frequency response of the analog low-pass filter to be designed. The 
pass-band is from f = 0 to the pass-band edge fr,, the transition region from fP to fS, and 
the stop-band from the top-band edge fS to infinity. The frequency response is halfway 
between that of the pass-band and that of the stop-band at the cutoff frequency fC. The 
maximal ripple in the pass-band is 6, and in the stop-band 6,. 

We will first focus on the simplest case, that of an analog low-pass filter. 
Our ideal will be the ideal low-pass filter, but that being unobtainable we 
strive toward its best approximation. The most important specification is the 
cutoff frequency fc, below which we wish the signal to be passed, above which 
we wish the signal to be blocked. The pass-band and stop-band are separated 
by a transition region where we do not place stringent requirements on the 
frequency response. The end of the pass-band is called fp and the beginning 
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of the stop-band fS. Other specifications for a practical implementation are 
the transition width A = fS - fP, the maximal deviation from unity gain 
in the pass-band &, and the maximal amplitude in the stop-band 6,. In 
a typical analog filter design problem fc (or fP or fs) and the maximal 
allowed values for A, &, and S, are given. Figure 7.11 depicts the ideal and 
approximate analog low-pass filters with these parameters. 

Designing an analog filter essentially amounts to specifying the function 
H(f) whose square is depicted in the figure. From the figure and our previous 
analysis we see that 

jH(0)12 = 1 

lwf>12 * 1 
lwf>2 x 0 
Wf)12 + 0 

for f < fc 
for f > fc 
for f + 00 

are the requirements for an analog low-pass filter. The first functional forms 
that come to mind are based on arctangents and hyperbolic tangents, but 
these are natural when the constraints are at plus and minus infinity, rather 
than zero and infinity. Classical filter design relies on the form 

IH(f)12 = 1 +IpCf) (7.28) 

where P(f > is a polynomial that must obey 

and be well behaved. The classical design problem is therefore reduced to 
the finding of this polynomial. 

In Figure 7.11 the deviation of the amplitude response from the ideal 
response is due entirely to its smoothly decreasing from unity at f = 0 in 
order to approach zero at high frequencies. One polynomial that obeys the 
constraints and has no extraneous extrema is the simple quadratic 

which when substituted back into equation (7.28) gives the ‘slowest’ filter 
depicted in Figure 7.12. The other filters there are derived from 

P(f) = (;)2” 
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Figure 7.12: Frequency response of analog Butterworth low-pass 
top at low frequencies we have order N = 1,2,3,5,10,25,00. 

filters. From bottom to 
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and are called the Butterworth low-pass filters of order n. It is obvious from 
the figure that the higher n is the narrower the transition. 

Butterworth filters have advantages and disadvantages. The attenuation 
monotonically increases from DC to infinite frequency; in fact the first 2N- 1 
derivatives of IH(f) I2 are identically zero at these two points, a property 
known as ‘maximal flatness’. An analog Butterworth filter has only poles and 
is straightforward to design. However, returning to the design specifications, 
for the transition region A to be small enough the order N usually has to 
be quite high; and there is no way of independently specifying the rest of 
the parameters. 

In order to obtain faster rolloff in the filter skirt we have to give some- 
thing up, and that something is the monotonicity of IH(f)12. A Butterworth 
filter ‘wastes’ a lot of effort in being maximally flat, effort that could be put 
to good use in reducing the size of the transition region. A filter that is al- 
lowed to oscillate up and down a little in either the pass-band, the stop-band 
or both can have appreciably smaller A. Of course we want the deviation 
from our specification to be minimal in some sense. We could require a 
minimal squared error between the specification and the implemented filter 

e2 = 
s 

IfLp&J) - %7&4 I2 dLJ 

but this would still allow large deviation from specification at some frequen- 
cies, at the expense of overexactness at others. It makes more sense to require 
minimax error, i.e., to require that the maximal deviation from specification 
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Figure 7.13: Frequency response of low-pass equiripple designs. In (A) we see an FIR 
filter designed using the Remez algorithm for comparison purposes. In (B) we the IIR 
Chebyshev design, in (C) the inverse Chebyshev and in (D) the elliptical design. 

be minimal. Achieving true minimax approximation is notoriously diffi- 
cult in general, but approximation using Chebyshev polynomials (see Ap- 
pendix A.lO) is almost the same and straightforward to realize. This ap- 
proximation naturally leads to equiripple behavior, where the error oscillates 
around the desired level with equal error amplitude, as shown in Figure 7.13. 

The Chebyshev (also known as Chebyshev I) filter is equiripple in the 
pass-band, but maximally flat in the stop-band. It corresponds to choosing 
the polynomial , . 

and like the Butterworth approximation, the analog Chebyshev filter is all- 
pole. The inverse Chebyshev (or Chebyshev II) filter is equiripple in the 
stop-band but maximally flat in the pass-band. Its polynomial is 

The Chebyshev filter minimax approximates the desired response in the 
pass-band but not in the stop-band, while the inverse Chebyshev does just 
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the opposite. For both types of Chebyshev filters the parameter S sets the 
ripple in the equiripple band. For the inverse Chebyshev, where the equirip- 
ple property holds in the stop-band, the attenuation is determined by the 
ripple; lower ripple means higher stop-band rejection. 

Finally, the elliptical filter is equiripple in both pass-band and stop- 
band, and so approximates the desired response in the minimax sense for all 
frequencies. Its ‘polynomial’ is not a polynomial at all, but rather a rational 
function UN(i). These functions are defined using the elliptical functions 
(see Appendices A.8 and A.lO). Taking the idea from equation (A.59), we 
define the function 

u dw u ( > z snk 
( 
r snq -l u 

( 0 (7.29) 

and when r and the complete elliptical integrals & and Kq obey certain 
relations that we will not go into here, this function becomes a rational 
function. 

(u~-u2)(u~-u2)*..(u~~~I-u2) 
(l-u:212)(1-u~u2)...(1-~~~-~~2) 

N even 
&V(u) = a2 

u(?.+-u”)(?L; -+.(u2 4) (7.30) 

(1-u;u2)(l-u~u2)~.*(l-u;~u2) 
N odd 

This rational function has several related interesting characteristics. For 
u < 1 the function lies between - 1 and +1. Next, 

1 0 1 
UN; =- 

uN (U> 

and its zeros and poles are reciprocals of each other. Choosing all the N zeros 
in the range 0 < 5 < 1 forces all N poles to fall in the range 1 < x < 00. 
Although the zeros and poles are not equally spaced, the behavior of 

IW)12 = l 1+ h(k) 
is equiripple in both the pass-band and the stop-band. 

It is useful to compare the four types of analog filter-Butterworth, 
Chebyshev, inverse Chebyshev, and elliptical. A very strong statement can 
be made (but will not be proven here) regarding the elliptical filter; given any 
three of the four parameters of interest (pass-band ripple, stop-band ripple, 
transition width, and filter order) the elliptical filter minimizes the remain- 
ing parameter. In particular, for given order N and ripple tolerances the 
elliptical filter can provide the steepest pass-band to stop-band transition. 
The Butterworth filter is the weakest in this regard, and the two Chebyshev 
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types are intermediate. The Butterworth filter, however, is the best approxi- 
mation to the Taylor expansion of the ideal response at both DC and infinite 
frequency. The Chebyshev design minimizes the maximum pass-band ripple, 
while the inverse Chebyshev maximizes the minimum stop-band rejection. 

The design criteria as we stated them do not address the issue of phase 
response, and none of these filters is linear-phase. The elliptical has the 
worst phase response, oscillating wildly in the pass-band and transition re- 
gion (phase response in the stop-band is usually unimportant). The Butter- 
worth is the smoothest in this regard, followed by the Chebyshev and inverse 
Chebyshev. 

Although this entire section focused on analog low-pass filter, the prin- 
ciples are more general. All analog filters with a single pass-band and/or 
stop-band can be derived from the low-pass designs discussed above. For 
example, we can convert analog low-pass filter designs into high-pass filters 
by the simple transformation f --$ j. Digital filters are a somewhat more 
complex issue, to be discussed in the next section. For now it is sufficient to 
say that IIR filters are often derived from analog Butterworth, Chebyshev, 
inverse Chebyshev, or elliptical designs. The reasoning is not that such de- 
signs are optimal; rather that the theory of the present section predated DSP 
and early practitioners prefered to exploit well-developed theory whenever 
possible. 

EXERCISES 

7.7.1 Show that a Butterworth filter of order N is maximally flat. 

7.7.2 All Butterworth filters have their half gain (3 dB down) point at fc. Higher 
order N makes the filter gain decrease faster, and the speed of decrease is 
called the ‘rollofl ‘, Show that for high frequencies the rolloff of the Butter- 
worth filter is 6 dB per octave (i.e., the gain decreases 6 dB for every doubling 
in frequency) or 20 dB per decade. How should N be set to meet a specifica- 
tion involving a pass-band end frequency fpr a stop-band start frequency fs, 
and a maximum error tolerance 6? 

7.7.3 Show that the 2N poles of IH( for the analog Butterworth filter all lie 
on a circle of radius fc in the s-plane, are equally spaced, and are symmetric 
with respect to the imaginary axis. Show that the poles of the Chebyshev I 
filter lie on an ellipse in the s-plane. 

7.7.4 The HPNA 1.0 specification calls for a pulse consisting of 4 cycles of a 7.5 
MHz square wave filtered by a five-pole Butterworth filter that extends from 
5.5 MHz to 9.5 MHz. Plot this pulse in the time domain. 
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7.7.5 The frequency response of a certain filter is given by 

where a and fc are parameters. 
meaning of the parameters? 

f,” IH( = f* 

What type of filter is this and what is the 

7.7.6 Repeat the previous exercise for these filters. 

Wf)12 = &+ 

IH( = * 
C 

7.7.7 Show that in the pass-band the Chebyshev filter gain is always between ,-& 
and h so that the ripple is about 4b2 dB. Show that the gain falls mono- 
tonically in the stop-band with rolloff 20N dB per decade but always higher 
than the Butterworth filter of the same order. 

7.7.8 We stated that an analog low-pass filter can be converted into a high-pass 
filter by a simple transformation of the frequency variable. How can band- 
pass and band-stop filters be similarly designed by transformation? 

7.8 Digital Filter Design 

We will devote only a single section to the subject of digital filter design, 
although many DSP texts devote several chapters to this subject. Although 
the theory of digital filter design is highly developed, it tends to be highly 
uninspiring, mainly consisting of techniques for constrained minimization of 
approximation error. In addition, the availability of excellent digital filter 
design software, both full graphic applications and user-callable packages, 
makes it highly unlikely that you will ever need to design on your own. The 
aim of this section is the clarification of the principles behind such programs, 
in order for the reader to be able to use them to full advantage. 

Your first reaction to the challenge of filter design may be to feel that it 
is a trivial pursuit. It is true that finding the frequency response of a given 
filter is a simple task, yet like so many other inverse problems, finding a filter 
that conforms to a frequency specification is a more difficult problem. From 
a frequency domain specification we can indeed directly derive the impulse 
response by the FT, and the numeric values of the impulse response are 
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undeniably FIR filter coefficients; but such an approach is only helpful when 
the impulse response quickly dies down to zero. Also numeric transformation 
of N frequency values will lead to a filter that obeys the specification at the 
exact frequencies we specified, but at in-between frequencies the response 
may be far from what is desired. The main trick behind filter design is how to 
constrain the frequency response of the filter so that it does not significantly 
deviate from the specification at any frequency. 

We should note that this malady is not specific to time domain filter- 
ing. Frequency domain filtering uses the FT to transfer the signal to the 
frequency domain, performs there any needed filtering operation, and then 
uses the iFT to return to the time domain. We can only numerically perform 
a DFT for a finite number of signal values, and thus only get a finite fre- 
quency resolution. Multiplying the signal in the frequency domain enforces 
the desired filter specification at these frequencies only, but at intermedi- 
ate frequencies anything can happen. Of course we can decide to double 
the number of signal times used thus doubling the frequency resolution, but 
there would still remain intermediate frequencies where we have no control. 
Only in the limit of the LTDFT can we completely enforce the filter spec- 
ification, but that requires knowing the signal values at all times and so is 
an unrealizable process. 

At its very outset the theory and practice of digital filter design splits 
into two distinct domains, one devoted to general IIR filters, and the other 
restricted to linear-phase FIR filters. In theory the general IIR problem 
is the harder one, and we do not even know how to select the minimum 
number of coefficients that meet a given specification, let alone find the 
optimal coefficients. Yet in practice the FIR problem is considered the more 
challenging one, since slightly suboptimal solutions based on the methods of 
the previous section can be exploited for the IIR problem, but not for the 
FIR one. 

Let’s start with IIR filter design. As we mentioned before we will not 
attempt to directly optimize filter size and coefficients; rather we start with 
a classical analog filter design and bring it into the digital domain. In order 
to convert a classical analog filter design to a digital one, we would like to 
somehow digitize. The problem is that the z-plane is not like the analog 
(Laplace) s-plane. From Section 4.10 we know that the sinusoids live on 
the imaginary axis in the s-plane, while the periodicity of digital spectra 
force them to be on the unit circle in the x-plane. So although the filter was 
originally specified in the frequency domain we are forced to digitize it in 
the time domain. 
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The simplest time domain property of a filter is its impulse response, 
and we can create a digital filter by evenly sampling the impulse response 
of any of the classical designs. The new digital filter’s transfer function can 
then be recovered by z transforming this sampled impulse response. It is not 
hard to show that a transfer function thus found will be a rational function, 
and thus the digital filter will be ARMA. Furthermore the number of poles 
is preserved, and stable analog filters generate stable digital filters. Unfortu- 
nately, the frequency response of the digital filter will not be identical to that 
of the original analog filter, because of aliasing. In particular, the classical 
designs do not become identically zero at high frequencies, and so aliasing 
cannot be avoided. Therefore the optimal frequency domain properties of 
the analog designs are not preserved by impulse response sampling. 

An alternative method of transforming analog filters into digital ones is 
the bilinear mapping method. The basic idea is to find a mapping from the 
s-plane to the z-plane and to convert the analog poles and zeros into the 
appropriate digital ones. For such a mapping to be valid it must map the 
imaginary axis s = iw onto the unit circle z = e iw, and the left half plane 
into the interior of the unit circle. The mapping (called ‘bilinear’ since the 
numerator and denominator are both linear in s) 

l+s 
z =- 

1-S 
(7.31) 

does just that. Unfortunately, being nonlinear it doesn’t preserve frequency, 
but it is not hard to find that the analog frequency can be mapped to the 
digital frequency by 

W 8tl8lOg = tan( qWdigit81) (7.32) 

thus compressing the analog frequency axis from -oo to 00 onto the digital 
frequency axis from --;r~ to +7r in a one-to-one manner. So the bilinear map- 
ping method of IIR filter design goes something like this. First ‘prewarp’ the 
frequencies of interest (e.g., fP, fc, fs) using equation (7.32). Then design 
an analog filter using a Butterworth, Chebyshev, inverse Chebyshev, or el- 
liptical design. Finally, transform the analog transfer function into a digital 
one by using the bilinear mapping of equation (7.31) on all the poles and 
zeros. 

FIR filters do not directly correspond to any of the classical designs, and 
hence we have no recourse but to return to first principles. We know that 
given the required frequency response of a filter we can derive its impulse 
response by taking the iLTDFT 1 IT hn = g s H(eiw)eiwn du 

-7r 
(7.33) 
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and that these h, are the coefficients of the convolution in the time do- 
main. Therefore, the theoretical frequency responses of the ideal low-pass, 
high-pass, band-pass, and band-stop filters already imply the coefficients of 
the ideal digital implementation. Assuming a noncausal filter with an odd 
number of coefficients, it is straightforward to find the following. 

GG 
low-pass: h, = 

!$ si&nw,) 
n=O 

n#O 

high-pass: h, = 
{ 

1-y n=O 
- 9 sinc(nw,) n#O 

{ 

w2-wL 
band-pass: h, = 

p sinc(nw2) If. ~ 
n=O 

* sinc(nwr) n#O 

band-stop: h, = 
l+F n=O 

F sinc(nwi) - F sinc(nw2) n # 0 

(7.34) 

Unfortunately these h, do not vanish as InI increases, so in order to imple- 
ment a finite impulse response filter we have to truncate them after some 

I I n. 
Truncating the FIR coefficients in the time domain means multiplying 

the time samples by a rectangular function and hence is equivalent to a 
convolution in the frequency domain by a sine. Such a frequency domain 
convolution causes blurring of the original frequency specification as well as 
the addition of sidelobes. Recalling the Gibbs effect of Section 3.5 and the 
results of Section 4.2 regarding the transforms of signals with discontinuities, 
we can guess that multiplying the input signal by a smooth window 

h:, = 2un h, (7.35) 

rather than by a sharply discontinuous rectangle should reduce (but not 
eliminate) the ill effects. 

What type of window should be used? In Section 13.4 we will compare 
different window functions in the context of power spectrum estimation. 
Everything to be said there holds here as well, namely that the window 
function should smoothly increase from zero to unity and thence decrease 
smoothly back to zero. Making the window smooth reduces the sidelobes of 
the window’s FT, but at the expense of widening its main lobe, and thus 
widening the transition band of the filter. From the computational complex- 
ity standpoint, we would like the window to be nonzero over only a short 
time duration; yet even nonrectangular windows distort the frequency re- 
sponse by convolving with the window’s FT, and thus we would like this FT 
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to be as narrow as possible. These two wishes must be traded off because the 
uncertainty theorem limits how confined the window can simultaneously be 
in the time and frequency domains. In order to facilitate this trade-off there 
are window families (e.g., kaiser and Dolph-Chebyshev) with continuously 
variable parameters. 

So the windowing method of FIR filter design goes something like this. 

Decide on the frequency response specification 
Compute the infinite extent impulse response 
Choose a window function: 

trade off transition width against stop-band rejection 
trade off complexity against distortion 

Multiply the infinite extent impulse response by the window 

The window design technique is useful when simple programming or 
quick results are required. However, FIR filters designed in this way are not 
optimal. In general it is possible to find other filters with higher stop-band 
rejection and/or lower pass-band ripple for the same number of coefficients. 
The reason for the suboptimality is not hard to find, as can be readily ob- 
served in Figure 7.14. The ripple, especially that of the stop-band, decreases 
as we move away from the transition. The stop-band attenuation specifica- 
tion that must be met constrains only the first sidelobe, and the stronger 
rejection provided by all the others is basically wasted. Were we able to find 

IH(f)l A IH(f)l B 
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Figure 7.14: FIR design by window method vs. by Remez algorithm. (A) is the frequency 
response of a 71-coefficient low-pass filter designed by the window method. (B) is a 41- 
coefficient filter designed by the Remez algorithm using the same specification. Note the 
equiripple characteristic. 
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an equiripple approximation we could either reduce the maximum error or 
alternatively reduce the required number of coefficients. 

As in classical filter design the equiripple property ensures that the max- 
imal deviation from our amplitude specification be minimal. Techniques for 
solving the minimax polynomial approximation problem are reviewed in Ap- 
pendix A.12. In the early seventies McClellan, Parks, and Rabiner published 
a paper and computer program that used the Remez exchange algorithm for 
FIR design. This program has become the most widely used tool in FIR de- 
sign, and it is suggested that the reader obtain a copy (or a full up-to-date 
program with user interface and graphics based on the original program) 
and become proficient in its use. 

Before concluding this chapter we should answer the question that must 
have occurred to you. When should FIR filters be used and when IIR? As 
a general rule integrators are IIR, while differentiators are FIR. Hilbert 
transforms are usually FIR although IIR designs are sometimes used. As to 
frequency-selective filters, the answer to this question is often (but not al- 
ways) easy. First recall from Section 7.2 that FIR filters can be linear-phase, 
while IIR filters can only approach this behavior. Hence, if phase response is 
critical, as in many communications systems (see Chapter IS), you may be 
forced to use FIR filters (although the trick of exercise 7.2.5 may be of use). 
If phase response is not of major importance, we can generally meet a spec- 
ification using either FIR or IIR filters. From the computational complexity 
point of view, IIR filters almost always end up being significantly more ef- 
ficient, with elliptical filters having the lowest computational requirements. 
The narrower the transitions the more pronounced this effect becomes. How- 
ever, these elliptical filters also have the worst phase response, erratically 
varying in the vicinity of transitions. 

EXERCISES 

7.8.1 Some digital filter design programs assume a sampling frequency (e.g., 8000 
Hz). Can these programs be used to design filters for systems with different 
sampling frequencies? 

7.8.2 Obtain a good filter design program and design an IIR low-pass filter using 
the four classical types from Section 7.7. What happens as you force the tran- 
sition region to shrink in size? What is the effect of fp for a given transition 
region width? Plot the phase response and group delay. How can you make 
the phase response more linear? 

7.8.3 Design a low-pass FIR using the same criteria as in the previous exercise. 
Compare the amount of computation required for similar gain characteristics. 
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7.8.4 

7.8.5 

Repeat the previous two questions for a narrow band-pass filter. 

An extremely narrow FIR low-pass filter requires a large number of coeffi- 
cients, and hence a large amount of computation. How can this be reduced? 

7.8.6 The impulse responses in equations (7.34) were for odd N. For even N the 
ideal frequency responses must be shifted by a half-integer delay eig before 
applying equation (7.33). Find the ideal impulse responses for even N. 

7.8.7 What are the coefficients of the ideal differentiator and Hilbert filters for even 
and odd N? 

7.9 Spatial Filtering 

Up to now we have dealt with filters that are frequency selective-filters that 
pass or block, amplify or attenuate signals based on frequency. In some appli- 
cations there are other signal characteristics that help differentiate between 
signals, and these can be used along with frequency domain filtering, or by 
even by themselves when we need to separate signals of the same frequency. 
One such characteristic is the geographical position of the signal’s source; 
if we could distinguish between signals on that basis we could emphasize a 
specific signal while eliminating interference from others not colocated with 
it. 

A wave is a signal that travels in space as well as varying in time, and 
consequently is a function of the three-dimensional spatial coordinates s 
as well as being a function of time t. At any particular spatial coordinate 
the wave is a signal, and at any particular time we see a three-dimensional 
spatially varying function. A wave that travels at a constant velocity w 
without distortion is a function of the combination s - vt; traveling a% 
exactly the right speed you ‘move with the wave’. Thedist&nce a periodic 
wave travels during a single period is called the wavelength X. Light and 
radio waves travel at the speed of light (approximately 3 . 10’ meters per 
second), so that a wavelength of one meter corresponds to a frequency of 
300 MHz. 

Directional antennas, such as the TV antennas that clutter rooftops, 
are spatially selective devices for the reception and/or transmission of ra- 
dio waves. Using carefully spaced conducting elements of precise lengths, 
transmitted radiation can be focused in the desired direction, and received 
signals arriving from a certain direction can be amplified with respect to 



316 FILTERS 

those from other angles. The problem with such directional antennas is that 
changing the preferred direction involves physically rotating the antenna to 
point the desired way. Beamforming is a technique, mainly utilized in trans- 
mission and reception of sonar and radar signals, for focusing transmitted 
energy or amplifying received energy without having to physically rotate 
antennas. This feat is performed by combining a number of omnidirectional 
sensors (antennas, microphones, hydrophones, or loudspeakers depending on 
the type of wave). 

Figure 7.15: Beamforming to separate two sinusoidal signals of the same frequency. The 
sensor array consists of two antennas separated by the distance traveled by the wave 
during half a period. Each sensor is connected to a phase shifter and the phase shifted 
signals are summed. 

In the simplest example of the principle involved we need to discrim- 
inate between two sinusoidal waves of precisely the same frequency and 
amplitude but with two orthogonal directions of arrival (DOAs) as depicted 
in Figure 7.15. Wave x1 impinges upon the two sensors at the same time, 
and therefore induces identical signals yr and ~2. Wave x2 arrives at the 
lower sensor before the upper, and accordingly y1 is delayed with respect 
to y2 by a half period. Were the reception of wave x1 to be preferred we 
would set both phase shifters to zero shift; y1 and y2 would sum when x1 
is received, but would cancel out when x2 arrives. Were we to be interested 
in wave x2 we could set A@2 to delay y2 by one half period, while A@1 
would remain zero; in this fashion x1 would cause yr and y2 to cancel out, 
while 22 would cause them to constructively interact. For waves with DOA 
separations other than 90” the same idea applies, but different phase shifts 
need to be employed. 
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Figure 7.16: A wave impinging upon an array of M = 5 sensors spaced d apart. The 
parallel lines represent the peaks of the sinusoids and hence there is one wavelength X 
between each pair. The wave arrives at angle 0 from the normal to the line of the sensors. 
It is obvious from the geometry that when X = dsin8 the wave takes the same value at 
all of the sensors. 

The device just described is a rudimentary example of a phased ar- 
ray, and it has the advantage of eliminating mechanical motors and control 
mechanisms. Switching between different directions can be accomplished es- 
sentially instantaneously, and we may also simultaneously recover signals 
with multiple DOAs with the same array, by utilizing several different phase 
shifters. We can enhance directivity and gain of a phased array by using 
more than two sensors in the array. With an array with M sensors, as in 
Figure 7.16, at every time n we receive M signals ymn that can be considered 
a vector signal yn. To enhance a signal of frequency w  impinging at angle 19 - 
we need a phase delay of K = 27rf sin 8 between each two consecutive sen- 
sors. We could do this by successive time delays (resulting in a timed arruy) 

but in a phased array we multiply the mth component of the vector signal 

by a phase delay esiKrn before the components are combined together into 
the output xn. 

M-l 

x, = c Ymne 
-inm (7.36) 

m=O 

Forgetting the time dependence for the moment, and considering this as a 
function of the DOA variable K, this is seen to be a spatial DFT! The sensor 
number m takes the place of the time variable, and the DOA K stands in for 
the frequency. We see here the beginnings of the strong formal resemblance 
between spatial filtering and frequency filtering. 

Now what happens when a sinusoidal wave of frequency w  and DOA $ 
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Figure 7.17: Angle response of a phased array. We depict the square of the response in 
dB referenced to the zero degree response for a phased array with A4 = 32 and ni = $. 
The phased array is pointed to 8 - - 0 and the horizontal axis is the angle 4 in degrees. 

is received? Sensor m sees at time n 

Ymn = 
A e+icp+iwn+imy sin q5 

where cp is the phase at the first sensor, and k is the DOA variable corre- 
sponding to angle 4. Substituting this into equation (7.36) 

M-l 

2, = 
c 

A ei~eiwneikme-ilcm 

m=O 
M-l 

= Aei~$wn C &(k-n)m 

m=O 

= A &&wn 
1 - ,&Wk-4 

1 - ei(k-n) 

= A &veiwnei$M(k-n),-i$(k-n) sin @!(k - K) 

sin &Jk - r;) 

where we have performed the sum using (A.48), symmetrized, and substi- 
tuted (A.8). The phased array angle response is the square of this expression 

I I 2*= sin M7rf(sin 4 - sin 0) * 

sin 7rf(sin q5 - sin 0) 
(7.37) 

and is plotted in Figure 7.17. 
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So the phased array acts as a spatial filter that is really quite similar to 
a regular frequency domain filter. The angle response of equation (7.37) is 
analogous to the frequency response of a frequency filter, and the high side- 
lobes in Figure 7.17 can be attenuated using techniques from filter design, 
such as windowing. 

Our discussion has focused on simple sinusoidal waves; what if we need 
to pull in a complex wave? If the wave consists of only two frequency com- 
ponents, we can build two separate phased arrays based on the same sensors 
and add their results, or equivalently a single phased array with two delays 
per sensor. A little thought should be sufficient to convince you that arbi- 
trary waves can be accommodated by replacing the simple phase delay with 
full FIR filters. In this way we can combine spatial and frequency filtering. 
Such a combined filter can select or reject a signal based on both its spectral 
and spatial characteristics. 

EXERCISES 

7.9.1 Direction fixing can also be performed using time of arrival (TOA) techniques, 
where the time a signal arrives at multiple sensors is compared. We use 
both phase differences and TOA to locate sound sources with our two ears, 
depending on the frequency (wavelength) of the sound. When is each used? 
How is elevation determined? (Hint: The external ear is not symmetric.) Can 
similar principles be exploited for SONAR echolocation systems? 

7.9.2 Bats use biological sonar as their primary tool of perception, and are able 
to hunt insects at night (making the expression blind as a bat somewhat 
frivolous). At first, while searching for insects, they emit signals with basic 
frequency sweeping from 28 KHz down to 22 KHz and duration of about 
10 milliseconds, Once a target is detected the sounds become shorter (about 
3 milliseconds) in duration but scan from 50 KHz down to 25 KHz. While 
attempting to capture the prey, yet a third mode appears, of lower bandwidth 
and duration of below 1 millisecond. What is the purpose of these different 
cries? Can similar nrincinles be used for fighter aircraft radar? 
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Nonfilters 

Filters have a lot going for them. In the previous chapter we have seen that 
they are simple to design, describe and implement. So why bother devoting 
an entire chapter to the subject of systems that are not filters? 

There are two good reasons to study nonfilters-systems that are ei- 
ther nonlinear, or not time-invariant, or both. First, no system in the real 
world is ever perfectly linear; all ‘linear’ analog systems are nonlinear if you 
look carefully enough, and digital signals become nonlinear due to round-off 
error and overflow. Even relatively small analog nonlinearities can lead to ob- 
servable results and unexpected major nonlinearities can lead to disastrous 
results. A signal processing professional needs to know how to identify these 
nonlinearities and how to correct them. Second, linear systems are limited 
in their capabilities, and one often requires processing functions that sim- 
ply cannot be produced using purely linear systems. Also, linear systems are 
predictable; a small change in the input signal will always lead to a bounded 
change in the output signal. Nonlinear systems, however, may behave chaot- 
ically, that is, very small changes in the input leading to completely different 
behavior! 

We start the chapter with a discussion of the effects of small nonlineari- 
ties on otherwise linear systems. Next we discuss several ‘nonlinear filters’, 
a term that is definitely an oxymoron. We define& a ‘filter’ as a linear and 
time-invariant system, so how can there be a ‘nonlinear filter’? Well, once 
again, we are not the kind of people to be held back by our own definitions. 
Just as we say delta ‘function’, or talk about infinite energy ‘signals’, we 
allow ourselves to call systems that are obviously not filters, just that. 

The mixer and the phase locked loop are two systems that are not filters 
due to not being time-invariant. These systems turn out to very important 
in signal processing for telecommunications. Our final topic, time warping, 
is an even more blatant example of the breakdown of time invariance. 
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8.1 Nonlinearities 

Let’s see what makes nonlinear systems interesting. We start by considering 
the simplest possible nonlinearity, a small additive quadratic term, which 
for analog signals reads 

y(t) = z(t) + cr2(t) w 
(assume E << 1). The spectral consequences can be made clear by considering 
an arbitrary sinusoidal input 

z(t) = Acos(wt) (8.2) 

for which the system will output 

y(t) = A cos(wt) + eA2 cos2(wt) W) 

which can be simplified by substituting from equation (A.25). 

EA2 
y(t) = Asin + 2 + &c3(2wt) (8 4) . 

We see here three terms; the first being simply the original unscathed signal, 
the other two going to zero as E + 0. The second term is a small DC 
component that we should have expected, since cos2 is always positive and 
thus has a nonzero mean. The final term is an attenuated replica of the 
original signal, but at twice the original frequency! This component is known 
as the second harmonic of the signal, and the phenomenon of creating new 
frequencies which are integer multiples of the original is called harmonic 
generation. Harmonic generation will always take place when a nonlinearity 
is present, the energy of the harmonic depending directly on the strength 
of the nonlinearity. In some cases the harmonic is unwanted (as when a 
nonlinearity causes a transmitter to interfere with a receiver at a different 
frequency), while in other cases nonlinearities are introduced precisely to 
obtain the harmonic. 

We see here a fundamental difference between linear and nonlinear sys- 
tems. Time-invariant linear systems are limited to filtering the spectrum of 
the incoming signal, while nonlinear systems can generate new frequencies. 

What would have happened had the nonlinearity been cubic rather than 
quadratic? 

y(t) = z(t) + a3(t) 
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You can easily find that there is third harmonic generation (i.e., a signal 
with thrice the original frequency appears from nowhere). A fourth order 
nonlinearity 

y(t) = 5(t) + m4(t) 

will generate both second and fourth harmonics (see equation (A.33)); and 

nth order nonlinearities generate harmonics up to order n. Of course a gen- 
eral nonlinearity that can be expanded in a Taylor expansion 

y(t) = z(t) + 62x2(t) + eg3(t) + E4X4(Q + * * * (8 5) . 

will produce many different harmonics. 
We can learn more about nonlinear systems by observing the effect of 

simple nonlinearities on signals composed of two different sinusoids. 

z(t) = A1 cos(wlt) + A2 cos(w2t) (8 6) . 

Inputing this signal into a system with a small quadratic nonlinearity 

m = Al cos(qt) + A2 cos(w2t) 

+A; cos2 (wl t) + A; cos2 (w2t) 

+2A1A2 cos(qt) cos(w2t) 

= Al cos(qt) + A2 cos(w2t) 

+A: cos2 (wl t) + A; cos2 (w2t) 

+A& cos ((WI + wz)t) 

+&A2 cos (1~1 - wit) 

we see harmonic generation for both frequencies, but there is also a new 
nonlinear term, called the inter-modulation product, that is responsible for 
the generation of sum and difference frequencies. Once again we see that 
nonlinearities cause energy to migrate to frequencies where there was none 
before. 

More general nonlinearities generate higher harmonics plus more com- 
plex intermodulation frequencies such as 

w + w2, Iwl - WZI, 

4 + 2w2, 24 + w2, 

pw - w21, pJJ2 - w, 

WI+ 3~2, 34 + w2, 

2wl + 3wz, 2W1 + 3w2, 
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This phenomenon of intermodulation can be both useful and trouble- 
some. We will see a use in Section 8.5; the negative side is that it can cause 
hard-to-locate Radio Frequency Interference (RFI). For example, a tele- 
vision set may have never experienced any interference even though it is 
situated not far from a high-power radio transmitter. Then one day a taxi 
cab passes by a rusty fence that can act as a nonlinear device, and the com- 
bination of the cab’s transmission and the radio station can cause a signal 
that interferes with TV reception. 

EXERCISES 

8.1.1 Show exactly which harmonics and intermodulation products are generated 
by a power law nonlinearity y(t) = z(t) + &(t). 

8.1.2 Assume that the nonlinearity is exponential y(t) = z(t) + ee”ct) rather than 
a power law. What harmonics and intermodulation frequencies appear now? 

8.2 Clippers and Slicers 

One of the first systems we learned about was the clipping amplifier, or peak 
clipper, defined in equation (6.1). The peak clipper is obviously strongly 
nonlinear and hence generates harmonics, intermodulation products, etc. 
What is less obvious is that sometimes we use a clipper to prevent nonlinear 
effects. For example, if a signal to be transmitted has a strong peak value 
that will cause problems when input to a nonlinear medium, we may elect 
to artificially clip it to the maximal value that can be safely sent. 

The opposite of this type of clipper is the center clipper, which zeros out 
signal values smaller than some threshold. 

{ 

0 1x1 < 8 
y=C&)= 2 else (8 7) . 

The center clipper is also obviously nonlinear, and although at first sight 
its purpose is hard to imagine, it has several uses in speech processing. The 
first relates to the removal of unwanted zero crossings. As we will see in 
Section 13.1 there are algorithms that exploit the number of times a signal 
crosses the time axis, and/or the time between two such successive zero 
crossings. These algorithms work very well on clean signals, but fail in the 
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presence of noise that introduces extraneous zero crossings. The problem is 
not severe for strong signals but when the signal amplitude is low the noise 
may dominate and we find many extraneous zero crossings. Center clipping 
can remove unwanted zero crossings, restoring the proper number of zero 
crossings, at the price of introducing uncertainty in the precise time between 
them. In fact center clipping has become so popular in this scenario that it 
is used even when more complex algorithms, not based on zero crossings, 
are employed. 

A related application is motivated by something we will learn in Chap- 
ter 11, namely that our hearing system responds approximately logarith- 
mically to signal amplitude. Thus small amounts of noise that are not no- 
ticeable when the desired signal is strong become annoying when the signal 
is weak or nonexistent. A case of particular interest is echo over long dis- 
tance telephone connections; linear echo cancellers do a good job at removing 
most of the echo, but when the other party is silent we can still hear our own 
voice returning after the round-trip delay, even if it has been substantially 
suppressed. This small but noticeable residual echo can be removed by a 
center clipper, which in this application goes under the uninformative name 
of NonLinear Processor (NLP). Unfortunately this leaves the line sounding 
too quiet, leading one to believe that the connection has been lost; this de- 
fect can be overcome by injecting artificial ‘comfort noise’ of the appropriate 
level. 

The peak clipper and center clipper are just two special cases of a more 
general nonfilter called a slicer. Consider a signal known to be restricted to 
integer values that is received corrupted by noise. The obvious recourse is to 
clip each real signal value to the closest integer. This in effect slices up the 
space of possible received values into slices of unity width, the slice between 
n-- i and 72 + 3 being mapped to n. The nonlinear system that performs 
this function is called a slicer. 

Up to now we have discussed slicers that operate on a signal’s amplitude, 
but more general slicers are in common use as well. For example, we may 
know that a signal transmitted to us is a sinusoid of given frequency but 
with phase of either +n or -7r. When measuring this phase we will in general 
find some other value, and must decide on the proper phase by slicing to the 
closest allowed value. Even more complex slicers must make decisions based 
on both phase and amplitude values. Such slicers are basic building blocks 
of modern high-speed modems and will be discussed in Section 18.18. You 
may wish to peek at Figure 18.26 to see the complexity of some slicers. 
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EXERCISES 

8.2.1 Apply a center clipper with a small threshold to clean sampled speech. Do 
you hear any effect? What about noisy speech? What happens as you increase 
the threshold? At what point does the speech start to sound distorted? 

8.2.2 Determine experimentally the type 
clipper and the center clipper. 

of harmonic generation performed by the 

8.2.3 There is a variant of the center clipper with continuous output as a function 
of input, but discontinuous derivative. Plot the response of this system. What 
are its advantages and disadvantages? 

8.2.4 When a slicer operates on sampled values a question arises regarding values 
exactly equidistant between two integer values. Discuss possible tactics. 

8.2.5 A ‘resetting filter’ is a nonlinear system governed by the following equations. 

Yn = Xn+Wn 

1 

-8 yn < -8 
rn = ; IYnkQ 

Yn > Q 

%a = $/n-l -rn-1 

Explain what the resetting filter does and how it can be used. 

8.3 Median Filters 

Filters are optimal at recovery of signals masked by additive Gaussian noise, 
but less adept at removing other types of unwanted interference. One case 
of interest is that of unreliable data. Here we believe that the signal samples 
are generally received without additive noise, but now and then may be 
completely corrupted. For example, consider what happens when we send 
a digital signal as bits through a unreliable communications channel. Every 
now and then a bit is received incorrectly, corrupting some signal value. If 
this bit happens to correspond to the least significant bit of the signal value, 
this corruption may not even be detected. If, however, it corresponds to the 
most significant bit there is a isolated major disruption of the signal. Such 
isolated incorrect signal values are sometimes called outliers. 

An instructive example of the destructive effect of outliers is depicted 
in Figure 8.1. The original signal was a square wave, but four isolated sig- 
nal values were strongly corrupted. Using a low-pass filter indeed brings the 
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Figure 8.1: Comparison of a linear filter with a median filter. In (A) we have the orig- 
inal corrupted square wave signal; in (B) the signal has been filtered using a symmetric 
noncausal FIR low-pass filter; and in (C) we see the effect of a median filter. 

corrupted signal values closer to their correct levels, but also changes sig- 
nal values that were not corrupted at all. In particular, low-pass filtering 
smooths sharp transitions (making the square wave edges less pronounced) 
and disturbs the signal in the vicinity of the outlier. The closer we wish the 
outlier to approach its proper level, the stronger this undesirable smoothing 
effect will be. 

An alternative to the low-pass filter is the median filter, whose effect is 
seen in Figure 8.1.C. At every time instant the median filter observes signal 
values in a region around that time, similar to a noncausal FIR filter. How- 
ever, instead of multiplying the signal values in this region by coefficients, 
the median filter sorts the signal values (in ascending order) and selects ‘me- 
dian’, i.e., the value precisely in the center of the sorted buffer. For example, 
if a median filter of length five overlaps the values 1,5,4,3,2, it sorts them 
into 1,2,3,4,5 and returns 3. In a more typical case the median filter over- 
laps something like 2,2,2,15,2, sorts this to 2,2,2,2,15 and returns 2; and 
at the next time instant the filter sees 2,2,15,2,2 and returns 2 again. Any 
isolated outlier in a constant or slowly varying signal is completely removed. 

Why doesn’t a median filter smooth a sharp transition between two 
constant plateaus ? As long as more than half the signal values belong to 
one side or the other, the median filter returns the correct value. Using an 
odd-order noncausal filter ensures that the changeover happens at precisely 
the right time. 

What happens when the original signal is not constant? Were the lin- 
early increasing signal . . . 1,2,3,4,5,6,7,8,9,10.. . to become corrupted to 
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. . . 1,2,3,4,99,6,7,8,9,10 ,..., a median filter of length 5 would be able to 
correct this to . . . 1,2,3,4,6,7,8,8,9,10, . . . by effectively skipping the cor- 
rupted value and replicating a later value in order to resynchronize. Similarly, 
were the corrupted signal to be . . . 1,2,3,4, -99,6,7,8,9,10, . . . , the median 
filter would return the sequence . . .1,2,2,3,4,6,7,8,9,10, . . . replicating a 
previous value and skipping to catch up. Although the corrupted value never 
explicitly appears, it leaves its mark as a phase shift that lasts for a short 
time interval. 

What if there is additive noise in addition to outliers? The simplest thing 
to do is to use a median filter and a linear low-pass filter. If we apply these 
as two separate operations we should probably first median filter in order 
to correct the gross errors and only then low-pass to take care of the noise. 
However, since median filters and FIR filters are applied to the input signal 
in similar ways, we can combine them to achieve higher computational ef- 
ficiency and perhaps more interesting effects. One such combination is the 
outlier-trimmed FIR filter. This system sorts the signal in the observation 
window just like a median filter, but then removes the m highest and low- 
est values. It then adds together the remaining values and divides by their 
number returning an MA-smoothed result. More generally, an order statistic 
filter first sorts the buffer and then combines the sorted values as a weighted 
linear sum as in an FIR filter. Usually such filters have their maximal co- 
efficient at the center of the buffer and decrease monotonically toward the 
buffer ends. 

The novelty of the median filter lies in the sorting operation, and we 
can exploit this same idea for processing other than noise removal. A dila- 
tion filter outputs the maximal value in the moving buffer, while an erosion 
filter returns the minimal value. These are useful for emphasizing constant 
positive-valued signals that appear for short time durations, over a back- 
ground of zero. Dilation expands the region of the signal at the expense of 
the background while erosion eats away at the signal. Dilation and erosion 
are often applied to signals that can take on only the values 0 or 1. Dilation 
is used to fill in holes in long runs of 1s while erosion clips a single spike 
in the midst of silence. For very noisy signals with large holes or spikes di- 
lation or erosion can be performed multiple times. We can also define two 
new operations. An opening filter is an erosion followed by a dilation while a 
closing filter is a dilation followed by an erosion. The names are meaningful 
for holes in 0, l-valued signals. These four operations are most commonly 
used in image processing, where they are collectively called morphological 
processing. 
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EXERCISES 

8.3.1 Prove that the median filter is not linear. 

8.3.2 Median filtering is very popular in image processing. What properties of com- 
mon images make the median filter more appropriate than linear filtering? 

8.3.3 The conditional median filter is similar to the median filter, but only replaces 
the input value with the median if the difference between the two is above 
a threshold, otherwise it returns the input value. Explain the motivation 
behind this variant. 

8.3.4 Graphically explain the names dilation, erosion, opening, and closing by con- 
sidering 0, l-valued signals. 

8.3.5 Explain how morphological operations are implemented for image processing 
of binary images (such as fax documents). Consider ‘kernels’ of different 
shapes, such as a 3*3 square and a 5-pixel cross. Program the four operations 
and show their effect on simple images. 

8.4 Multilayer Nonlinear Systems 

Complex filters are often built up from simpler ones placed in series, a pro- 
cess known as cascading. For example, if we have a notch filter with 10 dB 
attenuation at the unwanted frequencies, but require 40 dB attenuation, the 
specification can be met by cascading four identical filters. Assume that each 
of N cascaded subfilters is a causal FIR filter of length L, then the combined 
filter’s output at time n depends on its input at time n - NL. For example, 
assume that a finite duration signal xn is input to a filter h producing yn 
that is input into a second filter g resulting in 2,. Then 

Yn = hoxn + hlxn-1 + hzxn-2 +. . . + hL-IxL-1 

&a = SOYn + SlYn-1 + g2Yn-2 +. . l + QL-1X&1 

= go (hoxn + hlx n-1 + h2xn-2 + . . . + hL-1xL-1) 

+ gl (hxn-1 + hlxn-2 + h2xn-3 + l . . + hL-2xL-1) 

= dWJn + (gohI+ glho) xn-1 + (goh2 + glhl + gaho) xn-2 + . . . 

which is equivalent to a single FIR filter with coefficients equal to the con- 
volution g t h. 

In order for a cascaded system to be essentially different from its con- 
stituents we must introduce nonlinearity. Augmenting the FIR filter with a 
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hard limiter we obtain a ‘linear threshold unit’ known more commonly as 
the binary perceptron 

/ \ 

(8 8) . 

while using a less drastic smooth nonlinearity we obtain the sigmoid percep- 
tron. 

y,=tanh /3x 
( n wnxn) 

As ,0 increases the sigmoid perceptron approaches the threshold one. In some 
applications 0,l variables are preferable to &l ones, and so we use the step 
function 

Yn=@ CWnXn 

( ) n 

or the smooth version 

Yn = 0 

( ) 
c Wn% 

n 

where we defined the ‘logistic sigmoid’ . 

a(x) f e” = 
1 + ex 

l+$tanhx 

(8.10) 

(8.11) 

(8.12) 

Cascading these nonlinear systems results in truly new systems; a single 
perceptron can only approximate a small fraction of all possible systems, 
while it can be shown that arbitrary systems can be realized as cascaded 
sigmoid perceptrons. 

In Figure 8.2 we depict a MultiLayer Perceptron (MLP). This particular 
MLP has two ‘layers’; the first computes L weighted sum of the N input 
values and then hard or soft limits these to compute the values of L ‘hidden 
units’, while the second immediately thereafter computes a single weighted 
sum over the L hidden units, creating the desired output. To create a three- 
layer perceptron one need only produce many second-layer sigmoid weighted 
sums rather than only one, and afterward combine these together using one 
final perceptron. A theorem due to Kolmogorov states that three layers are 
sufficient to realize arbitrary systems. 

The perceptron was originally proposed as a classifier, that is, a system 
with a single signal as input and a logical output or outputs that identify 
the signal as either belonging to a certain class. Consider classifying spoken 
digits as belonging to one of the classes named 0, 1,2. . .9. Our MLP could 
look at all the nonzero speech signal samples, compute several layers of 
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Xn 

Yn 

Figure 8.2: A general nonlinear two-layer feedforward system. Although not explicitly 
shown, each connection arc represents a weight. NL stands for the nonlinearity, for exam- 
ple, the sgn or tanh function. 

hidden values, and finally activate one of 10 output units, thereby expressing 
its opinion as to the digit that was uttered. Since humans can perform 
this task we are confident that there is some system that can implement 
the desired function from input samples to output logical values. Since the 
aforementioned theorem states that (assuming a sufficient number of hidden 
units) three-layer MLPs can implement arbitrary systems, there must be a 
three-layer MLP that imitates human behavior and properly classifies the 
spoken digits. 

How are MLP systems designed? The discussion of this topic would lead 
us too far astray. Suffice it to say that there are training algorithms that 
when presented with a sufficient amount of data can accomplish the required 
system identification. The most popular of these algorithms is ‘backpropaga- 
tion’, (‘backprop’) which iteratively presents an input, computes the present 
output, corrects the internal weights in order to decrease the output error, 
and then proceeds to the next input-output pair. 

How many hidden units are needed to implement a given system? There 
are few practical rules here. The aforementioned theorem only says that 
there is some number of hidden units that allows a given system to be 
emulated; it does not inform us as to the minimum number needed for all 
specific cases, or whether one, two, or three layers are needed. In practice 
these architectural parameters are often determined by trial and error. 
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EXERCISES 

8.4.1 Using linear threshold units we can design systems that implement various 
logic operations, where signal value 0 represents ‘false’ and 1 ‘true’. Find 
parameters wi, ~2, and cp such that y = 0 (~1x1 + ~2x2 - cp) implements 
the logical AND and logical OR operations. Can we implement these logical 
operations with linear systems? 

8.4.2 Of the 16 logical operations between two logical variables, which can and 
which can’t be implemented? 

8.4.3 Find a multilayer system can implements XOR. 

8.4.4 What is the form of curves of equal output for the perceptron of equa- 
tion (8.9)? What is the form of areas of the same value of equation (8.8)? 
What is the form of these areas for multilayer perceptrons formed by AND 
or OR of different simple perceptrons? What types of sets cannot be imple- 
mented? How can this limitation be lifted? 

8.4.5 What are the derivatives of the sigmoid functions (equations (8.11) and 
(8.9))? Show that a’(x) = c(x) (1 - g(x)). Can you say something similar 
regarding the tanh sigmoid? 

8.4.6 Another nonlinear system element is y(x) = ep~n(z~-P~)2, known as the 
Gaussian radial unit. What is the form of curves of equal output for this 
unit? What can be said about implementing arbitrary decision functions by 
radial units? 

8.5 Mixers 

A mixer is a system that takes a band-pass signal centered around some fre- 
quency fo, and moves it along the frequency axis (without otherwise chang- 
ing it) until it is centered around some other frequency fi. Some mixers 
may also invert the spectrum of the mixed signal. In Figures 8.3 and 8.4 we 
depict the situation in stylized fashion, where the triangular spectrum has 
become prevalent in such diagrams, mainly because spectral inversions are 
obvious. In older analog signal processing textbooks mixing is sometimes 
called ‘heterodyning’. In many audio applications the term ‘mixing’ is used 
when simple weighted addition of signals is intended; thus when speaking 
to audio professionals always say ‘frequency mixing’ when you refer to the 
subject of this section. 
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Figure 8.3: The effect of mixing a narrow-band analog signal without spectral inversion. 
In (A) we see the spectrum of the original signal centered at frequency fc, and in (B) that 
of the mixed signal at frequency fi. 

Figure 8.4: The effect of mixing a narrow-band analog signal with spectral inversion. In 
(A) we see the spectrum of the original signal centered at frequency fe, and in (B) the 
mixed and inverted signal at frequency fr. Note how the triangular spectral shape assists 
in visualizing the inversion. 

It is obvious that a mixer cannot be a filter, since it can create frequencies 
where none existed before. In Section 8.1 we saw that harmonics could be 
generated by introducing nonlinearity. Here there is no obvious nonlinearity; 
indeed we expect that shifting the frequency of a sum signal will result in 
the sum of the shifted components. Thus we must conclude that a mixer 
must be a linear but not a time-invariant system. 

Mixers have so many practical applications that we can only mention a 
few of them here. Mixers are crucial elements in telecommunications systems 
which transmit signals of the form given in equation (4.66) 

s(t) = A(t) sin (2rfCt + 4(t)) 

where the frequency fC is called the carrier frequency. The information to be 
sent is contained either in the amplitude component A(t), the phase compo- 
nent 4(t), or both; the purpose of a receiver is to recover this information. 
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Many receivers start by mixing the received signal down by fC to obtain the 
simpler form of equation (4.65) 

s(t) = A(t) sin (4(t)) 

from which the amplitude and phase can be recovered using the techniques 
of Section 4.12. 

The phase is intimately connected with the carrier frequency so that the 
mixing stage is obviously required for proper phase recovery. Even were there 
to be a mixer but its frequency to be off by some small amount Af the phase 
would be misinterpreted as 2nA f t+#(t) along with the unavoidable jumps of 
27r. The amplitude signal is apparently independent of the carrier frequency; 
can we conclude that no mixer is required for the recovery of amplitude- 
modulated signals? No, although mistuning is much less destructive. The 
reason a mixer is required is that the receiver sees many possible transmitted 
signals, each with its own carrier frequency fc. Isolation of the desired signal 
is accomplished by downmixing it and injecting it into a narrow low-pass 
filter. The output of this filter now contains only the signal of interest and 
demodulation can continue without interference. When you tune an AM or 
FM radio in order to hear your favorite station you are actually adjusting 
a mixer. Older and simpler receivers allow this downmix frequency to be 
controlled by a continuously rotatable (i.e., analog) knob, while more modern 
and complex receivers use digital frequency control. 

Telephone-quality speech requires less than 4 KHz of bandwidth, while 
telephone cables can carry a great deal more bandwidth than this. In the 
interest of economy the telephone network compels a single cable to simul- 
taneously carry many speech signals, a process known as multiplexing. It is 
obvious that we cannot simply add together all the signals corresponding to 
the different conversations, since there would be no way to separate them 
at the other end of the cable. One solution, known as Frequency Domain 
Multiplexing (FDM), consists of upmixing each speech signal by a different 
offset frequency before adding all the signals together. This results in each 
signal being confined to its own frequency band, and thus simple band-pass 
filtering and mixing back down (or mixing first and then low-pass filter- 
ing) allows complete recovery of each signal. The operation of building the 
FDM signal from its components involves upmixing and addition, while the 
extraction of a single signal requires downmixing and filtering. 

Sometimes we need a mixer to compensate for the imperfections of other 
mixers. For example, a modem signal transmitted via telephone may be 
upmixed to place it in a FDM transmission, and then downmixed before 
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delivery to the customer. There will inevitably be a slight difference between 
the frequency shifts of the mixers at the two ends, resulting in a small 
residual frequency shift. This tiny shift would never be noticed for speech, 
but modem signals use frequency and phase information to carry information 
and even slight shifts cannot be tolerated. For this reason the demodulator 
part of the modem must first detect this frequency shift and then employ a 
mixer to correct for it. 

Mixers may even appear without our explicitly building them. We saw 
in Section 8.1 that transmitted signals that pass through nonlinearities may 
give rise to intermodulation frequencies; we now realize that this is due to 
unintentional mixing. 

A first attempt at numerically implementing a mixer might be to Fourier 
analyze the signal (e.g., with the FFT), translate the signal in the frequency 
domain to its new place, and then return to the time domain with the 
iFT. Such a strategy may indeed work, but has many disadvantages. The 
digital implementation would be quite computationally intensive, require 
block processing and so not be real-time-oriented, and only admits mixing 
by relatively large jumps of the order fi. What we require is a real-time- 
oriented time-domain algorithm that allows arbitrary frequency shifts. 

As in many such cases, inspiration comes from traditional hardware im- 
plementations. Mixers are traditionally implemented by injecting the output 
of an oscillator (often called the local oscillator) and the signal to be mixed 
into a nonlinearity. This nonlinearity generates a product signal that has 
frequency components that are sums and differences of the frequencies of 
the signal to be mixed and the local oscillator. The mixer is completed by 
filtering out all components other than the desired one. The essential part 
of the technique is the forming of a product signal and then filtering. 

Consider an analog complex exponential of frequency w. 

s(t) = AeiWt 

In order to transform it into an exponential of frequency w’ 

we need only multiply it by ei(w’-w)t. 

w i(U’-Ld)t = AeiWtei(U’-W)t = AeiW’t = s/(t) 
Note that the multiplying signal is sinusoidal at the frequency shift frequency 
and thus the system is not time-invariant. 
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Similarly, a signal that is composed of many frequency components 

s(t) = c Akeiwkt 
k 

will be rigidly translated in frequency when multiplied by a complex expo- 
nential. 

me 
-iAwt = c Akei(% -AWIt 

k 

When a signal is mixed down in frequency until it occupies the range from 
DC up to its bandwidth, it is said to have been ‘downmixed to low-pass’. 
When we go even further and set the signal’s center frequency to zero, we 
have ‘downmixed to zero’. 

So it seems that mixing is actually quite simple. The problems arise when 
we try to mix real-valued signals rather than analytic ones, or digital signals 
rather than analog ones. To illustrate the problems that arise, consider first 
the mixing of real signals. Since real signals have symmetric spectra, we have 
to look at both positive and negative frequencies to understand the whole 
story. 

A I I I 
-30 0 f0 

Figure 8.5: A real signal at frequency fo, whose spectrum is depicted in (A), is moved 
to frequency fl by complex mixing. When a signal is multiplied by a complex exponential 
all frequency components are shifted in the same direction, as seen in (B). 

In Figure 8.5 we see the effect of mixing a real-valued signal using a 
complex exponential local oscillator. The mixer’s effect is precisely as before, 
but the resulting signal is no longer real! What we really want to do is to mix 
a real signal using a real oscillator, which is depicted in Figure 8.6. Here the 
mixer no longer rigidly moves the whole spectrum; rather it compresses or 
expands it around the DC. In particular we must be careful with downmixing 
signals past the DC to where the two sides overlap, as in Figure 8.7. Once 
different parts of the spectrum overlap information is irrevocably lost, and 
we can no longer reverse the operation by upmixing. 
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B I I I 
-fl 0 fl 

Figure 8.6: A real signal at frequency fe, whose spectrum is depicted in (A), is moved to 
frequency fr by real mixmg. When a real signal is multiplied by a real sinusoid its positive 
and negative frequency approach each other, as seen in (B). 

I I I 
-fP fl 

Figure 8.7: A real signal after destructive downmixing. Once the spectrum overlaps itself 
information is lost. 

I I I I I I I 
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Figure 8.8: A digital mixer. Here a real-valued digital signal is mixed by a complex 
digital exponential. 

What about digital signals? The spectrum of a digital signal is periodic 
and mixing moves all of the replicas, as depicted in Figure 8.8 for a real dig- 
ital signal being mixed downward in frequency by a complex exponential. 
Note that there is a new phenomenon that may occur. Even when mixing 
with a complex oscillator downmixing to zero causes other spectral compo- 
nents to enter the Nyquist spectral region. This is a kind of aliasing but is 
both reversible and correctable by appropriate filtering. 
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EXERCISES 

8.5.1 Diagram all the cases of mixing real or complex digital signals by real or 
complex oscillators. 

8.5.2 We originally claimed that a mixer generates new frequencies due to its being 
time-invariant but linear. Afterward when discussing its analog implementa- 
tion we noted that the product is generated by a time-invariant nonlinearity. 
Reconcile these two statements. 

8.5.3 There are two techniques to mix a real signal down to zero. The signal can 
be converted to the analytic representation and then multiplied by a complex 
exponential, or multiplied by the same complex exponential and then low- 
pass filtered. Demonstrate the equivalence of these two methods. What are 
the practical advantages and disadvantages of each approach? 

8.6 Phase-Locked Loops 

Another common system that fulfills a function similar to that of a filter, but 
is not itself a filter, is the Phase-Locked Loop (PLL). This is a system that 
can ‘lock on’ to a sinusoidal signal whose frequency is approximately known, 
even when this signal is only a small component of the total input. Although 
the basic idea is to filter out noise and retain the sinusoidal signal of interest, 
such ‘locking on’ is definitely a nonlinear and time-variant phenomenon and 
as such cannot be performed by a filter. 

Why do we need such a system ? One common use is clock recovery 
in digital communications systems. As a simple example consider someone 
sending you digital information at a constant rate of 1 bit every T seconds 
(presumably T would be some small number so that a large number of bits 
may be sent per second). Now the transmitter has a clock that causes a bit 
to be sent every T seconds. The receiver, knowing the sender’s intentions, 
expects a bit every T seconds. However, the receiver’s clock, being an in- 
dependent electronic device, will in general run at a slightly different rate 
than that of the transmitter. So in effect the receiver looks for a bit every 
T’ seconds instead of every T seconds. This problem may not be evident at 
first, but after enough time has passed the receiver is in effect looking for 
bits at the wrong times, and will either miss bits or report extraneous ones. 
For high bit rates it doesn’t take long for this to start happening! 

In order to avoid this problem the sender can transmit a second signal, 
for example, a sinusoid of frequency f generated by the transmitter’s internal 
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clock. The receiver need only set its clock precisely according to this sinusoid 
and the discrepancy problem vanishes. This operation of matching clocks is 
called synchronization, often shortened to ‘synching’ (pronounced sinking) 
or ‘synching up’. Synchronization of the receiver’s clock to the transmitter’s 
has to be maintained continuously; even if properly initially matched, non- 
synched clocks will drift apart with time, introducing bit slips and insertions. 

The accurate synching up of the receiver’s clock depends critically on 
obtaining a clean signal from the transmitter. A naive DSP approach would 
be to use a very narrow-band band-pass filter centered on f to recover 
the clock signal and reject as much noise as possible. Such an attempt is 
doomed to failure since we don’t know f (were we to know f there wouldn’t 
be anything to do). Setting an extremely sharp band-pass filter centered on 
the receiver’s estimate f’ may leave the true f outside the filter bandwidth. 
Of course we could use a wider filter bandwidth, but that would increase the 
noise. What we really need is to find and track the received signal’s center 
frequency. That is what the PLL does. 

In order to build a PLL we first need some basic building blocks. The 
first is traditionally called a Voltage-Controlled Oscillator (VCO). Like an 
ordinary oscillator the VCO outputs a real sinusoid, but unlike the oscillators 
we have seen before the VCO has an input as well. With zero input the 
VCO oscillates at its ‘natural frequency’ wg, but with nonzero input z(t) 
the VCO output’s instantaneous frequency changes to wg + v(t). It is now 
straightforward to express the VCO output y(t) in terms of its input z(t). 

y(t) = Asih (wet i- q(t)) where dv w 
4t) = yg-- (8.13) 

The analog VCO is thus controlled by the voltage at its input, and hence its 
name; the digital version should properly be called a Numerically-Controlled 
Oscillator (NCO), but the name VCO is often used even when no voltages 
are evident. 

The next basic subsystem has two inputs where it expects two pure 
sinusoids; its output is proportional to the difference in frequency between 
the two. There are many ways to implement this block, e.g., one could use 
two frequency demodulators (Section 4.12) and an adder with one input 
negated. A more devious implementation uses a mixer, a special notch filter 
and an amplitude demodulator. The VCO output is used to downmix the 
input to zero; the mixer output is input to a filter with gain 1~1 so that 
when the input frequency matches the VCO there is no output, while as the 
deviation increases so does the amplitude; finally the amplitude demodulator 
outputs the desired frequency difference. 
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Figure 8.9: The frequency-locked loop (FLL). The output is a sinusoid that tracks the 
frequency of the input signal. 

Using the two special blocks we have defined so far we can already make a 
first attempt at a system that tracks sinusoidal components (see Figure 8.9). 
We will call this system a Frequency-Locked Loop (FLL), as its feedback 
loop causes it to lock onto the frequency of the input signal. Consider what 
happens when a sinusoid with frequency w > wg is applied to the input 
(previously zero). At first the frequency difference block outputs w - wg, 
and were this to be input to the VCO it would change its frequency from 
wo to wo + w - wo = w. Unfortunately, this correct response is just an 
instantaneous spike since the difference would then become zero and the 
VCO would immediately return to its natural frequency. The only escape 
from this predicament is to integrate the difference signal before passing it 
to the VCO. The integral maintains a constant value when the difference 
becomes zero, forcing the VCO to remain at w. 

The FLL can be useful in some applications but it has a major drawback. 
Even if the input is a pure sinusoid the FLL output will not in general 
precisely duplicate it. The reason being that there is no direct relationship 
between the input and output phases. Thus in our bit rate recovery example 
the FLL would accurately report the rate at which the bits are arriving, but 
could not tell us precisely when to expect them. In order to track the input 
signal in both frequency and phase, we need the more sensitive phase-locked 
loop. Looking carefully at our FLL we see that the frequency difference 
is integrated, returning a phase difference; the PLL replaces the frequency 
difference block of the FLL with an explicit phase difference one. 

The phase difference subsystem expects two sinusoidal inputs of approx- 
imately the same frequency and outputs the phase difference between them. 
One could be built similarly to the frequency difference block by using two 
phase demodulators and an adder with one input negated; however, there are 
approximations that are much easier to build for analog signals and cheaper 
to compute for digital ones. The most common approximate difference block 
shifts the phase of one input by 90” and multiplies the two signals. 
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Sl (t) = sin&t + &) 

s2@> = sin(wot + 41~) 

i2(t) = cos(wot + 49) 

s1@)~2(t) = 3 ( Wh - 42) + sin(% + 41 + 42)) 

It the low-pass filters the output to remove the double frequency component. 
The filtered product is proportional to 

sin@1 - 42) N 41 - 42 

where the approximation is good for small phase differences. 
You may question the wisdom of limiting the range of the phase dif- 

ference approximation to small values, but recall that even the ideal phase 
difference is limited to fn! So the ideal phase difference block has a sawtooth 
characteristic while the approximation has a sinusoidal one. If you really pre- 
fer piecewise linear characteristics the xor phase comparator is implemented 
by hard limiting s1 and 52 before multiplying them and then averaging over 
a single cycle. When sr and s2 are precisely in phase, sr and $2 are 90” out 
of phase and thus their product is positive just as much as it is negative, 
and so averages to zero. When they move out of phase in either direction 
the duty cycle of the product becomes nonzero. The characteristics of the 
three phase difference blocks are contrasted in Figure 8.10. 

Figure 8.10: Characteristics of three phase difference blocks. The ideal phase differ- 
ence subsystem has its output vary like a sawtooth as a function of the phase difference 
A4=&-&.Th e simple product subsystem has sinusoidal characteristic, while the xor 
comparator has a triangular one. The important feature of all these blocks is that for small 
phase differences the characteristic is linear. 
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Figure 8.11: The phase-locked loop, or PLL. The output is a sinusoid that tracks the 
phase of the input signal. 

No matter how we build the phase detector, the proper way to use it 
is depicted in Figure 8.11. If the input is truly a sinusoid of the VCO’s 
natural frequency, the phase difference output causes the VCO frequency to 
momentarily increase in order to catch up with the input or decrease to let 
the input catch up. The PLL is even more useful when the input is noisy. 
In this case the phase difference varies erratically but the low-pass filter 
smooths the jumps so that the VCO only tracks the average input phase. 
Quite noisy signals can be applied provided the low-pass filter is sufficiently 
narrow. 

What if the input frequency doesn’t equal the VCO natural frequency? 
Small constant frequency differences can be thought of as constantly chang- 
ing phase differences, and the phase corrections will cause the VCO to oscil- 
late at the average input frequency. If the frequency difference is larger than 
the low-pass filter bandwidth the VCO will receive zero input and remain at 
its natural frequency, completely oblivious to the input. For input frequen- 
cies in the capture range the VCO does get some input and starts moving 
toward the input frequency. The difference then further decreases, allowing 
more energy through the filter, and the PLL ‘snaps’ into lock. Once locked 
the phase difference is DC and completely passed by the filter, thus main- 
taining lock. If the input frequency varies the VCO automatically tracks it 
as long as it remains in the tracking range. 

The low-pass filter used in the PLL is usually of the IIR type. When the 
phase detector is of the product type a single low-pass filter can be used 
both for the filtering needed for the PLL’s noise rejection and for rejecting 
the double frequency component. When the double frequency rejection is 
not required we may be able to skip the filter altogether. In this case there 
is still a feedback path provided by the PLL architecture, and so the PLL 
is said to be of first order. If the IIR filter has a single pole the additional 
pole-like behavior leads us to say that the PLL is of second order. Higher 
orders are seldom used because of stability problems. 
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EXERCISES 

8.6.1 Simulate the FLL’s frequency behavior by assuming a VCO natural fre- 
quency, inputting some other frequency, and using simple addition to in- 
tegrate. Simulate a slowly varying input frequency. How far can the input 
frequency be from the natural frequency? 

8.6.2 Adding a clipping amplifier between the frequency difference and the integra- 
tor of the FLL makes the FLL have two operating regions, acquisition and 
tracking. Analyze the behavior of the system in these two regions. 

8.6.3 Compare the PLL and FLL from the aspects of frequency acquisition range, 
steady state frequency, and steady state phase error. 

8.6.4 Explain how to use the PLL to build a frequency synthesizer, that is, an 
oscillator with selectable accurate frequency. 

8.6.5 What effect does decreasing a PLL’s low-pass filter bandwidth have on the 
capture range, the acquisition time, and robustness to noise? 

8.7 Time Warping 

Say ‘pneumonoultramicroscopicsilicovolcanoconiosis’. I bet you can’t say it 
again! I mean pronounce precisely the same thing again. It might sound 
the same to you, but that is only because your brain corrects for the phe- 
nomenon to which I am referring; but were you to record both audio signals 
and compare them you would find that your pacing was different. In the 
first recording you may have dwelled on the second syllable slightly longer 
while in the second recording the fourth syllable may have more stress. This 
relative stretching and compressing of time is called ‘time warping’, and it 
is one of the main reasons that automatic speech recognition is so difficult 
a problem. 

For sinusoidal signals making time speed up and then slow down is ex- 
actly equivalent to changing the instantaneous frequency, but for more com- 
plex signals the effect is somewhat harder to describe using the tools we 
have developed so far. A system that dynamically warps time is obviously 
not time-invariant, and hence not a filter; but we are not usually interested 
in building such a system anyway. The truly important problem is how to 
compare two signals that would be similar were it not for their undergoing 
somewhat different time warping. 

One approach to solving this problem is called Dynamic Time Warping 
(DTW). DTW is a specific application of the more general theory of dynamic 
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programming and essentially equivalent to the Viterbi algorithm that we will 
discuss in Section 18.11. In order to facilitate understanding of the basic con- 
cepts of dynamic programming we will first consider the problem of spelling 
checking. Spelling checkers have become commonplace in word processors 
as a means of detecting errant words and offering the best alternatives. We 
will assume that the checker has a precompiled word list (dictionary) and is 
presented with a string of characters. If the string is a dictionary word then 
it is returned, otherwise an error has occurred and the closest word on the 
list should be returned. 

Three types of errors may occur. First, there may be a deletion, that is, 
a character of the dictionary word may have been left out. Next there may 
be an insertion, where an extra character is added to the text. Finally there 
may be a substitution error, where an incorrect character is substituted for 
that in the dictionary word. As an example, the word digital with a single 
deletion (of the a) becomes digitl, and with an additional substitution of 
j for g becomes di j itl. Were there only substitution errors the number of 
letters would be preserved, but deletions and insertions cause the matching 
problem to be similar to DTW. 

The Levenshtein distance between two character strings is defined to 
be the minimal number of such errors that must have occurred for one of 
the strings to become the other. In other words, the Levenshtein distance 
is the least number of deletions, insertions and substitutions that must be 
performed on one string to make it become the other. As we saw above 
dij it1 is distance two from digital; of course we could have arrived at 
dij it1 by two deletions and an insertion, but this would not have been 
the minimal number of operations. The Levenshtein distance is thus an 
ideal candidate for the idea of ‘closeness’ needed for our spelling checker. 
When the given string is not in the dictionary we return the dictionary 
word separated from the input string by minimal Levenshtein distance. 

In order to be able to use this distance in practice, we must now produce 
an algorithm that efficiently computes it. To see that this is not a trivial task 
let’s try to find the distance between prossesing and processing. Simple 
counting shows that it is better to substitute a c for the first s, delete the 
second and then add another s (3 operations) rather than deleting the es 
and adding ce (4 operations). But how did we come up with this set of 
operations and how can we prove that this is the best that can be done? 
The problem is that the Levenshtein distance is a cost function for changing 
an entire string into another, and thus a global optimization seems to be 
required. Dynamic programming is an algorithm that reduces this global 
optimization to a sequence of local calculations and decisions. 
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Dynamic programming is best understood graphically. Write the dictio- 
nary word from left to right at the bottom of a piece of graph paper, and 
write the input string from bottom to top at the left of the word. For our 
previous example you should get something like this. 

nl I 

SI I 
i 

e 

# 

S 

S 

01 I 
4 I 

Now we fill in each of the blank squares with the minimal cost to get 
to that square. The bottom-left square is initialized to zero since we start 
there, and all the rest of the squares will get values that can be computed 
recursively. We finally arrive at the top right square, and the value there 
will be the total cost, namely the Levenshtein distance. 

The recursive step involves comparing three components. One can enter 
a square from its left, corresponding to a deletion from the dictionary word, 
by taking the value to its left and adding one. One can enter a square 
from underneath, corresponding to an insertion into the dictionary word, 
by taking the value underneath it and incrementing. Finally, one can enter 
a square from the square diagonally to the left and down; if the letter in 
the dictionary word at the bottom of the column is the same as the letter 
in the string at the beginning of the row, then there is no additional cost 
and we simply copy the value from the diagonal square. If the letters differ, 
a substitution is needed and so we increment the value diagonally beneath. 
In this fashion each square gets three possible values, and we always choose 
the minimum of these three. 

Let’s try this out on our example. We start with the table from above, 
initialize the bottom left square, and trivially fill in the lowest row and 
leftmost column. 
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rlll I I I 
PO123456789 
Oprocessing 

Now we can continue filling in the entire table, and find (as we previously 
discovered in a rather undisciplined fashion) that the Levenshtein distance 
is indeed 3. 

n8766544435 
i7655433355 
~6544323445 
e5433233345 
~4322222345 
~3211223456 
02101234567 
r1012345678 
PO123456789 

From the table we can discover more than simply the total distance, 
we can actually reconstruct the optimal sequence of operations. Indeed the 
optimal set of deletions, insertions, and substitutions pops out to the eye as 
the path of minimal cost through the table. At first there seem to be many 
optimal paths, but quite a few of these correspond to making a deletion 
and insertion instead of some substitution. The true path segments are the 
ones that contributed the minimal cost transitions. Thus to find the true 
path you start at the end point and retrace your steps backward through 
the table; we can save redundant computation by storing in each square 
not only its cost but the previous square visited. The only ambiguities that 
remain correspond to squares where more than one transition produced the 
same minimal cost; in our example changing the dictionary c to the incorrect 
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ss could be accomplished by changing the c to s and then inserting an s, or 
by first inserting an s and then changing the c to s. 

Up to now we have assumed that all errors have the same cost, but that 
is not always the case. Some mistaken keypresses are more prevalent then 
others, and there is really very little reason to assume a deletion is as likely 
as an insertion. However, it is not difficult to generalize the Levenshtein 
distance to take this into account; one need only add specific penalties rather 
than simply incrementing by one. 

This algorithm for finding the generalized Levenshtein distance is exactly 
the DTW algorithm for comparing two spoken words. The word from the 
dictionary is placed horizontally from left to right at the bottom of a table, 
and the word to be compared is stretched vertically from bottom to top. We 
then compare short segments of the two words using some cost function (e.g., 
correlation, difference in spectral description, etc.) that is small for similar 
sounding segments. When noise contaminates a segment we may make a 
substitution error, while time warping causes deletions and insertions of 
segments. In order to identify a word we compare it to all words in the 
dictionary and return the word with the lowest Levenshtein distance. 

EXERCISES 

8.7.1 The game of doublets was invented in 1879 by Lewis Carroll (the mathe- 
matician Charles Lutwidge Dodgson 1832-1898). The aim of the game is to 
convert a word into a related word in the minimal number of substitution 
steps; However, each step must leave an actual word. For example, we can 
change hate into love, in three steps in the following way: hate have lave 
love. Show how to make a cat into a dog in three steps, how an ape can 
evolve into a man in five steps, and how to raise four to five by a seven step 
procedure. four foul fool foot fort fore fire five. How many steps 
does it take to drive the pig into the sty? 

8.7.2 In more complex implementations of spelling checkers further types of errors 
may be added (e.g., reversal of the order of two letters). Can the dynamical 
programming algorithm still be used to determine the Levenshtein distance? 

8.7.3 An alternative method for comparing time-warped signals is the Markov 
model approach. Here we assume that the signal is generated by a Markov 
model with states 01,02 . . . 0~. When the model is in state 0, it has prob- 
ability u~,~ of staying in the same state, probability u~,~+I of transitioning 
to state Om+r, and probability u~,~+z of skipping over state Om+r directly 
to state Om+2. When the model is in state 0, it outputs a characteristic 
signal segment sm. Write a program that simulates a Markov model and run 
it several times. Do you see how the time warping arises? 
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8.7.4 An extension to the above model is the Hidden Markov Model (HMM). The 
HMM states are hidden since they do not uniquely correspond to an output 
signal segment; rather when the model is in a state 0, it has probability 
b,l of outputting signal sl. Extend the program of the previous exercise to 
generate HMM signals. Why is the HMM more realistic for speech? 

Bibliographical Notes 

Although there are a lot of books that deal with things that are not filters, 
there are very few such that happen to treat signal processing. 

Median and morphological filters are mostly discussed in books on image 
processing, but see [68, 258, 1571. 

Multilayer perceptrons were introduced in [225], and popularized in the 
books by the same authors [168, 1691, although the basic idea had beed 
previously discovered by several researchers. A popular short introduction 
is [150]. 

Phase-locked loops are usually discussed in books on digital communi- 
cations, e.g., [242, 1991. 

Time warping and HMM are discussed in texts on speech recognition, 
e.g., [204, 1761. 
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Correlation 

Our study of signal processing systems has been dominated by the concept 
of ‘convolution’, and we have somewhat neglected its close relative the ‘cor- 
relation’. While formally similar (in fact convolution by a symmetric FIR 
filter can be considered a correlation as well), the way one should think 
about the two is different. Convolution is usually between a signal and a 
filter; we think of it as a system with a single input and stored coefficients. 
Crosscorrelation is usually between two signals; we think of a system with 
two inputs and no stored coefficients. The difference may be only in our 
minds, but nonetheless this mind-set influences the way the two are most 
often used. 

Although somewhat neglected we weren’t able to get this far without 
mentioning correlations at all. We have already learned that crosscorrela- 
tion is a measure of similarity between two signals, while autocorrelation is 
a measure of how similar a signal is to itself. In Section 5.6 we met the auto- 
correlation for stochastic signals (which are often quite unlike themselves), 
and in Section 6.13 we used the crosscorrelation between input and output 
signals to help identify an unknown system. 

Correlations are the main theme that links together the present chapter. 
We first motivate the concept of correlation by considering how to compare 
an input signal to a reference signal. We find that the best signal detector 
is the correlator. After formally defining both crosscorrelation and autocor- 
relation and calculating some examples, we prove the important Wiener- 
Khintchine theorem, which relates the autocorrelation to the power spectral 
density (PSD). 

Next we compare correlation with convolution and discover that the op- 
timal signal detector can be implemented as a matched filter. The matched 
filter was invented for radar and a digression into this important applica- 
tion is worthwhile. The matched filter is good for signal detection, but for 
cleaning up a partially unknown signal we need the Wiener filter, which is 
also based on correlations. 

349 
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There is also a close connection between correlation and prediction. Lin- 
ear predictive coding is crucial in speech processing, and we present it here 
in preparation for our later studies. 

The Wiener-Khintchine theorem states that correlations are second-order 
entities. Although these are sufficient for a wide variety of tasks, we end this 
chapter with a short introduction to the more general higher-order signal 
processing. 

9.1 Signal Comparison and Detection 

A signal detector is a device that alerts us when a desired signal appears. 
Radar and sonar operate by transmitting a signal and detecting its return 
after having being reflected by a distant target. The return signal is often 
extremely weak in amplitude, while interference and noise are strong. In 
order to be able to reliably detect the presence of the return signal we 
employ a signal detector whose output is maximized when a true reflection 
appears. Similar signal detectors are employed in telephony call progress 
processing, medical alert devices, and in numerous other applications. 

Envision a system with a single input that must sound an alarm when 
this input consists of some specified signal. It is important not to miss any 
events even when the signal is weak compared to the noise, but at the same 
time we don’t want to encourage false alarms (reporting detection when the 
desired signal was not really there). In addition, we may need to know as 
accurately as possible precisely when the expected signal arrived. 

The signal to be detected may be as simple as a sinusoid of given fre- 
quency, but is more often a rather complex, but known signal. It is evident 
that signal detection is closely related to signal comparison, the determina- 
tion of how closely a signal resembles a reference signal. Signal comparison 
is also a critically important element in its own right, for example, in digital 
communications systems. In the simplest of such systems one of several ba- 
sic signals is transmitted every T seconds and the receiver must determine 
which. This can be accomplished by building signal detectors for each of the 
basic signals and choosing the signal whose respective detector’s output is 
the highest. A more complex example is speech recognition, where we may 
build detectors for a multitude of different basic sounds and convert the 
input audio into a string of best matches. Generalization of this technique 
to images produces a multitude of further applications, including optical 
character recognition. 
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From these examples we see that comparison and detection are essen- 
tially the same. The simplest detector is implemented by comparing the out- 
put of a comparator to a threshold. Complex detectors may employ more 
sophisticated decision elements, but still require the basic comparison mech- 
anism to function. 

Signal detection and comparison are nontrivial problems due to the pres- 
ence of noise. We know how to build filters that selectively enhance defined 
frequency components as compared to noise; but how do we build a system 
that selectively responds to a known but arbitrary reference signal? Our 
first inclination would be to subtract the input signal sn from the desired 
reference rn, thus forming an error signal en = rn - sn. Were the error signal 
to be identically zero, this would imply that the input precisely matches the 
reference, thus triggering the signal detector or maximizing the output of 
the signal comparator. However, for an input signal contaminated by noise 
%a = rn + vn, we can not expect the instantaneous error to be identically 
zero, but the lower the energy of the error signal the better the implied 
match. So a system that computes the energy of the difference signal is a 
natural comparator. 

This idea of using a simple difference is a step in the right direction, 
but only the first step. The problem is that we have assumed that the input 
signal is simply the reference signal plus additive noise; and this is too strong 
an assumption. The most obvious reason for this discrepancy is that the 
amplitude of the input signal is usually arbitrary. The strength of a radar 
return signal depends on the cross-sectional area of the target, the distance 
from the transmitter to the target and the target to the receiver, the type 
and size of the radar antenna, etc. Communications signals are received 
after path loss, and in the receiver probably go through several stages of 
analog amplification, including automatic gain control. A more reasonable 
representation of the input signal is 

sn= Am + U, 

where A is some unknown gain parameter. 
In order to compare the received signal sn with the reference signal rn it 

is no longer sufficient to simply form the difference; instead we now have to 
find a gain parameter g such that rn - gsn is minimized. We can then use 
the energy of the resulting error signal 

En = m$rn - $I%> 

as the final match criterion. How can we find this g? Assuming for the 
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moment that there is no noise, then for every time YZ we require 

7”n 1 
g =-=- 

Sn A 

in addition to the weaker constraint that the error energy be zero. 

C( rn - gqJ2 = 0 
n 

(9 1) . 

(9 2) . 

By opening the square the latter becomes 

c r~-2gCTnSn+g2CS~=0 
n n n 

which can be rewritten in the following way. 

E?- - 2gC,, + g2ES = 0 (9 3) . 

Here ET is the energy of the reference signal, ES is the energy of the input 
signal, and CTS = C, n n r s is the crosscorrelation between the reference and 
the input. Among all input signals of given energy the correlation is maximal 
exactly when the energy of the difference signal is minimal. 

Now, from equation (9.1) we can deduce that 

C r2 Er 
g2=-=F c n sn s 

which when substituted into (9.3) brings us to the conclusion that 

Gs = l/z% (9 4) . 

in the absence of noise. When the input signal does not precisely match the 
reference, due to distortion or noise, we have lCrSI < +dm. The cross- 
correlation CTS is thus an easily computed quantity that compares the input 
signal to the reference, even when the amplitudes are not equal. A compara- 
tor can thus be realized by simply computing the correlation, and a signal 
detector can be implemented by comparing it to dm (e.g., requiring 

Unfortunately we have not yet considered all that happens to the ref- 
erence signal before it becomes an input signal. In addition to the additive 
noise and unknown gain, there will also usually be an unknown time shift. 
For communications signals we receive a stream of signals to compare, each 
offset by an unknown time delay. For the radar signal the time delay derives 
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from the round-trip time of the signal from the transmitter to the target 
and back, and is precisely the quantity we wish to measure. When there is 
a time shift, a reasonable representation of the input signal is 

S - Arn+m + vn n- Vn 

where A is the gain and m < 0 the time shift parameter. 
In order to compare the received signal sn with the reference signal rn 

we can no longer simply compute a single crosscorrelation; instead we now 
have to find the time shift parameter m such that 

c&n) = &+d%-t. = CrnS7-k-m 
n n 

is maximal. How do we find m? The only way is to compute the crosscor- 
relation Crs(m) for all relevant time shifts (also called time ‘lags’) m and 
choose the maximal one. It is this 

that must be compared with dm in order to decide whether a signal has 
been detected. 

EXERCISES 

9.1.1 Formulate the concept of correlation in the frequency domain starting from 
spectral difference and taking into account an arbitrary gain of the spectral 
distribution. What happens if we need to allow an arbitrary spectral shift? 

9.1.2 Give a complete algorithm for the optimal detection of a radar return sn given 
that the transmitted signal rn was sent at time Ti, returns are expected to 
be received before time T2, and the correlation is required to be at least y. 
Note that you can precompute E,. and compute Es and CTB(rn) in one loop. 

9.1.3 Design an optimal detector for the V.34 probe signal introduced in exer- 
cise 2.6.4. The basic idea is to perform a DFT and implement a correlator 
in the frequency domain by multiplying the spectrum by a comb with 21 
pass-bands (of suitable bandwidth). However, note that this is not indepen- 
dent of signal strength. You might try correcting this defect by requiring the 
correlation to be over 80% of the total signal energy, but this wouldn’t work 
properly since, e.g., answer tone (a pure 2100 Hz tone) would trigger it, be- 
ing one of the frequencies of the probe signal. What is wrong? How can this 
problem be solved? 
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9.2 Crosscorrelation and Autocorrelation 

The time has come to formally define correlation. 

Definition: crosscorrelation 
The crosscorrelation between two real signals x and y is given by 

Cxy(~) 3 J” ~(t)y(t - T)O% A D C,,(m) - 5 XnYn-m (9.5) 
-03 n=-00 

where the time shift r or m is called the lug. n 

There is an important special case, called autocorrelation, when y is taken 
to be x. It might seem strange to compare a signal with itself, but the lag in 
equation (9.5) means that we are actually comparing the signal at different 
times. Thus autocorrelation can assist in detecting periodicities. 

Definition: autocorrelation 
The autocorrelation of a real signal s is given by 

C&) = Im s(t)s(t - ~)dt A D Sn%-m (9 6) . 
-cm n=--00 

and the normalized autocorrelation is defined to be 

cs (7) ~(7) = m A D cs (f-4 cS(m) = - 
cs (0) 

where r or m is called the lug. 

(9 7) . 

These definitions are consistent with those of Section 5.6 for the case 
of stationary ergodic signals. In practice we often approximate the autocor- 
relation of equation (5.22) by using equation (9.6) but with the sum only 
over a finite amount of time. The resulting quantity is called the empirical 
autocorrelation. The correlation is also somewhat related to the covariance 
matrix of vector random variables, and strongly related to the convolution, 
as will be discussed in the next section. 

Before discussing properties of the correlations, let’s try calculating a 
few. The analog rectangular window 

s(t) = 1 1 ItI < 1 
0 else 
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Figure 9.1: The autocorrelation of an analog rectangularly shaped signal. In (A) the 
signal is depicted while the autocorrelation is in (B). Note that the autocorrelation is 
symmetric and has its maximal value at the origin. 

is depicted in Figure 9.1.A. Its autocorrelation is given by the triangular 

c&) = /- s(t)s(t - ~)dt = L;(“;:“:, dt = (2 - 171) -00 - , - (9 8) . 

depicted in Figure 9.1.B. In that figure we see several features that are 
readily shown to be more general. The autocorrelation is symmetric around 
time lag zero, and it takes on its maximum value at lag zero, where it is 
simply the energy ES. The autocorrelation is also wider than the original 
signal, but attacks and decays more slowly. 

Had we used an inverted rectangle (which differs from the original signal 
by a phase shift) 

{ 

-1 ItI < 1 
s(t) = 0 else 

we would have found the same autocorrelation. Indeed the generalization of 
autocorrelation to complex signals, 

~~(7) - Jm s*(t)s(t - T)dt A D C&n) f E s;snmm . (9 9) --oo 72=--00 

can be shown to be phase blind (unchanged by multiplying s by a common 
phase factor). 

What is the autocorrelation of the periodic square wave o(t)? General- 
izing our previous result we can show that the autocorrelation is a periodic 
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triangular wave of the same period. This too is quite general-the autocor- 
relation of a periodic signal is periodic with the same period; and since the 
lag-zero autocorrelation is a global maximum, all lags that are multiples of 
the period have globally maximal autocorrelations. This fact is precisely the 
secret behind using autocorrelation for determining the period of a periodic 
phenomenon. One looks for the first nonzero peak in the autocorrelation as 
an indication of the period. The same idea can be used for finding Fourier 
components as well; each component contributes a local peak to the auto- 
correlation. 

As our final example, let’s try a digital autocorrelation. The signal b, is 
assumed to be zero except for n = 1. . . 13 where it takes on the values f 1. 

. ..0.0,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,0,0 ,... (9.10) 

Its autocorrelation is easily computed to be C(0) = 13, C(m) = 0 for odd r-n 
in the range -13 < m < 13, C(m) = 1 for even nonzero m in this range, and 
all other autocorrelations are zero. We see that the autocorrelation is indeed 
maximal at m = 0 and symmetric, and in addition the highest nonzero- 
lag correlations are only 1. Signals consisting of 44 values with this last 
property (i.e., with maximal nontrivial autocorrelation of v or less) are 
called Barker codes, and are useful for timing and synchronization. There is 
no known way of generating Barker codes and none longer than this one are 
known. 

The definitions for autocorrelation or crosscorrelation given above in- 
volve integrating or summing over all times, and hence are not amenable 
to computation in practice. In any case we would like to allow signals to 
change behavior with time, and thus would like to allow correlations that 
are defined for finite time durations. The situation is analogous to the prob- 
lem that led to the definition of the STFT, and we follow the same tactic 
here. Assuming a rectangular window of length N, there are N terms in the 
expression for the zero lag, but only N - 1 terms contribute to the lag 1 
correlation slsa + szsr + . . . + SN.-~SN-~, and only N - m terms in the lag 
m sum. So we define the short-time autocorrelation 

&x%-m (9.11) 

where now the zero lag is the power rather than the energy. This quantity is 
often called the unbiased empirical autocorrelation when it is looked upon 
as a numerical estimate of the full autocorrelation. 
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EXERCISES 

9.2.1 What is the connection between autocorrelation defined here for determin- 
istic signals and the autocorrelation we earlier defined for stochastic signals 
(equation (5.22))? 

9.2.2 What is the crosscorrelation between a signal s(t) and the impulse s(t)? 

9.2.3 Compute and draw the crosscorrelation between two analog rectangular sig- 
nals of different widths. 

9.2.4 Compute and 
nals. 

draw the crosscorrelation between two analog triangular sig- 

9.2.5 Show that CyZ(m) = C&,(-m). 

9.2.6 Prove that the autocorrelation is symmetric and takes its maximum value at 
the origin, where it is the energy. Show that IcZy(m)( 5 1. 

9.2.7 Can you find Barker codes of length 5, 7, and ll? What are their autocorre- 
lations? 

9.2.8 What is the proper generalization of crosscorrelation and autocorrelation to 
complex signals? (Hint: The autocorrelation should be phase independent.) 

9.2.9 Prove that the autocorrelation of a periodic signal is periodic with the same 
period. 

9.210 Prove that zero mean symmetric signals have zero odd lag autocorrelations. 

9.2.11 Assume gn = x,+1. What are the connections between CZy (m), C,(m) and 
c,(m)? 

9.2.12 Derive the first few autocorrelation values for sn = Asin(wn + 4). 

9.2.13 Generalize the previous exercise and derive the following expression for the 
general autocorrelation of the sinusoid. 

G(m) = (wn+m) 
A2 

= yj- cos(wm) 

9.3 The Wiener-Khintchine Theorem 

The applications of correlation that we have seen so far derive from its con- 
nection with the difference between two signals. Another class of applications 
originate in the relationship between autocorrelation and power spectrum 
(see Section 4.5), a relationship known as the Wiener-Khintchine Theorem. 
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The PSD of a signal is the absolute square of its FT, but it is also can 
be considered to be the FT of some function. Parseval’s relation tells us 
that integrating the PSD over all frequencies is the same as integrating the 
square of the signal over all times, so it seems reasonable that the iFT of 
the PSD is somehow related to the square of the signal. 

Could it be that the PSD is simply the FT of the signal squared? The DC 
term works because of Parseval, but what about the rest? We don’t have 
to actually integrate or sum to find out since we can use the connection 
between convolution and FT of a product FT(zy) = X * Y (equation (4.18) 
or (4.46)). Using the signal s for both z and y we see that the FT of s2(t) 
is S*S = $S(w - Q)S(Q)dO, which is not quite the PSD lSl2 = S*S = 
S(-w)S(w) (for real signals), but has an additional integration. We want to 
move this integration to the time side of the equation, so let’s try s *s. From 
equation (4.19) or (4.47) we see that the FT of s * s is S2(w) which is even 
closer, but has both frequency variables positive, instead of one positive and 
one negative. So we need something very much like s * s but with some kind 
of time variable inversion; that sounds like the autocorrelation! 

So let’s find the FT of the autocorrelation. 

FT (c,(t)) = FT 
(s 

O” s(r)s(r - t)d7) 
-00 

00 
= 

I (s 

00 
S(T)S(T - t)dT ciwtdt 

-00 -cm 

= 

The PSD at last! 
We have thus proven the following celebrated theorem. 

The Wiener-Khintchine Theorem 
The autocorrelation Cs (t) and the power spectrum S(w) are an FT pair. n 

Although we proved the theorem for deterministic analog signals, it is 
more general. In fact, in Section 5.7 we used the Wiener-Khintchine theorem 
as the definition of spectrum for random signals. 
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As a corollary to the theorem we can again prove that the autocorrela- 
tion is ‘phase blind’, that is, independent of the spectral phase. Two signals 
with the same power spectral density but different spectral phase will have 
the same autocorrelation function, and hence an infinite number of signals 
have the same autocorrelation. Methods of signal analysis that are based on 
autocorrelation can not differentiate between such signals, no matter how 
different they may look in the time domain. If we need to differentiate be- 
tween such signals we need to use the higher-order statistics of Section 9.12. 

EXERCISES 

9.3.1 The period of a pure sinusoid is evident as a peak in the autocorrelation and 
hence its frequency is manifested as a peak in the power spectrum. This is 
the true basis for the connection between autocorrelation and PSD. What 
can you say about the autocorrelation of a general periodic signal? What is 
the autocorrelation of the sum of two sinusoidal components? Can you see 
the PSD connection? 

9.3.2 Express and prove the Wiener-Khintchine theorem for digital signals. 

9.3.3 Generalize the Wiener-Khintchine theorem by finding the FT of the cross- 
correlation of two signals z(t) and y(t). 

9.4 The Frequency Domain Signal Detector 

Simply observing the input signal in the time domain is not a very sensitive 
method of detecting low-SNR signals, a fact made obvious by looking back 
at Figure 2.9. Since correlation is a method for detecting weak signals, and 
correlation is related to spectrum by the Wiener-Khintchine theorem, there 
should be a way of exploiting the frequency domain for signal detection. 

In Section 5.3 we saw how to reduce noise by averaging it out. This 
would seem to be a purely time domain activity, but there is a frequency 
domain connection. To see this, consider the simplest case, that of a pure 
sinusoid in noise. For averaging to optimally reinforce the signal we must 
first ensure that all the times intervals commence at precisely the same phase 
in a period, an operation called ‘time registration’. Without registration the 
signal cancels out just like the noise; with inaccurate registration the signal 
is only partially reinforced. If we wish to take successive time intervals, 
accurate registration requires the intervals to be precise multiples of the 
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sinusoid’s basic period. Thus signal emphasis by averaging requires precise 
knowledge of the signal’s frequency. 

Now let’s see how we can emphasize signals working directly in the fre- 
quency domain. In a digital implementation of the above averaging each 
time interval corresponds to a buffer of samples. Assume that the period 
is L samples and let’s use a buffer with exactly k periods. We start filling 
up the buffer with the input signal consisting of signal plus noise. Once the 
buffer is filled we return to its beginning, adding the next signal sample to 
that already there. Performing this addition M times increases the sinusoidal 
component by M but the noise component only by m (see exercise 5.3.1). 
Hence the SNR, defined as the ratio of the signal to noise energies, is im- 
proved by M. This SNR increase is called the processing gain. 

How many input samples did we use in the above process? We filled the 
buffer of length kL exactly M times; thus N = kLM input samples were 
needed. We can use a buffer with length corresponding to any integer number 
of periods k, but the N input signal samples are used most efficiently when 
the buffer contains a single cycle k = 1. This is because the processing gain 
M = & will be maximal for a given N when k = 1. However, it is possible 
to do even better! It is possible to effectively reduce the ‘buffer’ to a single 
sample such that M = N, and obtain the maximal processing gain of N. 

All we have to do is to downmix the signal to DC, by multiplying by 
a complex exponential and low-pass filtering. The noise will remain zero 
mean while the sinusoid becomes a complex constant, so that averaging as in 
Section 6.6 cancels out the noise but reinforces the constant signal. Now, as 
explained in Section 13.2, this complex downmixing can be performed using 
the DFT. So by performing a DFT the energy in the bin corresponding to the 
desired signal frequency increases much faster than all the other bins. In the 
frequency domain interpretation the processing gain is realized due to the 
signal being concentrated in this single bin, while the white noise is spread 
out over N bins. Thus were the signal and noise energies initially equal, the 
ratio of the energy in the bin corresponding to the signal frequency to that 
of the other bins would be N, the same processing gain deduced from time 
domain arguments. 

So we see that our presumption based on the Wiener-Khintchine theorem 
was correct; the frequency domain interpretation is indeed useful in signal 
detection. Although we discussed only the simple case of a single pure sinu- 
soid, it is relatively easy to extend the ideas of this section to more general 
signals by defining distinctive spectral signatures. Instead of doing this we 
will return to the time domain and see how to build there a signal detection 
system for arbitrary signals. 
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EXERCISES 

9.4.1 Express the processing gain in decibels when the DFT is performed using a 
2m point FFT. 

9.4.2 In the text we tacitly assumed the signal frequency to be precisely at a bin 
center. If this is not the case a window function 20~ (see Section 13.4) must 
be employed. Show that with a window the signal energy is enhanced by 
(C, UJ,)~ while the noise energy is increased by C, wi thus resulting in a 
processing gain of the ratio of these two expressions. 

9.4.3 Build a detector for a signal that consists of the equally weighted sum of two 
sinusoids. Is it worthwhile taking the phases into account? What if the signal 
is the weighted sum of the two sinusoids? 

9.4.4 Extend the technique of the previous exercise and build a DFT-based detector 
for a completely general signal. 

9.5 Correlation and Convolution 

Although we have not mentioned it until now, you have no doubt noticed 
the similarity between the expression for digital crosscorrelation in equa- 
tion (9.5) and that for convolution in equation (6.13). The only difference 
between them is that in correlation both indices run in the same direction, 
while in convolution they run in opposite directions. Realizing this, we can 
now realize our signal comparator as a filter. The filter’s coefficients will be 
the reference signal reversed in time, as in equation (2.16). Such a filter is 
called a matched filter, or a correlator. The name matched filter refers to the 
fact that the filter coefficients are matched to the signal values, although in 
reverse order. 

What is the frequency response of the matched filter? Reversing a sig- 
nal in time results in frequency components FT (s(4)) = S(-w), and if 

the signal is real this equals S* (w) , so the magnitude of the FT remains 
unchanged but the phase is reversed. 

From the arguments of Section 9.1 the correlator, and hence the the- 
oretically identical matched filter, is the optimum solution to the problem 
of detecting the appearance of a known signal sn contaminated by additive 
white noise x, = sn + u,. 

Can we extend this idea to optimally detect a signal in colored noise? To 
answer this question recall the joke about the mathematician who wanted a 
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cup of tea. Usually he would take the kettle from the cupboard, fill it with 
water, put it on the fire, and when the water boiled, pour it into a cup and 
drop in a tea bag. One day he found that someone had already boiled the 
water. He stared perplexed at the kettle and then smiled. He went to the 
sink, poured out the boiling water, returned the kettle to the cupboard and 
declared triumphantly: ‘The problem has been reduced to one we know how 
to solve.’ 

How can we reduce the problem of a signal in colored noise to the one for 
which the matched filter is the optimal answer? All we have to do is filter the 
contaminated signal xn by a filter whose frequency response is the inverse 
of this noise spectrum. Such a filter is called a whitening filter, because it 
flattens the noise spectrum. The filtered signal XL = sk + u; now contains 
an additive white noise component uk, and the conditions required for the 
matched filter to be optimal are satisfied. Of course the reference signal sk 
is no longer our original signal s,; but finding the matched filter for sk is 
straightforward. 

EXERCISES 

9.5.1 Create a sinusoid and add Gaussian white noise of equal energy. Recover the 
sinusoid by averaging. Experiment with inaccurate registration. Now recover 
the sinusoid by a DFT. What advantages and disadvantages are there to this 
method? What happens if the frequency is inaccurately known? 

9.5.2 Build a matched filter to detect the HPNA 1.0 pulse (see exercise 7.7.4). Try 
it out by synthesizing pulses at random times and adding Gaussian noise. 
HPNA 1.0 uses PPM where the information is in the pulse position. How 
precisely can you detect the pulse’s time of arrival? 

9.5.3 Compare the time domain matched filter with a frequency domain detector 
based on the FFT algorithm. Consider computational complexity, processing 
delay, and programming difficulty. 

9.6 Application to Radar 

Matched filters were invented in order to improve the detection of radar 
returns. We learned the basic principles of radar in Section 5.3 but were 
limited to explaining relatively primitive radar processing techniques. With 
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our newly acquired knowledge of matched filters we can now present im- 
proved radar signals and receivers. 

Radar pulses need to have as much energy as possible in order to increase 
the probability of being detected, and thus should be long in duration. In 
order to increase a radar’s range resolution we prefer narrow pulses since 
it’s hard to tell when exactly a wide pulse arrives. How can we resolve this 
conflict of interests? The basic idea is to use a wide pulse but to modulate it 
(Le., to change its characteristics with time). The output of a filter matched 
to this modulation can be made to be very short in duration, but containing 
all the energy of the original pulse. 

To this end some radars vary their instantaneous frequency linearly with 
time over the duration of the pulse, a technique known as FM chirp We 
demonstrate in Figure 9.2 the improvement chirp can bring in range reso- 
lution. The pulse in Figure 9.2-A is unmodulated and hence the matched 
filter can do no better than to lock onto the basic frequency. The output of 
such a matched filter is the autocorrelation of this pulse, and is displayed in 
Figure 9.2.B. Although theoretically there is a maximum corresponding to 
the perfect match when the entire pulse is overlapped by the matched fil- 
ter, in practice the false maxima at shifts corresponding to the basic period 

Figure 9.2: The autocorrelation of pulses with and without chirp. In (A) a pulse with 
constant instantaneous frequency is depicted, and its wide autocorrelation is displayed in 
(B). In (C) we present a pulse with frequency chirp; its much narrower autocorrelation is 
displayed in (D) . 
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make it difficult to determine the precise TOA. In contrast the chirped pulse 
of Figure 9.2.C does not match itself well at any nontrivial shifts, and so 
its autocorrelation (Figure 9.2.D) is much narrower. Hence a matched filter 
built for a chirped radar pulse will have a much more precise response. 

Chirped frequency is not the only way to sharpen a radar pulse’s auto- 
correlation. Barker codes are often used because of their optimal autocorre- 
lation properties, and the best way to embed a Barker code into a pulse is 
by changing its instantaneous phase. Binary Phase Shift Keying (BPSK), 
to be discussed in Section 18.13, is generated by changing a sinusoidal sig- 
nal’s phase by 180”, or equivalently multiplying the sinusoid by -1. To use 
the 13-bit Barker code we divide the pulse width into 13 equal time inter- 
vals, and assign a value f 1 to each. When the Barker code element is +l 
we transmit + sin(wt), while when it is -1 we send - sin(&). This Barker 
BPSK sharpens the pulse’s autocorrelation by a factor of 13. 

Not all radars utilize pulses; a Continuous Wave (CW) radar transmits 
continuously with constant amplitude. How can range be determined if echo 
arrives continuously? Once again by modulating the signal, and if we want 
constant amplitude we can only modulate the frequency or phase (e.g., by 
chirp or BPSK). Both chirp and BPSK modulation are popular for CW 
radars, with the modulation sequence repeating over and over again without 
stopping. CW radars use LFSR sequences rather than Barker codes for a very 
simple reason. Barker codes have optimal linear autocorrelation properties, 
while maximal-length LFSR sequences can be shown to have optimal circular 
autocorrelation characteristics. Circular correlation is analogous to circular 
convolution; instead of overlapping zero when one signal extends past the 
other, we wrap the other signal around periodically. A matched filter that 
runs over a periodically repeated BPSK sequence essentially reproduces the 
circular autocorrelation. 

EXERCISES 

9.6.1 Plot, analogously to Figure 9.2, the autocorrelation of a pulse with a 13-bit 
Barker code BPSK. 

9.6.2 What is the circular autocorrelation of the LFSR15 sequence? 

9.6.3 What is the difference between coherent 
way are coherent radars better? 

and incoherent pulse radars? In what 
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9.7 The Wiener Filter 

The matched filter provides the optimum solution to the problem of detect- 
ing the arrival of a known signal contaminated by noise; but correlation- 
based filters are useful for other problems as well, for example, removing 
noise from an unknown signal. 

If the signal is known in the matched filter problem, then why do we need 
to clean it up? The reason is that the signal may be only partially known, 
and we must remove noise to learn the unknown portion. In one common 
situation we expect a signal from a family of signals and are required to 
discover which specific signal was received. Or we might know that the signal 
is a pure sinusoid, but be required to measure its precise frequency; this is 
the case for Doppler radars which determine a target’s velocity from the 
Doppler frequency shift. 

Let’s see how to build a filter to optimally remove noise and recover a 
signal. Our strategy is straightforward. It is simple to recover a sufficiently 
strong signal in the presence of sufficiently weak noise (i.e., when the SNR 
is sufficiently high). When the SNR is low we will design a filter to enhance 
it; such a filter’s design must take into account everything known about the 
signal and the noise spectra. 

Before starting we need some notation. For simplicity we observe the 
spectrum from DC to some frequency F. We will denote the original analog 
signal in time as s(t) and in frequency as S(f). We will call its total energy 
Es. We denote the same quantities for the additive noise, v(t), V(f), and 
Ev, respectively. These quantities are obviously related by 

and if the noise is white then we further define its constant power spectral 
density to be Vu = $Y watt per Hz. The overall signal-to-noise ratio is the 
ratio of the energies 

SNR = 2 (9.12) 
Y 

but we can define time- and frequency-dependent SNRs as well. 

I V>l 2 

SNR(t) = -!--- 
I @)I v 2 

IW >I2 SNW) = Iv(f)lz (9.13) 
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Finally, the observed signal is the sum of the signal plus the noise. 

x(t) = s(t) + v(t) X(f) = S(f) + w (9.14) 

We’ll start with the simple case of a relatively pure sinusoid of frequency 
fo in white noise. The signal PSD consists of a single narrow line (and 
its negative frequency conjugate), while the noise PSD is a constant VO; 
accordingly the SNR is 3. What filter will optimally detect this signal 
given this noise? Looking at the frequency-dependent SNR we see that the 
signal stands out above the noise at fo; so it makes sense to use a narrow 
band-pass filter centered on the sinusoid’s frequency J-J. The narrower the 
filter bandwidth BW, the less noise energy is picked up, so we want BW 
to be as small as possible. The situation is depicted in Figure 9.3.A where 
we see the signal PSD represented as a single vertical line, the noise as a 
horizontal line, and the optimum filter as the smooth curve peaked around 
the signal. The signal-to-noise ratio at the output of the filter 

(9.15) 

is greater than that at the input by a factor of & . For small B W this is a 
great improvement in SNR and allows us to detect the reference signal even 
when buried in very high noise levels. 

Now let’s complicate matters a bit by considering a signal with two equal 
spectral components, as in Figure 9.3.B. Should we use a filter that captures 
both spectral lines or be content with observing only one of them? The two- 
component filter will pass twice the signal energy but twice the noise energy 
as well. However, a filter that matches the signal spectrum may enhance the 
time-dependent SNR; the two signal components will add constructively at 
some time, and by choosing the relative phases of the filter components we 
can make this peak occur whenever we want. Also, for finite times the noise 
spectrum will have local fluctuations that may cause a false alarm in a single 
filter, but the probability of that happening simultaneously in both filters 
is much smaller. Finally, the two-component filter can differentiate better 
between the desired signal and a single frequency sinusoid masquerading as 
the desired signal. 

Were one of the frequency components to be more prominent than the 
other, we would have to compensate by having the filter response H(f) as 
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Figure 9.3: Expected behavior of an optimum filter in the frequency domain. In all the 
figures we see the PSD of the reference signal and noise, as well as the Wiener filter. The 
various cases are discussed in the text. 

depicted in Figure 9.3.C. This seems like the right thing to do, since such a 
filter emphasizes frequencies with high SNR. Likewise Figure 9.3.D depicts 
what we expect the optimal filter to look like for the case of two equal signal 
components, but non-white noise. 

How do we actually construct this optimum filter? It’s easier than it 
looks. From equation (9.14) the spectrum at the filter input is S(f) + V(f), 
so the filter’s frequency response must be 

S(f) 
H(f) = S(f) + V(f) (9.16) 

in order for the desired spectrum S(f) to appear at its output. This fre- 
quency response was depicted in Figure 9.3. Note that we can think of this 
filter as being built of two parts: the denominator corresponds to a whitening 
filter, while the numerator is matched to the signal’s spectrum. Unlike the 
whitening filter that we met in the matched filter detector, here the entire 
signal plus noise must be whitened, not just the noise. 

This filter is a special case of the Wiener filter derived by Norbert Wiener 
during World War II for optimal detection of radar signals. It is a special 
case because we have been implicitly assuming that the noise and signal are 



368 CORRELATION 

uncorrelated. When the noise can be correlated to the signal we have to be 
more careful. 

This is not the first time we have attempted to find an unknown FIR fil- 
ter. In Section 6.13 we found that the hard system identification problem for 
FIR filters was solved by the Wiener-Hopf equations (6.63). At first it seems 
that the two problems have nothing in common, since in the Wiener filter 
problem only the input is available, the output being completely unknown 
(otherwise we wouldn’t need the filter), while in the system identification 
case both the input and output were available for measurement! However, 
neither of these statements is quite true. Were the output of the Wiener 
filter completely unspecified the trivial filter that passes the input straight 
through would be a legitimate solution. We do know certain characteristics 
of the desired output, namely its spectral density or correlations. In the hard 
system identification problem we indeed posited that we intimately knew the 
input and output signals, but the solution does not exploit this much detail. 
Recall that only the correlations were required to find the unknown system. 

So let’s capitalize on our previous results. In our present notation the 
input is xn = sn + u, and the desired output sn. We can immediately state 
the Wiener-Hopf equations in the time domain 

k 

so that given CsZ and CZ we can solve for h, the Wiener filter in the time 
domain. To compare this filter with our previous results we need to transfer 
the equations to the frequency domain, using equation (4.47) for the FT of 
a convolution. 

Here PsZ (w) is the FT of the crosscorrelation between s(t) and x(t) , and 
Px(w) is the PSD of x(t) ( i.e., FT of its autocorrelation). Dividing we find 
the full Wiener filter. 

f+) = psz(w) 
w4 

(9.17) 

For uncorrelated noise Ps&) = P&) and Pz(w) = P&) + P&) and so 
the full Wiener filter reduces to equation (9.16). 

The Wiener filter only functions when the signals being treated are sta- 
tionary (i.e., Psx and Ps are not functions of time). This restriction too can 
be lifted, resulting in the K&nun filter, but any attempt at explaining its 
principles would lead us too far astray. 
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EXERCISES 

9.7.1 Assume that the signal s(t) has constant PSD in some range but the noise 
y(t) is narrow-band. Explain why we expect a Wiener filter to have a notch 
at the disturbing frequency. 

9.7.2 An alternative to the SNR is the ‘signal-plus-noise-to-noise-ratio’ S+NNR. 
Why is this ratio of importance? What is the relationship between the overall 
S+NNR and SNR? What is the relationship between the Wiener filter and 
the frequency-dependent S+NNR and SNR? 

9.8 Correlation and Prediction 

A common problem in DSP is to predict the next signal value sn based on 
the values we have observed so far. If sn represents the closing value of a 
particular stock on day n the importance of accurate prediction is obvious. 
Less obvious is the importance of predicting the next value of a speech signal. 
It’s not that I impolitely do not wish to wait for you to finish whatever 
you have to say; rather the ability to predict the next sample enables the 
compression of digitized speech, as will be discussed at length in Chapter 19. 
Any ability to predict the future implies that less information needs to be 
transferred or stored in order to completely specify the signal. 

If the signal s is white noise then there is no correlation between its 
value sn and its previous history (i.e., Cs(m) = 0 Vm # 0), and hence no 
prediction can improve on a guess based on single sample statistics. However, 
when the autocorrelation is nontrivial we can use past values to improve 
our predictions. So there is a direct connection between correlation and 
prediction; we can exploit the autocorrelation to predict what the signal 
will must probably do. 

The connection between correlation and prediction is not limited to au- 
tocorrelation. If two signals x and y have a nontrivial crosscorrelation this 
can be exploited to help predict yn given xn. More generally, the causal pre- 
diction of yn could depend on previous y values, x~, and previous x values. 
An obvious example is when the crosscorrelation has a noticeable peak at 
lag m, and much information about gn can be gleaned from xnern. 

We can further clarify the connection between autocorrelation and signal 
prediction with a simple example. Assume that the present signal value sn 
depends strongly on the previous value s,-1 but only weakly on older values. 
We further assume that this dependence is linear, sn M b ~~-1 (were we to 
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take s n ti b ~~-1 + c we would be forced to conclude c = 0 since otherwise the 
signal would diverge after enough time). Now we are left with the problem of 
finding b given an observed signal. Even if our assumptions are not very good, 
that is, even if sn does depend on still earlier values, and/or the dependence 
is not really linear, and even if sn depends on other signals as well, we are 
still interested in finding that b that gives the best linear prediction given 
only the previous value. 

Sn - = bsn-l (9.18) 

What do we mean by best prediction? The best definition of best is for 
the Mean Squared Error (MSE) 

dz = (in - bn)2 = (sn - bsn-1)2 = Si - 2 bsn Sn-1 + b2si-l 

to be as small as possible, on the average. We are now in familiar territory. 
Assuming the signal to be time-invariant we average over all time 

(di) = (SE) -2b (SnSn-1) +b2 (Si-1) = (1+b2)Cs(0) - 2bCs(l) 

and then differentiate and set equal to zero. We find that the optimal linear 
prediction is 

b ‘s(l) = - = c,(l) 
cs (0) 

(9.19) 

the normalized autocorrelation coefficient for lag 1. Substituting this back 
into the expression for the average square error, we find 

( > 
d; = cm - c,2(1) 

cs (0) 
(9.20) 

so that the error vanishes when the lag 1 correlation equals the energy. 

EXERCISES 

9.8.1 Wiener named his book The Extrapolation, Interpolation and Smoothing of 
Stationa y Time Series with Engineering Applications. Wiener’s ‘extrapola- 
tion’ is what we have called ‘prediction’. What did he mean by ‘interpolation’ 
and ‘smoothing’ ? 

9.8.2 Find the optimal linear prediction coefficients when two lags are taken into 
account. 

s,, = bls,.+1 + bzsn-2 
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9.9 Linear Predictive Coding 

Signal coding, that is, compression of the amount of information needed to 
represent a signal, is an important application of DSP. To see why, consider 
the important application of digital speech. A bandwidth of 4 KHz is re- 
quired so we must sample at 8000 samples per second; with 16 bit samples 
this requires 128 Kb/s, or just under 1 MB of data every minute. This data 
rate cannot be transferred over a telephone connection using a modem (the 
fastest telephone-grade modems reach 56 Kb/s) and would even be a tremen- 
dous strain on storage facilities. Yet modern speech compression techniques 
(see Chapter 19) can reduce the required rate to 8 Kb/s or less with only 
barely noticeable quality degradation. 

Let’s call the signal to be compressed sn. If s is not white noise then it 
is at least partially linearly predictable based on its M previous values. 

sn = Ge, -I- 5 bmsn-m 
m=l 

(9.21) 

Here e, is the portion of the signal not predictable based on the signal’s own 
history, G is an arbitrarily introduced gain, and bm are called the Linear 
Predictive Coding (LPC) coefficients. Note that most people use a for these 
coefficients, but we reserve a for FIR coefficients; some people use a minus 
sign before the sum (i.e., use what we call ,0 coefficients). 

Equation (9.21) has a simple interpretation; the signal sn is obtained 
by filtering the unpredictable signal e, by a all-pole filter with gain G and 
coefficients bm . The e, is called the ‘excitation’ signal since it ‘excites’ the 
filter into operation. Since the filter is all-pole it enhances certain excited 
frequencies; these amplified frequencies are responsible for the non-flat spec- 
trum and nontrivial autocorrelation of predictable signals. For speech sig- 
nals (see Section 11.3) the excitation e, is the ‘glottal excitation’; for voiced 
speech (e.g., vowels) this is a periodic set of pulses created by the vocal 
chords,.while for unvoiced speech (e.g., h) it is a noise-like signal created by 
constricting the passage of air. For both cases the mouth and nasal cavities 
act as a filter, enhancing frequencies according to their geometry. 

In order to compress the signal we need an algorithm for finding the 
M + 1 parameters G and bm given a buffer of N samples of the signal 

{ 1 N-l Sn n=O* Looking carefully at equation (9.21) we note a problem. There 
are too many unknowns. In order to uniquely determine the coefficients bm 
we need to know both the observed speech signal sn and the excitation 
en. Unfortunately, the latter signal is usually inaccessible; for speech signals 
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obtaining it would require swallowing a microphone so that it would be close 
to the vocal chords and before the vocal tract. We thus venture forth under 
the assumption that the excitation is identically zero. This is true most of the 
time for a pulse train excitation, only erring for those time instants when the 
impulse appears. It is obviously not a good approximation for many other 
cases. 

Under the assumption of zero excitation we get the homogeneous recur- 
sion 

M 

sn = c bmsn-m (9.22) 
m=l 

for which s = 0 (the zero signal) is a solution. It is the only solution if the 
excitation was truly always zero; but due to the IIR nature of the filter, other 
possibilities exist if the excitation was once nonzero, even if zero during the 
duration of the present buffer. For speech the excitation is not truly zero, 
so even when we find the coefficients bm we can only approximately predict 
the next signal value. 

M 

sn = c bmsn-m (9.23) 
m=l 

The error of this approximation is called the residual signal 

M 

7-n = sn - sn = sn, - c bmsn-m = 5 Pmsn-m (9.24) 

(where ,& E 1 and pm = -bm), and the correct LPC coefficients minimize 
this residual. Note that the residual is obtained by FIR filtering the input 
signal, with the filter coefficients being precisely pm. This all-zero filter is 
usually called the ‘LPC analysis filter’ and it is the inverse filter of the 
‘LPC synthesis filter’ that synthesizes the speech from the excitation (see 
Figure 9.4). The analysis filter is also called the ‘LPC whitening filter’, the 
residual being much whiter than the original speech signal, since the linear 
predictability has been removed. 

There is another way of looking at the residual signal. Rather than taking 
no excitation and treating the residual as an error signal, we can pretend 
that there is excitation but take the error to be precisely zero. What must 
the excitation be for s’, to be the correct signal value? Comparing equations 
(9.24) and (9.21) we see that rn = Gen, the residual is simply the excitation 
amplified by the gain. Thus when analyzing voiced speech we see that the 
residual is usually small but displays peaks corresponding to the vocal chord 
pulses. 



9.9. LINEAR PREDICTIVE CODING 373 

e+Ft-+s s = = t- all-zero 
filter Li F 
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synthesis filter analysis filter 

Figure 9.4: LPC synthesis and analysis filters. The synthesis filter synthesizes the signal 
s,, from the excitation e,, while the analysis filter analyzes incoming signal s,, and outputs 
the residual error signal rn. The synthesis and analysis filters are inverse systems to within 
a gain. 

One final remark regarding the residual. In speech compression termi- 
nology the residual we defined is called the open-loop residual. It can be 
calculated only if the original speech samples sn are available. When decom- 
pressing previously compressed speech these samples are no longer available, 
and we can only attempt to predict the present signal value based on past 
predicted w&es. It is then better to define the closed-loop residual 

M 

7-i = sn + C bm%t-m 
m=l 

and minimize it instead. 
Returning to our mission, we wish to find coefficients bm that minimize 

the residual of equation (9.24). In order to simultaneously minimize the 
residual rn for all times of interest n, we calculate the MSE 

E = cri = C(sn - 5 bmsn-m)2 
n n m=l 

(9.25) 

and minimize it with respect to the bm (m = 1. . .1M). This minimization is 
carried out by setting all M partial derivatives equal to zero 

which leads us to the following set of A4 equations. 

M 

c(C 
bl&-mSn-l- &&x-m 

) 

=o 

n 1=1 

(9.26) 
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Moving the sum on 72 inside we can rewrite these 

in which the signal enters only via autocorrelations Cs. 

(9.27) 

(9.28) 

These are, of course, the Yule-Walker equations for the LPC coefficients. 
The sum in the autocorrelations should run over all times n. This is 

problematic for two reasons. First, we are usually only given an input signal 
buffer of length IV, and even if we are willing to look at speech samples 
outside this buffer, we cannot wait forever. Second, many signals including 
speech are stationary only for short time durations, and it is only sensible 
to compute autocorrelations over such durations. Thus we must somehow 
limit the range of times taken into account in the autocorrelation sums. 
This can be done in two ways. The brute-force way is to artificially take all 
signal values outside the buffer to be zero for the purposes of the sums. A 
somewhat more gentle variant of the same approach uses a window function 
(see Section 13.4) that smoothly reduces the signal to zero. The second 
way is to retain the required values from the previous buffer. The first way 
is called the autocorrelation method and is by far the most popular; the 
second is called the covariance method and is less popular due to potential 
numerical stability problems. 

The autocorrelation method allows the sum in the MSE to be over all 
times, but takes all signal values outside the buffer se. . . s~-l to be zero. 
Since the error en in equation (9.24) depends on A4 + 1 signal values, it can 
only be nonzero for n = 0. . . N + M - 1. Accordingly, the MSE is 

N+M-1 

E= c et 
n=O 

and the correlations appearing in it have these limits. 

N+M-1 

C,g(mj Z) e C Sn-m,Sn-1 = C~(l?72 - 21) 

n=O 
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Writing the Yule-Walker equations in matrix notation 

cs (0) Cs(l) . . . Cs(M-1) 

cs (1) Cs(0) . . . Cs(M-2) 

cs (2) Cs(l) . . . C,(M-3) 
. . . . . . . . 

C,(M-1) C,(M-2) l :. GiO) 

we see that the matrix is symmetric and Toeplitz. In the next section we 
will study a fast method for solving such equations. 

The MSE in the covariance method is taken to be 
N-l 

E=p; 
n=O 

and here we don’t assume that the signal was zero for n < 0. We must thus 
access N + M signal values, including M values from the previous buffer. 
Equations (9.27) are still correct, but now the sums over n no longer lead 
to genuine autocorrelations due to the limits of the sums being constrained 
differently. 

N-l 

Cs(77%, Z) S C Sn-m,Sn-1 = Cs(1, m) 
n=O 

In particular C, although symmetric is no longer a function of II - ml, but 
rather a function of I and m separately. Writing these equations in matrix 
form we get a matrix that is symmetric but not Toeplitz. 

Cs(l,l) C&,2) * * * Cs(l,M) Cs(l,l) C&,2) * * * Cs(l,M) 

C&,2) C&2) . . . G(2, M) C&,2) C&2) . . . G(2, M) 

C&3) Cs(2,3) . . . G(3,M) C&3) Cs(2,3) . . . G(3,M) (9.30) (9.30) 
. . . . . . . . . . . . 

Cs(l;M) C,(2jM) .:. Cs(l;M) C,(2jM) .:. 

The fast methods of solving Toeplitz equations are no longer available, and 
the Cholesky decomposition (equation (A.94)) is usually employed. 

Since general covariance matrices are of this form this method is called 
the covariance method, although no covariances are obviously present. For 
N >> M the difference between using N samples and using N + M samples 
becomes insignificant, and the two methods converge to the same solution. 
For small buffers the LPC equations can be highly sensitive to the boundary 
conditions and the two methods may produce quite different results. 
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EXERCISES 

9.9.1 What is the approximation error for the covariance method? 

9.9.2 Equation (9.22) predicts sn based on M previous values s,+r, ~~-2,. . . s,+M 
and is called the forward predictor. We can also ‘predict’ (postdict?) s,-M 
based on the next M values s+M+r, . . . , s,+ 1, sn. This surprising twist on 
LPC is called backward linear prediction. Modify equation (9.22) for this case 
(call the coefficients c,). What is the residual? 

9.9.3 Show that the MSE error can be written E = C, si + C,“=, b, C, snsnmm 

and thus for the autocorrelation method E = C,(O) + Cz=1 bmCs(m). 

9.9.4 Show that assuming the input to be an impulse G&Q the gain is given by 
the error as given in the previous exercise. 

9.9.5 Use the LPC method to predict the next term in the sequence 1, a, 02, a3,. . . 
for various 0 < c1! < 1. Repeat for cy > 1. Does the LPC method always 
correctly predict the next signal value? 

9.10 The Levinson-Durbin Recursion 

Take an empty glass soft-drink bottle and blow over its mouth. Now put a 
little water in the bottle and blow again. The frequency produced is higher 
since the wavelength that resonates in the cavity is shorter (recall our dis- 
cussion of wavelength in Section 7.9). By tuning a collection of bottles you 
can create a musical instrument and play recognizable tunes. 

The bottle in this experiment acts as a filter that is excited by breath 
noise. Modeling the bottle as a simple cylinder, the frequency it enhances 
is uniquely determined by its height. What if we want to create a signal 
containing two different frequencies? One way would be to blow over two 
different bottles separately (i.e., to place the filters in parallel). From our 
studies of filters we suspect that there may be a way of putting the filters in 
series (cascade) as well, but putting two cylinders one after the other only 
makes a single long cylinder. In order to get multiple frequencies we can use 
cylinders of different cross-sectional areas, the resonant frequencies being 
determined by the widths rather than the heights. 

If we send a sound wave down a pipe that consists of a sequence of 
cylinders of different cross-sectional areas Ai, at each interface a certain 
amount of acoustic energy continues to travel down the pipe while some is 
reflected back toward its beginning. Let’s send a sinusoidal acoustic wave 
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down a pipe consisting of two cylinders. Recalling from Section 7.9 that 
traveling waves are functions of s - wt, we can express the incoming wave 
for this one directional case as foilowL 

#I (z t) = Asin(z - vt) ant 7 (9.31) 

The reflected wave in the first cylinder will be sinusoid of the same frequency 
but traveling in the opposite direction and reduced in amplitude 

$J~>(z 7 t) = kAsin(z + vt) (9.32) 

where the reflection coefficient k is the fraction of the wave that is reflected. 
Since the energy is proportional to the signal squared, the fraction of the 
wave’s energy that is reflected is k2, while the wave energy that continues 
on to the second cylinder is whatever remains. 

E2 = (1- k2)E1 (9.33) 

Now for a little physics. The $ for sound waves can represent many 
different physical quantities (e.g., the average air particle displacement, the 
air particle velocity, the pressure). We’ll assume here that it represents the 
velocity. Physically this velocity must be continuous across the interface 
between the two sections, so at the interface the following must hold. 

The derivative of the velocity is the acceleration, which is proportional to 
the force exerted on the air particles. The pressure, defined as the force per 
unit area, must be continuous at the interface, implying that the following 
must hold there. 

$‘I (z t) - &$(z t) ant 7 9 p(rr: t) ? = 
AI A2 

Combining these two equations results in 

l+k l-k -=- 
Al A2 

and rearranging we find an expression for the reflection coefficient in terms 
of the cross-sectional areas. 

k AI - A2 

= A,+& 
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Let’s check to see that this result is reasonable. If the second cylinder 
shrinks to zero area (closing off the pipe) then k = 1 and the wave is entirely 
reflected, as it should be. If there really is no interface at all (i.e., Al = AZ) 
then k = 0 and no energy is reflected. If AZ >> A1 then k = -1, which seems 
unreasonable at first; but an open-ended pipe has zero pressure at its end, 
and so the wave reflects but with a phase reversal. 

It isn’t hard to generalize our last result to a pipe with many sections. 
The reflection coefficient at the interface between section i and section i + 1 
is 

ki = Ai - Ai+1 
Ai + Ai+1 

(9.34) 

What does all this have to do with solving the Yule-Walker equations for 
the LPC coefficients in the autocorrelation method? The LPC coefficients 
b, are not the only way of describing an all-pole system; the area ratios, 
the reflection coefficients, and many others (including an interesting set to 
be discussed in the next section) can be used instead. Since all of these 
parameter sets contain exactly the same information, it follows that we can 
derive any set from any other set. Many of the parameter sets are related by 
linear transformations, and hence the conversion is equivalent to multiplying 
by a matrix. We will now show that the connection between the reflection 
and LPC coefficients can be expressed as a recursion that is the most efficient 
way of deriving both. 

How can equation (9.29) be solved recursively? For simplicity we’ll drop 
the subscript identifying the signal, but we have to add superscripts identi- 
fying the recursion depth. The first case is simple (for further simplicity we 
have dropped the subscript) 

C(0) bl’] = C(1) --+ 

and its MSE is 

El = C(0) - bl]lC(l) = C(O)(l - kf) 

where we have defined kl z br]. Let’s assume we have already solved the 

mth case 

. . 

blnm] 
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and let’s write this C[“]b[ml = ~1~1. W e are now interested in the (m + l)th 
= - 

case 

where we have drawn in delimiters that divide the equations into two parts: 

i 

C(O) C(1) . . . C(m-1) 

cm C(0) . . . C(m2) 

. . . . . . . . . . . . 

C(1IE-1) C(m-2) . . . 04 C(l) C(2) = 
L 1 

. . . C(m) 
and 

( C(m) C(?n-1) . . . co> C(O) ) 

(9.35) 

(9.36) 

Now multiply equation (9.35) by the inverse of the autocorrelation matrix 

of the mth iteration (C[ml)-l and use the results of that iteration. 
= 
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Defining J as the matrix that reverses row order 
= 

0 0 . . . 0 1 
0 0 . . . 1 0 

J ii;;; = 

= i 0 1 . . . 0 0 
1 0 . . . 0 0 1 

and noting that it commutes with Toeplitz matrices, we can finally write 
the following recursion for the LPC coefficients 

[ F)=(L-km+li)[ fl (9.37) 

where k, E bk]. 
In the statistics literature the k variables are called ‘partial correlation’ or 

PARCOR coefficients, since they can be shown to measure the correlation 
between the forward and backward prediction errors (see exercise 9.9.2). 
Later we will show that they are exactly the reflection coefficients. 

Were we to know km+1 this recursion would produce all the other new 
b[“+‘l given the old b[ml. So we have reduced the problem of finding the 
LPC coefficients to the problem of finding the PARCOR coefficients. Yet it 
is obvious from equation (9.36) that the converse is also true, kLm+l] can be 

derived from the lower b[“+‘] coefficients. So let’s derive a recursion for the 
ks and try to eliminate the bs. 

First we rewrite equation (9.36) as 

C(1) C(2) . . . 

J = + km+lC(O) = C(mtl) 

which can be written (with obvious notation) as follows. 

c - Jb’“+‘I + km+lC(O) = C(m + 1) - -- - 
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Now we substitute the !I[~+‘] vector from equation (9.37) 

381 

c . J(I - km+l J)b[“l + k,+#(O) = C(m + 1) 
== =- 

and finally solve for km+1 (noting J2 = I) = = 

C(m + 1) - c l JbLrnl 
k m+l = 

C(O) - c T$T- 

C(m+lG-_ __ c * Jb[ml 
= 

Em - 

identifying the MSE in the denominator. After following all the above the 
reader will have no problem proving that the MSE obeys the simplest re- 
cursion of all. 

E m+l = (1~ k&+,)Ern (9.38) 

Let’s now group together all the recursive equations into one algorithm 
that computes the k and b coefficients for successively higher orders until 
we reach the desired order M. 

Given the signal autocorrelations C(0) through C(M) 
Start with EO = C(0) 
for m + 1 to M 

b[m] + km = 

for p = m - 1 down to 1 
&/I t b[m-1l _ k P 

b[“-ll 
m m-u 

Em + (l-kg)Em-r ’ 
for p + 1 to M 

b t bLM1 

To see how the algorithm works 
coefficients . 

( g; g’, ) 

The first iteration is easy. 

E. = 

b[l’] = 

let’s run through it for the case of two 

(i:)=( 2) 

C(O) 
C(1) ICI = - 
C(O) 
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Now we can perform the second iteration 

E _ C2(O> - C2(l> 
1- 

C(O) 

bp = k2= 
C(2)C(O) - C2(1) 

C2(0) - V(l) 

$1 = $1 - k2 = WC(O) - ww 
C2(0) - C2(1) 

and we have found the desired coefficients br and b2. 
We finish the section by fulfilling our promise to show that the k are the 

reflection coefficients. If we implement the LPC analysis filter (the FIR filter 
that converts the signal into the residual as a multistage lattice filter) then 
equation (9.38) tells us how the energy of the residual decreases. Comparing 
this with equation (9.33) completes the identification. 

EXERCISES 

9.10.1 Prove equation (9.34) for a pipe with multiple sections taking into account 
the reflected wave from the next interface. 

9.10.2 Transmission lines have both voltage and current traveling waves, the ratio 
between the voltage and current being the impedance 2. At a splice where 
the impedance changes a reflected wave is generated. Express the reflection 
coefficient in terms of the impedances. Explain the limiting cases of shorted 
and open circuited cables. 

9.10.3 Prove equation (9.38) for the MSE. 

9.10.4 Solve the three-coefficient problem on paper using the Levinson-Durbin re- 
cursion. 

9.10.5 Show that the complexity of the Levinson-Durbin algorithm is O(i@) rather 
than O(M3) as for non-Toeplitz systems. 

9.10.6 Levinson originally solved the more general problem of solving the equations 
TX = y where T is Toeplitz but unrelated to y. Generalize the recursion -- - - 
G solve this problem. (Hint: You will need another set of recursions.) How 
much more computationally complex is the solution? 
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9.11 Line Spectral Pairs 

Another set of parameters that contain exactly the same information as the 
LPC coefficients are the Line Spectral Pair (LSP) frequencies. To introduce 
them we need to learn a mathematical trick that can be performed on the 
polynomial in the denominator of the LPC system function. 

A polynomial of degree M 

M 

u(x) = C pmxm = a0 + ala: + azx2 + . . . aM-2xMe2 + aMelxM-l + aMxM 

is called ‘palindromic’ if Um = UM-m, i.e., 

a() = aM al = aM-1 a2 = aM-2 etc. 

and ‘antipalindromic’ if Um = -aM-m, i.e., 

al = -M-l a2 = -M-2 etc. 

so 1 + 2x + x2 is palindromic, while z + x2 - x3 is antipalindromic. It is 
not hard to show that the product of two palindromic or two antipalin- 
dromic polynomials is palindromic, while the product of an antipalindromic 
polynomial with a palindromic one is antipalindromic. 

We will now prove that every real polynomial that has all of its zeros on 
the unit circle is either palindromic or antipalindromic. The simplest cases 
are x + 1 and x - 1, which are obviously palindromic and antipalindromic, re- 
spectively. Next consider a second degree polynomial with a pair of complex 
conjugate zeros on the unit circle. 

a(x) = (x - 24) (x - e-i+) 
= x2 _ e-i4 x _ &4, + ,i4,--i+ 

= x2 - 2cos($) + 1 

This is obviously palindromic. 
Any real polynomial that has k pairs of complex conjugate zeros will 

be the product of k palindromic polynomials, and thus palindromic. If a 
polynomial has k pairs of complex conjugate zeros and the root +l it will 
also be palindromic, while if it has -1 as a root it will be antipalindromic. 
This completes the proof. 

The converse of this statement is not necessarily true; not every palin- 
dromic polynomial has all its zeros on the unit circle. The idea behind the 
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LSPs is to define palindromic and antipalindromic polynomials that do obey 
the converse rule. Let’s see how this is done. 

Any arbitrary polynomial a(z) can be written as the sum of a palin- 
dromic polynomial p(z) and an antipalindromic polynomial a(x) 

a, = 2Prn + qm) where Pm = am + a,--WI 

%?I = a??X- aM--m 
(9.39) 

(if M is even the middle coefficient appears in pm only). When we are dealing 
with polynomials that have their constant term equal to unity, we would like 
the polynomials pm and qm to share this property. To accomplish this we 
need only pretend for a moment that am is a polynomial of order M + 1 and 
use the above equation with a~+1 = 0. 

a, = $<Pm + Qm) where Pm = am + aM+l-m 

qT7-t = am- aM+l-772 
(9.40) 

Now a0 = PO = Qo = 1 but pm and qm are polynomials of degree M + 1. 

Figure 9.5: The zeros of a polynomial and of its palindromic and antipalindromic com- 
ponents. The Xs are the zeros of a randomly chosen tenth order polynomial (constrained 
to have its zeros inside the unit circle). The circles and diamonds are the zeros of the p(z) 
and q(z). Note that they are all on the unit circle and are intertwined. 



9.11. LINE SPECTRAL PAIRS 385 

Formally we can write the relationships between the polynomials 

44 = $ (P(X) + q(2)) where 

and it is not hard to show that if all the zeros of a(x) are inside the unit circle, 
then all the zeros of p(x) and of q(x) are on the unit circle. Furthermore, 
the zeros of p(x) and q(x) are intertwined, i.e., between every two zeros 
of p(x) there is a zero of q(x) and vice versa. Since these zeros are on the 
unit circle they are uniquely specified by their angles. For the polynomial 
in the denominator of the LPC frequency response these angles represent 
frequencies, and are called the LSP frequencies. 

Why are the LSP frequencies a useful representation of the all-pole filter? 
The LPC coefficients are not a very homogeneous set, the higher-order bm 
being more sensitive than the lower-order ones. LPC coefficients do not 
quantize well; small quantization error may lead to large spectral distortion. 
Also the LPC coefficients do not interpolate well; we can’t compute them at 
two distinct times and expect to accurately predict them in between. The 
zeros of the LPC polynomial are a better choice, since they all have the same 
physical interpret at ion. However, finding these zeros numerically entails a 
complex two-dimensional search, while the zeros of p(x) and q(x) can be 
found by simple one-dimensional search techniques. In speech applications 
it has been found empirically that the LSP frequencies quantize well and 
interpolate better than all other parameters that have been tried. 

EXERCISES 

9.11 .l Let’s create a random polynomial of degree M by generating M + 1 random 
numbers and using them as coefficients. We can now find the zeros of this 
polynomial and plot them in the complex plane. Verify empirically the hard- 
to-believe fact that for large M most of the zeros are close to the unit circle 
(except for large negative real zeros). Change the distribution of the random 
number generator. Did anything change? Can you explain why? 

9.11.2 Prove that if all the zeros of U(Z) are inside the unit circle, then all the zeros 
of p(z) and of a(~) are on the unit circle. (Hint: One way is write the p and 
Q polynomials as a(z) (1 f h(x)) w h ere h(x) is an all-pass filter.) Prove that 
the zeros of p(z) and q(z) are intertwined. (Hint: Show that the phase of 
all-pass filter is monotonic, and alternately becomes x (zero of p) and 0 (zero 
of cl>*> 

9.11.3 A pipe consisting of M + 1 cylinders that is completely open or completely 
closed at the end has its last reflection coefficient kM+i = f 1. How does this 
relate to the LSP representation? 
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9.11.4 Generate random polynomials and find their zeros. Now build p(x) and q(x) 
and find their zeros. Verify that if the polynomial zeros are inside the unit 
circle, then those of p and q are on the unit circle. Is there a connection 
between the angles of the polynomial zeros and those of the LSPs? 

9.11.5 The Greek mathematician Apollonius of Perga discovered that given two 
points in the plane ~1 and ~2, the locus of points with distances to zi and ~2 
in a fixed ratio is circle (except when the ratio is fixed at one when it is a 
straight line). Prove this theorem. What is the connection to LSPs? 

9.12 Higher-Order Signal Processing 

The main consequence of the Wiener-Khintchine theorem is that most of 
the signal processing that we have learned is actually only ‘power spectrum’ 
processing. For example, when we use frequency selective filters to enhance 
signals we cannot discriminate between signals with the same power spec- 
trum but different spectral phase characteristics. When we use correlations 
to solve system identification problems, we are really only recovering the 
square of the frequency response. We have yet to see methods for deal- 
ing with signals with non-Gaussian distributions or non-minimum-phase at- 
tributes of systems. 

In this section we will take a brief look at a theory of signal process- 
ing that does extend beyond the power spectrum. We will assume that our 
signals are stochastic and stationary and accordingly use the probabilistic 
interpretation of correlations, first introduced in Section 5.6. There we de- 
fined the moment functions, definitions we repeat here in slightly modified 
form. 

M~kl(ml, m2,. . . , mk) f (wn+m, l l l sn+mk) 

The lath moment function of the digital stationary stochastic signal s is the 
average of the product of Ic + 1 signal values, at time lags defined by the 
moment function’s parameters. 

The first-order moment function is simply 

MA’] = (sn) 

the signal’s average (DC) value. The second-order moment function is 

Mi2](m) = (s~s~+~) = c&-m) 
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the autocorrelation (recall the probabilistic interpretation of autocorrelation 
of equation (5.22)). The third-order moment function is a new entity. 

@“I (ml, m2> = (wn+ml %I+,,) 
Normal signal processing exploits only the first and second moments; higher- 
order signal processing utilizes the third and higher moments as well. 

The moment functions have an especially simple interpretation for the 
special case of a stochastic signal that can only take on values 0 and 1. The 
first moment, the signal’s average value, can be interpreted as the proba- 
bility that the signal takes on the value 1; if the average is 4 this means 
that the 0 and 1 values are equally probable. The second moment, the au- 
tocorrelation, relates the signal’s values at two different times separated by 
m. Its interpretation is the probability that the signal takes on value 1 at 
any two times separated by m. If the signal is white (i.e., the 0 or 1 value 
is chosen independently at each time instant), then the autocorrelation will 
be i (fifty-fifty) for all nonzero time lags. A higher correlation at time lag 
m means that the signal’s being 1 at time n encourages the probability that 
it will be 1 at time n + m as well, while a lower correlation indicates that 
a 1 at one time inhibits a second 1. A periodic signal will have its second 
moment function equal to unity for a lag equaling the period of any multiple 
thereof, since the probability of matching values is a certainty. As correla- 
tions of nonperiodic function normally die down for large enough lags, the 
two events become independent for large m. 

The interpretation of the third moment function is now clear. It is the 
probability that the O-l stochastic signal takes on the value 1 at all three 
times n, n + ml, and n + m2. If both ml and m2 are very large we expect 
the third moment to equal the mean cubed, while if ml is small enough 
for there to be nontrivial correlations, but rn2 still large, then we expect a 
slightly more complex expression. 

However, the third moment can be significantly different from this as well. 
For instance, a signal that is generated by 

Sn = 0 (Vn + W%--ml + ags(n - ma) +. . . > 

(where V, is some driving noise signal) will have a nontrivial third moment 
function with just these lags. 
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Similarly the fourth and higher moment functions give the probability 
that the signal takes on 1 values at four or more times. In practice, in- 
terpretation of numeric moment function data is complex because of the 
contributions from lower-order moments, as in equations (9.42) and (9.43). 
For example, if 0 and 1 are equally probable, we expect to observe 1 at two 
different times with a probability of one-quarter; only deviations from this 
value signify that there is something special about the lag between the two 
times. Likewise, to really understand how connected four different times 
are, we must subtract from the fourth moment function all the contribu- 
tions from the third-order moments, but these in turn contain portions of 
second-order moments and so on. The way to escape this maize of twisty 
little passages is to define cumulants. 

The exact definition of the cumulant is a bit tricky since we have to 
keep track of all possible groupings of the time instants that appear in the 
moment function. For this purpose we use the mathematical concept of a 
‘partition’, which is a collection of nonempty sets whose union is a given set. 
For example, in the third moment there are three time instances no = n, 

721 = n+ml, and n2 = n + m2, and these can be grouped into five different 
partitions. PI = {(n17n2,n3)), P2 = e-Q>, @2r n3)), p3 = {(n2), (w, n3)), 

p4 = {(n2), (ni,n2)}, and P5 = {(nr), (ns), (n3)). We’ll use the symbol Sij 
for the jth set of partition Pi (e.g., $1 = (ni) and &2 = (nl,n2)), Ni the 
number of such sets (Ni = 1, N2 = N3 = N4 = 2 and N5 = 3)) and Nij for 
the number of elements in a set (e.g., Nrr = 3, N51 = 1). We can now define 
the cumulant 

C[“I = C(-l)~~-l(N~ - l)! ~ ~~Nij’(S~j) s (9.44) 
i j=l 

where the sum is over all possible partitions of the Ic time instants. 
It will be convenient to have a special notation for the signal with its 

DC component removed, $ E s - (s) . The first few cumulants can now be 
exmessed as follows: 

as expected, 

c;21(m) = M~21(?n) - (My)2 = (&$n+m) 

which is the autocovariance rather than the autocorrelation, 
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CL31(m1, m2) = 

Mu”] ( mw2) - A@] (M;“](n) + AI;“] ( n+m1) + M;21(n+m2) + 2(A4q3 > 
= (&Gn+ml &l+?nz > 

a surprisingly simple result, 

c~4](ml,m2,m3) = itd~4](ml,m2,m3) - . l . - 6(Mi11)4 = 

(&&+ml &l+m2 &z+ma > 

-&m,)c; (??%2--m3) PI PI PI PI PI 
-q (rn2)C$ (m3-74 - cg (ms)C4 (7w-m2) 

which is somewhat more complex. For the special case of a zero mean signal 
and ml = rn2 = ma, Cl21 is the variance, Cl31 the ‘skew’, and Ci41 the 
‘kurtosis’. 

Other than their interpretability, the cumulants are advantageous due 
to their convenient characteristics. The most important of these, and the 
reason they are called ‘cumulants’, is their additivity. 

PI Cz+&-m, m2,. . . mk-1) = Cikl(ml, m2,. . . m&l) + $‘(ml, m2,. . . m&l) 

It is easy to see that this characteristic is not shared by the moment func- 
tions. Another nice feature is their blindness to DC components 

> * * * m&l) = cikl(ml, m2,. . . mk-1) 

where a is any constant. Like the moments, cumulants are permutation blind 

C~kl(m,l, m,,, . . . mcrk.l) = C, PI (ml, m2, . . . mk-1) 

where cri is any permutation of 1. . . k - 1; and scale according to their order. 

Q?( ml, 7732,. . . mk-1) = gkdkl(ml m2 S 9 9”’ mk-1) 

If the signal is symmetrically distributed then all odd-order cumulants van- 
ish. If a signal is Gaussianly distributed all cumulants above the second-order 
vanish. 

Higher-order spectra are defined in analogy with the Wiener-Khintchine 
theorem. Just as the spectrum is the FT of CL2’ (m), the &spectrum is defined 

PI to be the two-dimensional FT of CS (ml, m2), and the trispectrum the three- 

dimensional FT of Ci41 (ml, m2, ma). It can be shown that for signals with 
finite energy, the general polyspectrum is given by a product of FTs. 

s[“l ( al, u2 - . . uk-1) = s(4s(td2) . . . s(tik-l)s*(til + (4 + . . . + w&l) 
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Now that we have defined them, we can show that cumulants are truly 
useful. Assume that we have a non-Gaussian signal distorted by Gaussian 
noise. Standard signal processing does not take advantage of the higher- 
order statistics of the signal, and can only attempt to separate the signal 
from the noise in the power spectral domain. However, cumulants of the 
third and higher orders of the noise will vanish exactly, while those of the 
signal will not, thus providing a more powerful tool for recovery of such a 
signal. For example, higher-order matched filters can be used as sensitive 
detectors of the arrival of non-Gaussian signals in Gaussian noise. 

We know from Section 8.1 that intermodulation products are produced 
when two sinusoids enter a nonlinearity. Assume we observe several fre- 
quency components in the output of a possibly nonlinear system; is there 
any way to tell if they are intermodulation frequencies rather than indepen- 
dent signals that happen to be there? The fingerprint of the phenomenon is 
that intermodulation products are necessarily phase coupled to the inputs; 
but such subtle phase relations are lost in classical correlation-based anal- 
ysis. By using higher-order cumulants intermodulation frequencies can be 
identified and the precise nature of system nonlinearities classified. 

In Sections 6.12 and 6.13 we saw how to perform correlation-based sys- 
tem identification when we had access to a system’s input and output. 
Sometimes we may desire to identify a system, but can only observe its 
output. Amazingly, this problem may be tractable if the input signal is non- 
Gaussian. For example, if the unknown system is an N tap FIR filter, 

N-l 

Yn = c hmxn-m + vn 
m=O 

the input x is zero mean but with nonzero third-order cumulant, and the 
output y is observed contaminated by additive Gaussian (but not necessarily 
white) noise v, then the system’s impulse response can be derived solely from 
the output’s third-order cumulants. 

hm = 

This amazing result is due to the input’s third-order cumulant (assumed 
nonzero) appearing in the numerator and denominator and hence cancelling 
out, and can be generalized to higher-order cumulants if needed. A related 
result is that cumulant techniques can be used for blind equalization, that 
is, constructing the inverse of an unknown distorting system, without access 
to the undistorted input. 
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EXERCISES 

9.12.1 Find all the partitions of four time instants and express CP](mi, na2, ma) in 
terms of moments. 

9.12.2 Consider the three systems (0 < a, b < 1) 

yn = &a - (U + b)xn-1 + abxn-2 

Yn = Xn - (a + b)xn+l + ubxn+2 

Yn = -ax,+1 + (I+ ab)x, - bxn-1 

What are the system functions for these systems? Which system is mini- 
mum phase, which maximum phase, and which mixed phase? Take xn to 
be a zero mean stationary white noise signal, with (xnxn+m) = S,O and 
(XnXn+m~Xn+mz > = ~,I,,. Show that the output signals from all three sys- 
tems have the same autocorrelations. Prove that for all three systems the 
same frequency response is measured. Why is this result expected? Show 
that the third-order moments are different. 

9.12.3 Prove equation (9.45). 

9.12.4 There is another way of defining cumulants. Given the k signal values 

Sn,Sn+m17-.-7 Sn+mk--l 

we posit k dummy variables wa . . . wk-1 and define the following function, 
known as the characteristic function. 

The cumulants are the coefficients of the Taylor expansion of the logarithm of 
this function. Derive the first few cumulants according to this definition and 
show that they agree with those in the text. Derive the additivity property 
from this new definition. 

9.12.5 In the text we mentioned the application of higher-order signal processing 
to the identification of intermodulation products. Let cpr, (~2 and (~3 be in- 
dependent uniformly distributed random variables and define two stochastic 
signals 

&I = cm (wn + 91) + cos (w2n + 92) cos ((w + w2)n + (p1 + $92)) 

$1 = cos (win + cpl) + cos (w2n + 4 cos ((WI + w2)n + 93) 

each of which has three spectral lines, the highest frequency being the sum 
of the lower two. The highest component of ~1~1 could be an intermodulation 
product since it is phase-locked with the other two, while that of ~1~1 is an 
unrelated signal. Show that both signals have the same autocorrelation and 
power spectrum, but differ in their third-order cumulants. 
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Bibliographical Notes 

Matched filters are covered in most books on communications theory, e.g. [242, 951. 
Wiener’s first expositions of the Wiener-Khintchine theorem were in mathe- 

matical journals [276] but he later wrote an entire book on his discoveries [277]. 
The co-discoverer of the theorem was Aleksandr Khintchine (or Khinchin), whose 
Mathematical Foundations of Information Theo y was translated into English from 
the original Russian in 1957. 

The second volume of Norbert Wiener’s autobiography [280] has fascinating 
background information on Wiener’s work at MIT during the World War II years. 
His 1942 report, entitled Extrapolation, Interpolation and Smoothing of Stationary 
Time Series, was suppressed because of possible military applications, and finally 
released only in 1949 [278]. Even though written to be more understandable than 
the former paper, its mathematics, more familiar to physicists than engineers, was 
so difficult to the latter audience that it was commonly called the ‘yellow peril’. 
Levinson both explained Wiener’s results to a wider audience [146] and translated 
the formalism to the digital domain. While accomplishing this second task he in- 
vented his recursion [147], although digital hardware capable of computing it did 
not exist at the time. 

The invention of LPC is due to Bishnu Atal of Bell Labs [lo], who was mainly 
interested in its use for compression of speech [9]. The LSP frequencies are due 
to Itakura of NTT Research Labs [log] (but don’t bother checking the original 
reference, it’s only an abstract). 

Higher-order signal processing is the subject of a book [181] and numerous 
review articles [173, 1821. [33] d iscusses partitions in a simple way, and includes 
source code for computing the number of partitions of n objects. Cumulants were 
introduced in statistics by Fisher in the 1930s and in use in physics at about the 
same time. The idea of higher-order spectra as the FT of cumulants dates back 
to Kolmogorov, but the nomenclature ‘polyspectra’ is due to Tukey. The use of 
cumulants for output-only system identification is due to Georgios Giannakis [72]. 
A few references to the extensive literature on applications of cumulants include 
noise cancellation [49]; system identification [73, 651; blind equalization [235, 2361; 
and signal separation [286, 287, 1081. 



10 

Adaptation 

We have already learned about many different types of systems. We started 
with frequency selective filters and filters designed for their time-domain 
properties. Then we saw nonfilters that had capabilities that filters lack, 
such as PLLs that can lock onto desired frequency components. Next we 
saw how to match a filter to a prespecified signal in order to best detect 
that signal. We have even glimpsed higher-order signal processing systems 
that can differentiate between signals with identical power spectra. Yet all 
these systems are simple in the sense that their design characteristics are 
known ahead of time. Nothing we have studied so far can treat problems 
where we are constantly changing our minds as to what the system should 
do. 

In this chapter we briefly discuss adaptive filters, that is, filters that vary 
in time, adapting their coefficients according to some reference. Of course 
the term ‘adaptive filter’ is a misnomer since by definition filters must be 
time-invariant and thus cannot vary at all! However, we allow this shameful 
usage when the filter coefficients vary much more slowly than the input 
signal. 

You may think that these adaptive filters would be only needed on rare 
occasions but in practice they are extremely commonplace. In order to un- 
derstand how and why they turn up we disregard our usual custom and 
present three applications before tackling the more general theory. These 
applications, noise cancellation, echo cancellation, and equalization turn out 
to have a lot in common. 

After this motivation we can introduce the more general problem, stress- 
ing the connection with the Wiener-Hopf equations. Direct solution of these 
equations is usually impossible, and so we will learn how to iteratively ap- 
proximate a solution using the Widrow-Hoff equations and the LMS algo- 
rithm. We then briefly present several of the variants to vanilla LMS, and 
the alternative RLS algorithm. 

393 
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10.1 Adaptive Noise Cancellation 

A lecture is to be recorded using a microphone placed at some distance 
from the lecturer. It is a hot summer day and the lecture hall is packed; 
a large air-conditioning unit is running noisily, and the fluorescent fixtures 
are emitting a low buzzing noise. As the lecturer begins to speak the crowd 
hushes and a tape-recorder starts to record. What exactly is being recorded? 

Were we to listen to the recording we would certainly hear the lecturer, 
but we would soon notice other sounds as well. Fluorescent lamp noise is 
spectrally localized at harmonics of the AC supply frequency and if truly 
annoying could be filtered out using techniques we have discussed previously. 
The air-conditioner sounds and the background talking from the audience 
are not as easy to remove. They are neither spectrally localized nor station- 
ary in character. Humans are extremely good at ‘tuning out’ such noises, 
but our brains use filtering based on content, a difficult feat to duplicate. Is 
there a practical way to remove these interferences from the recording? 

Let’s focus on the air-conditioner noise, although the audience’s babble 
could be similarly treated. We propose using a second microphone placed 
near the air-conditioner so that it picks up mainly its noise and not the 
speaker’s voice. Now since the first microphone is picking up the sum of two 
signals (the desired speech and the air-conditioner noise) we need to subtract 
the air-conditioner noise signal as picked up by the second microphone from 
the first signal. If done correctly the speech signal alone will remain. 

Simplifying for the sake of presentation, we will assume that the second 
microphone hears the air-conditioner noise qn alone. The lecturer’s micro- 
phone signal gn contains both the desired speech signal xn and the air- 
conditioner noise. However, yn will not be simply the sum xn + qn for at 
least two reasons. First, the amplitude of the air-conditioner noise at the 
lecturer’s microphone will most probably be weaker than that of the micro- 
phone directly in front of the unit. Second, the speed of sound is finite, and 
thus the air-conditioner noise as detected at the lecturer’s microphone is de- 
layed as compared to the close microphone. This delay is far from negligible; 
for example, assume the lecturer’s microphone is 15 meters from that of the 
air-conditioner, take the speed of sound to be 300 meters per second, and 
let’s sample at 48 kilosamples per second. Using these numbers it takes 50 
milliseconds for the sound to travel from the air-conditioner microphone to 
the lecturer’s, a delay that corresponds to 2,400 samples! Thus, at least as 
a rough approximation we believe that 

Yn = xn + bn-k (10.1) 
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Figure 10.1: Cancelling delayed and attenuated noise by subtracting. 

with k z 2400 and h < 1. Of course the delay need not be an integer number 
of samples, and indeed in a closed room we will get multiple noise echoes 
due to the sound waves bouncing off the walls and other surfaces. Each such 
echo will arrive at a different time and with a different amplitude, and the 
total effect is obtained by adding up all these contributions. We will return 
to the effect of multiple echoes later. 

Let’s try to regain the desired clean lecturer’s voice signal from the noisy 
received signal yn and the reference signal qn. Let’s assume at first that we 
know the delay k having measured the distance between the microphones, 
but have no information regarding the gain h. We can try to subtract out 
the interference 

Xn = Yn - Rh-k (10.2) 

with zn representing our attempt at recovering xn. This attempt is depicted 
in Figure 10.1, using a self-explanatory graphical technique to be presented 
more fully in Chapter 12. We know that this could work; were we to know 
h we could set e = h and 

Xn= Yn- eQn-k =(Xn+hqn-k)- hqn-k= Xn 

as required; but since we don’t know h we have to find e. When e is improp- 
erly chosen we get the desired signal plus a residual interference, 

xn =!h-%I-k =Xn+(h-e)qnmk = Xn +m-k (10.3) 

with the amplitude of the residual rn depending on the value of e. 
In order to find e we will make the assumption that the speech signal 2, 

and the interference signal qn (delayed by any amount) are not correlated. By 
uncorrelated we mean that the correlation between x, and qn-l, as measured 
over a certain time interval, 
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c3cQ(~) = c XnQn-l 
n 

is zero for every lag 1. This is a reasonable assumption since correlation 
would imply some connection between the signals that links their values. 
We believe that the air-conditioner doesn’t care what the lecturer is saying, 
and indeed would be making essentially the same noise were the lecturer 
not to have started speaking. Now it is true that when the compressor kicks 
in and the air-conditioner becomes suddenly louder the lecturer might start 
speaking more loudly, causing some correlation between the speech and the 
noise, but this is a very slow and weak effect. So we shall assume for now 
that xn and qn are uncorrelated. 

How does this assumption help us? The lack of correlation is signifi- 
cant because when we sum uncorrelated signals their energies add. Think 
of taking two flashlights and shining them on the same spot on a wall. It 
is clear from the conservation of energy that the energy of the spot is the 
sum of each flashlight’s energy. You may recall seeing experiments where 
two light beams combine and destructively interfere leaving darkness, but 
for this to happen the beams must be correlated. When the light beams are 
uncorrelated their energies add, not their amplitudes, and the same is true 
for sounds. In large rooms there may be places where echoes constructively 
or destructively interfere, making localized spots where sounds can be heard 
from afar or mysteriously disappear; but this is because different echoes of 
the same sound are correlated. 

Returning to & = Xn + rn-k, since rn is qn to within a multiplicative 
constant, xn and r, are also uncorrelated. Thus the energy of our recovered 
5& signal is the sum of the energy of the original xn and that of the residual 
r,. However, the energy of the residual is dependent on our estimate for 
the coefficient e; the residual has large energy when this estimate is poor, 
but when we are close to the proper value the residual’s energy is close to 
zero. Of course the energy of xn is not affected by our choice of e. Thus 
we can minimize the energy of the sum signal 5, by correctly choosing the 
coefficient e! 

To see this mathematically, we write the energy of Zn 

E;i:=)~;=~(xn+r,-k)2=~x;+2~xnr,-k+~r~-k 
n n n n n 

but the cross term is precisely lag Ic of the correlation between x, and rn 
that was assumed to be zero. 
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Figure 10.2: Cancellation of filtered noise by subtraction. The filter ek is adapted to 
equal the distorting filter hk. When successfully adapted the output of ek equals that of 
hk so that the interference is subtracted from the desired signal. 

Continuing 

which as a function of e, is a parabola, with its minimum corresponding to 
&., the energy of the speech signal. 

So to find the proper coefficient e all we need to do is to vary it until we 
find the minimal energy of the reconstructed signal. Since the energy is a 
parabola there is a single global minimum that is guaranteed to correspond 
to the original lecturer’s voice. 

Now, what can we do if the delay lc is unknown? And what if the delay is 
not a integer number of samples? We might as well consider the more general 
problem of many different paths from the air-conditioner to the lecturer’s 
microphone that all combine with different Ic and h. In such a case we have 

Yn = xn + x hkqn-k (10.4) 
k 

which we recognize as corresponding to the adding of a filtered version of 
the air-conditioner noise qn to the desired signal. We try to recover xn by 
looking for the unknown filter 

&a= Yn- c elcqn-k (10.5) 
k 

as depicted in Figure 10.2. Once again we are assured that this can be 
successful, since selecting ek = hk will guarantee Zn = Xn. Viewed in this 
light, the problem of noise removal is equivalent to the finding of an unknown 
filter, with the filter coefficients possibly varying in time. 



398 ADAPTATION 

Following the same path as before we find that due to the assumption of 
lack of correlation between X~ and qn, the energy of the attempted recon- 
struction is the sum of two parts. 

Es! = cxi + c (C(hk - e.,,qnsk)2 
n n k 

The first is the energy of the desired signal xn and the second is the energy 
of the residual interference. As a function of the vector of coefficients, the 
energy E(el, e2,. . . eN> is a hyperparaboloid with a single global minimum 
to be found. Once again this minimum corresponds to the desired signal. 

How does one find this minimum in practice? When there was only a 
single coefficient e to be found, this was a relatively easy job. For example, 
we could start with any arbitrary e and then try moving along the e axis 
by some positive or negative amount. If the energy decreases then we keep 
moving in the same direction; otherwise we move in the opposite direction. 
If after several steps that decrease the energy, it starts to rise again, then we 
have gone too far; so we reduce the step size and ‘home in’ on the minimum. 

The more general case can also be solved by arbitrarily moving around 
and checking the energy, but such a strategy would take a long time. With 
one variable there were just two directions in which to move, while with 
N coefficients there are an infinite number of directions. However, since we 
know that the energy surface in ek space is a hyperparaboloid, we can (with 
only a little extra work) make a good guess regarding the best direction. 
The extra work is the calculation of the gradient of the energy in ek space, 
VE(el, es,. . . eN> . Recall that the gradient of a surface is the multidimen- 
sional extension of the derivative. The gradient of a function is a vector 
that points in the direction the function increases most rapidly, and whose 
length is proportional to the steepness of the function. At a maximum or 
minimum (like the base of the energy paraboloid) the gradient is the zero 
vector. Were we to be interested in finding a maximum of the energy, the 
best strategy would be to move in the direction of the gradient. Any other 
direction would not be moving to higher energy values as quickly. In order 
to find the energy’s minimum we have to reverse this strategy and move in 
the direction opposite the gradient. This technique of finding a minimum 
of a function in N-dimensional space is called steepest descent or gradient 
descent, and will be more fully explained in Section 10.5. 
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Figure 10.3: Cancelling filtered noise by an inverse filter (equalizer). This time the filter 
ek is adapted to equal the inverse of the distorting filter hk. When successfully adapted 
the output of filter e equals the input of h so that the interference is subtracted from the 
desired signal. 

Before concluding this section we wish to note an alternative solution 
to the noise cancellation problem. We could have considered the basic noise 
signal to be that which is added at the lecturer’s microphone, and the noise 
picked up by the reference microphone to be the filtered noise. According to 
this interpretation the problem is solved when the constructed filter approx- 
imates the inverse filter, as depicted in Figure 10.3. The desired signal is 
recovered due to the noise going through a filter and its inverse in series and 
then being subtracted. Both direct and inverse interpretations are useful, 
the best one to adopt depending on the application. 

EXERCISES 

10.1.1 Unlike the air-conditioner, the audience is not located at one well-defined 
location. Can the audience noise be removed in a manner similar to the air- 
conditioner noise? 

10.1.2 Build a random signal and measure its energy. Add to it a sinusoid and mea- 
sure the resulting energy. Did the energies add? Subtract from the combined 
signal the same sinusoid with varying amplitudes (but correct phase). Graph 
the energy as a function of amplitude. What curve did you get? Keep the 
correct amplitude but vary the phase. Is the behavior the same? 

10.1.3 Electrocardiographs are required to record weak low-frequency signals and 
are often plagued by AC line frequency pickup (50 or 60 Hz). Were there 
are no desired signal components near this frequency a sharp notch filter 
would suffice, however generally an adaptive technique should be employed. 
Since we can directly measure the AC line sinusoid, the problem is reduced to 
finding the optimum gain and phase delay. Explain how to solve this problem. 
Simulate your solution using a stored waveform as the desired signal and a 
slowly amplitude- and phase-varying sinusoid as interference. 

10.1.4 A ‘frequency agile notch filter’ can remove periodic interference (of unknown 
frequency) from a nonperiodic desired signal without a separate reference 
signal. Explain how this can be done. 
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10.2 Adaptive Echo Cancellation 

Communications systems can be classified as one-way (simplex) or two-way 
(full-duplex); radio broadcasts and fax machines are of the former type, while 
telephones and modems are of the latter. Half-duplex systems, with each 
side transmitting in turn, lie in between; radio transceivers with push-to-talk 
microphones are good examples of this mode. True two-way communications 
systems are often plagued by echo, caused by some of the signal sent in one 
direction leaking back and being received by the side that transmitted it. 
This echo signal is always delayed, usually attenuated, and possibly filtered. 

For telephones it is useful to differentiate between two types of echo. 
Acoustic echo is caused by acoustic waves from a loudspeaker being re- 
flected from surfaces such as walls and being picked up by the microphone; 
this type of echo is particularly annoying for hands-free mobile phones. A 
device that attempts to mitigate this type of echo is called an acoustic echo 
canceller. Line echo is caused by reflection of electric signals traveling along 
the telephone line, and is caused by imperfect impedance matching. The 
most prevalent source of line echo is the hybrid, the device that connects the 
subscriber’s single two-wire full-duplex telephone line to the four-wire (two 
simplex) channels used by the telephone company, as depicted in Figure 10.4. 
We will concentrate on line echo in this section. 

Actually, telephones purposely leave some echo to sound natural, i.e., a 
small amount of the talker’s voice as picked up at the handset’s microphone 
is intentionally fed back to the earpiece. This feedback is called ‘sidetone’ 
and if not present the line sounds ‘dead’ and the subscriber may hang up. 
If there is too little sidetone in his telephone, John will believe that Joan 
barely hears his voice and compensates by speaking more loudly. When this 
happens Joan instinctively speaks more softly reinforcing John’s impression 
that he is speaking too softly, resulting in his speaking even more loudly. If 
there is too much sidetone in Joan’s telephone, she will speak more softly 
causing John to raise his voice, etc. 

* 
telephone 

1 
f---t hybrid hybrid - telephone u 

2 
4 

Figure 10.4: The telephone hybrid. At both ends of the telephone connection are two 
wire channels, but in between the conversation is carried over four-wire circuits. 



10.2. ADAPTIVE ECHO CANCELLATION 401 

switch = 

AL 
1 

comparator out 

2 
1r 

Figure 10.5: The telephone echo suppressor. The top line represents one direction of 
the four wire telephone channel, and the bottom line the other. When the upper signal 
is greater than the lower one the comparator gives positive output, thus keeping the 
upper path open but suppressing the lower signal. When the lower signal is greater the 
comparator output is negative and the switches open the lower path but shut the upper. 

When the delay of line echo is short, it simply combines with the sidetone 
and is not noticeable. However, when the delay becomes appreciable line echo 
becomes quite annoying. Most people find it disconcerting to hear their own 
voice echoing back in their ear if the delay is over 30 milliseconds. An echo 
suppressor is a simple device that combats line echo by disconnecting one 
side of the conversation while the other side is talking. The functioning of 
an echo suppressor is clarified in Figure 10.5. Echo suppressors often cause 
conversations to be carried out as if the telephone infrastructure were half- 
duplex rather than full-duplex. Such conversations are unnatural, with each 
side lecturing the other without interruption, rather than engaging in true 
dialog. In addition, echo suppressors totally disrupt the operation of data 
communications devices such as faxes and modems, and must be disabled 
before these devices can be used. A Line Echo Canceller (LEC) is a more 
complex device than an echo suppressor; it enables full-duplex conversations 
by employing adaptive DSP algorithms. 

How does an echo canceller work? Like the adaptive noise canceller, the 
basic idea is that of subtraction; since we know the original signal that has 
been fed back, we need only subtract it out again. However, we need to know 
the delay, attenuation, and, more generally, the filter coefficients before such 
subtraction can be carried out. 

Full-duplex modems that fill all of the available bandwidth and use a 
single pair of wires for both directions always experience echo. Indeed the 
echo from the nearby modulator may be as strong as the received signal, 
and demodulation would be completely impossible were it not to be removed 
effectively. Hence a modem must remove its own transmitted signal from the 
received signal before attempting demodulation. 
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Modems typically determine the echo canceller parameters during a short 
initialization phase before data is transferred. Consider the following com- 
mon technique to measure the delay. The modem on one side sends an 
agreed-upon event (e.g., a phase jump of 180” in an otherwise unmodulated 
sinusoid) while the other side waits for this event to occur. As soon as the 
event is detected the second modem sends an event of its own (e.g., a phase 
reversal in its sinusoid), while the first waits. The time the first modem mea- 
sures between its original event and detecting the other modem’s event is 
precisely the round-trip delay. Similarly, the finding of the filter coefficients 
can be reduced to a system identification problem, each side transmitting 
known signals and receiving the filtered echo. While the system identification 
approach is indeed useful, its results are accurate only at the beginning of 
the session; in order to remain accurate the echo canceller must continuously 
adapt to changing line conditions. For this reason modem echo cancellers are 
initialized using system identification but thereafter become adaptive. 

Returning to telephone conversations, it is impractical to require humans 
to start their conversations with agreed-upon events (although starting with 
‘hello’ may be almost universal), but on the other hand the requirements 
are not as severe. You will probably not notice hearing an echo of your own 
voice when the delay is less than 20 milliseconds, and international stan- 
dards recommend controlling echo when the round-trip delay exceeds 50 
milliseconds. This 50 milliseconds corresponds to the round-trip propaga- 
tion delay of a New York to Los Angeles call, but modern digital networks 
introduce processing delay as well, and satellite links introduce very annoy- 
ing half-second round-trip delays. Even when absolutely required voice echo 
cancellers needn’t remove echo as completely as their modem counterparts 
and are allowed to be even less successful for a short amount of time at the 
beginning of the conversation. 

In the late 1970s the phone companies introduced phone network LECs, 
an implementation of which is depicted in Figure 10.6. Its philosophy is ex- 
actly opposite that of the modem’s internal echo canceller discussed above. 
It filters the signal arriving over the phone network from the far-end (the 
reference) and subtracts it from the near-end signal to be sent out to the 
network, aspiring to send only clean echo-free near-end speech. Echo is com- 
pletely controlled by placing LECs at both ends of the four-wire network. 

Figure 10.6 is not hard to understand. After the hybrid in the local 
telephone company office, the signal to be sent is digitized in order to send 
it to its destination over the phone system’s digital infrastructure. Before 
the signal is sent out it undergoes two processes, namely subtraction of the 
echo estimate and NonLinear Processing (NLP). 
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Figure 10.6: A digital telephone network line echo canceller (LEC). In this diagram only 
signal flow lines are indicated; invisible are the logic indications sent from the double- 
talk detector to the adaptation mechanism and NLP, and the fact that the adaptation 
mechanism sets the filter coefficients and the NLP threshold. 

The filter processor places digital samples from the far-end into a static 
buffer (called the ‘X register’ in LEC terminology), convolves them with the 
filter (called the H register), and outputs the echo estimate to be subtracted 
from the near-end samples. 

The adaptation mechanism is responsible for adapting the filter coeffi- 
cients in order to reproduce the echo as accurately as possible. Assume that 
the far-end subscriber is talking and the near-end silent. In this case the 
entire signal at the input to the subtracter is unwanted echo generated by 
the nearby hybrid and the near-end telephone. Consequently, the adaptation 
mechanism varies the filter coefficients in order to minimize the energy at the 
output of the subtracter (the place where the energy is measured is marked 
in the figure). If the far-end is quiet the adaptation algorithm automatically 
abstains from updating the coefficients. 

When the double-talk detector detects that both the near-end and far- 
end subscribers are talking at the same time, it informs the adaptation 
mechanism to freeze the coefficients. The Geigel algorithm compares the ab- 
solute value of the near-end speech plus echo to half the maximum absolute 
value in the filter’s static buffer. Whenever the near-end exceeds the far-end 
according to this test, we can assume that only the near-end is speaking. 

The nonlinear processor (NLP) is a center clipper (see equation (8.7)), 
that enables the LEC to remove the last tiny bit of perceived echo. For 
optimal functioning the center clipping threshold should also be adapted. 

Although the LEC just described is somewhat complex, the basic filter is 
essentially the same as that of the adaptive noise canceller. In both cases a 
filtered reference signal is subtracted from the signal we wish to clean up, and 
in both cases the criterion for setting the coefficients is energy minimization. 

These two characteristics are quite general features of adaptive filters. 
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EXERCISES 

10.2.1 Why is an acoustic echo canceller usually more complex than an LEC? 

10.2.2 Why is the phone network LEC designed to cancel echo from the transmitted 
signal, rather than from the received signal? 

10.2.3 Describe the following performance criteria for echo cancellers: convergence 
speed, ERLE (echo return loss enhancement), and stability (when presented 
with narrow-band signals). The minimum performance of acoustic echo can- 
tellers is detailed in ITU-T standard G.167, and that of LECs in G.165 and 
G.168. Research, compare, and contrast these standards. 

10.2.4 Assume that each tap of the echo cancelling FIR filter takes a single instruc- 
tion cycle to calculate, that each coefficient update takes a single cycle as 
well, and that all the other elements are negligible. Estimate the maximum 
and typical computational complexities (in MIPS) required to echo cancel a 
standard voice channel (8000 samples per second) assuming a 16-millisecond 
‘tail’ in which echoes can occur. 

10.2.5 Explain the Geigel algorithm for double-talk detection. Why isn’t it sufficient 
to compare the present near-end to a single far-end value? Why compare to 
half the maximum far-end? How does it differ from the comparator in the 
echo suppressor? How can it be improved? 

10.3 Adaptive Equalization 

As a third and final example of adaptive signal processing we will consider 
adaptive equalization of digital communications signals. We previously de- 
fined an equalizer as a filter that counteracts the unwanted effects of another 
filter. For communications signals (to be treated in Chapter 18) this invari- 
ably means trying to overcome destructive effects of the communications 
channel; this channel being universally modeled as a filter followed by addi- 
tion of noise, as depicted in Figure 10.7. 

In general the equalizer cannot overcome noise, and so the optimal equal- 
izer is the inverse filter of the channel. Recall from the previous section how 
modems calculate their echo cancellers; in similar fashion they use system 
identification techniques during an initialization phase in order to learn the 
channel and hence the optimum equalizer. Adaptive equalization is needed 
thereafter to track changes in the channel characteristics. 

Is channel equalization really needed? Let’s consider the simplest possible 
digital communications signal, one that takes on one value for each 0 bit 
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Figure 10.7: An equalizer for digital communications signals. The original signal z(t) 
transmitted through the communications channel, and subject to additive noise y(t), is 
received as signal y(t). The purpose of the equalizer is to construct a signal z(t) that is as 
close to z(t) as possible. 

to be transmitted, and another for each 1 bit. These transmitted values 
are referred to as ‘symbols’, and each such symbol is transmitted during a 
symbol interval. Ideally the signal would be constant at the proper symbol 
value during each symbol interval, and jump instantaneously from symbol 
to symbol; in reality it is sufficient for the signal value at the center of the 
symbol interval to be closer to the correct symbol than to the alternative. 
When this is the case the receiver, by focusing on times far from transitions, 
can make correct decisions as to the symbols that were transmitted. 

When the modem signal traverses a channel it becomes distorted and 
the ability of the receiver to properly retrieve the original information is 
impaired. This effect is conventionally tested using the eye pattern (see Fig- 
ure 10.8). The eye pattern is constructed by collecting multiple traces of the 
signal at the output of the equalizer. When the ‘eye is open’ information 
retrieval is possible, but when the ‘eye is closed’ it is not. In terms of the 
eye pattern, the purpose of an equalizer is to open the eye. 

Figure 10.8: The eye pattern display graphically portrays the effect of ISI, noise and 
possibly other impairments on the receiver’s capability to properly decode the symbol. In 
the present diagram the eye is ‘open’ and proper decoding is possible. 
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Figure 10.9: The effect of increasing intersymbol interference, The filtered channel out- 
put is superposed over the original signal. In (A) (th e mildest channel) the received signal 
is close to the ideal signal. In (B) the bandwidth has been reduced and symbol recovery 
has become harder. In (C) proper symbol recovery is not always likely. In (D) (the harshest 
channel) symbol recovery has become impossible. 

Why do channels cause the eyes to close? Channels limit the bandwidth 
of signals that pass through them, and so ideal symbols will never be ob- 
served at the channel output. Mild channels merely smooth the symbol-to- 
symbol jumps, without impairing our ability to observe the proper symbol 
value far from transitions, but channels with long impulse responses smear 
each symbol over many symbol intervals, as seen in Figure 10.9. As a re- 
sult the channel output at any given time is composed not only of the de- 
sired symbol, but of contributions of many previous symbols as well, a phe- 
nomenon known as InterSymbol Interference (ISI). When the IS1 is strong 
the original information cannot be recovered without equalization. 

At first glance the adaptation of an equalizer would seem to be com- 
pletely different from the applications we discussed in previous sections. In 
the previous cases there was an interfering signal that contaminated the 
signal of interest; here the source of contamination is the signal itself! In 
the previous cases there was a reference signal highly correlated to the con- 
taminating signal; here we observe only a single signal! Notwithstanding 
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these apparent differences, we can exploit the same underlying principles. 
The trick is to devise a new signal (based on our knowledge of the original 
signal) to play the role of the reference signal. 

Assuming that the equalizer was initially acquired using system identifi- 
cation techniques, we can presume that the receiver can make proper deci- 
sions regarding the symbols that were transmitted, even after some drift in 
channel characteristics. If proper decisions can be made we can reconstruct 
a model of the originally transmitted signal and use this artificially recon- 
structed signal as the reference. This trick is known as Decision Directed 
Equalization (DDE). Using DDE makes adaptive equalization similar to 
adaptive noise cancellation and adaptive echo cancellation. 

EXERCISES 

10.3.1 An alternative to equalization at the receiver as illustrated in Figure 10.7 is 
‘Tomlinson equalization’, where the inverse filter is placed at the transmitter. 
What are the advantages and disadvantages of this approach? (Hints: What 
happens if the channel’s frequency response has zeros? How can the equalizer 
be adapted?) 

10.3.2 DDE is not the only way to adapt an equalizer. Blind equalization uses gen- 
eral characteristics of the signal, without making explicit decisions. Assume 
the symbol for a 0 bit is -1 and that for a 1 bit is +l. How can the fact that 
the square of both symbols is unity be used for blind equalization? Describe 
a blind equalizer for a constant amplitude signal that encodes information in 
its phase. 

10.3.3 Signal separation is a generalization of both equalization and echo cancel- 
lation. The task is to separate the signal mixtures and recover the original 
signals. Let xi be the original signals we wish to recover, and yi the observed 
combination signals. The most general linear two-signal case is 

Yl = h * xl + hn * x2 (10.6) 

Y2 = h * XI + hzz * x2 

where hii are the self-filters (which need to be equalized) and the hi#j the 
cross-filters (which need to be echo-cancelled). Generalize this to N combi- 
nations of N signals. What conditions must hold for such problems to be 
solvable? 
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10.4 Weight Space 

After seeing several applications where adaptive filters are commonly used, 
the time has come to develop the conceptual formalism of adaptive signal 
processing. In Section 10.1 we saw how to adapt a noise cancellation filter 
by minimization of energy; in this section we will see that a large family of 
problems can be solved by finding the minimum of a cost function. A cost 
function, or loss function, is simply a function that we wish to minimize. If 
you have to buy a new computer in order to accomplish various tasks, and 
the computer comes in many configurations and with many different pe- 
ripherals, you would probably try to purchase the package of minimum cost 
that satisfies all your needs. Some people, apparently with a more positive 
mind-set, like to speak of maximizing gain functions rather than minimizing 
loss functions, but the two approaches are equivalent. 

We start by reformulating the difficult FIR system identification problem 
of Section 6.13. Your opponent has an FIR filter u that produces a desired 
output signal dm = C,“=, vnx,-,. We can rewrite this using a new notation 
that stresses the fact that the output is the weighted combination of its 
inputs. 

N 
(10.7) 

n=l 

We have introduced this rather unusual vector notation in order to keep our 
discussion as general as possible. Using the dot product we can consider d to 
be the output of an FIR filter, in which case x are N consecutive values of 
a signal; the output of a phased array (see Section 7.9), in which case x are 
values of N different signals received simultaneously by N sensors; or a-two- 
class linearly separable pattern recognition discrimination function. In this 
last application there are objects, each of which has N measurable numerical 
features, xi . . . XN. Each object belongs to one of two classes, and pattern 
recognition involves identifying an object’s class. Two classes are called lin- 

early separable when there is a linear function d(:[“l) = C,“=, v,x~~] that 
is positive for all objects belonging to one class and negative for all those 
belonging to the other. 

When using this new notation the N coefficients are called ‘weights’, 
and v a ‘weight vector’. In all three cases, the adaptive filter, the adaptive 
beamformer, and the two-class discriminator, our task is to find this weight 
vector given example inputs x [ml and outputs dImI. Since this is still the 

system identification problemryou know that the optimum solution will be 
given by the Wiener-Hopf equations (6.63). However, we beg your indulgence 
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as our aim is to rederive these equations in a way that will be more suitable 
for adaptive filters. 

Assume that after seeing m - 1 inputs and respective desired outputs we 
manage to come up with some weight vector w. Then upon observing the - 
mth example, we predict the output to be 

(10.8) 

and if the desired output is really Jrnl our output gm is in error by 614 = 
&4 - ,bq 

Consider now the abstract iv-dimensional vector space of all possible 
weight vectors w. Before our opponent allows us to observe the system 
all weight vectors are possible, and all points in weight space are equally 
plausible. After we have observed a single input-output example only a small 
subset of weight space remains as plausible weight vectors, since most weight 
vectors would produce outputs differing significantly from the observed one. 
We can pick any point in this subset of plausible weight vectors as our guess 
w. Each successive input-output example we observe reduces the size of the 
subset of plausible weight vectors; indeed, were there no noise, after seeing 
N different examples the subset would have been reduced to a single point. 

This picture is encouraging, but doesn’t provide us a practical heuristic 
with which to find good weight vectors. To do so we now define the cost (or 
loss) function L(w). This cost function is defined for every weight vector 
in weight space, id is simply a measure of how plausible a weight vector 
w  really is. A highly plausible weight vector should have a low cost, while 
one that noticeably violates the desired examples would be assigned a high 
cost. An obvious candidate for the cost function is the Mean Squared Error 

WE) 
L(w) = ( (6[“Q2) (10.9) - 

the averaging being done over all the observed examples. From its definition 
the MSE is always nonnegative, and in the absence of noise there is a single 
weight vector for which the MSE is precisely zero. This weight vector is 
precisely the weight vector your opponent used, and by finding it you win 
the game. In the presence of noise there will generally not be any weight 
vectors with precisely zero MSE, but your best guess will be the weight 
vector with the Minimum Mean Squared Error (MMSE). 

Now you have a strategy with which to proceed. For each example m 
take the input z irnl, calculate the corresponding output ~1~1 for every weight - 
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vector in weight space according to equation (10.8), and furthermore com- 
pute the square of the error (6[ml)2 = (&‘l - ~1~1)~. Repeat this procedure 
for all the examples and compute the average error for each weight vector. In 
so doing you have assigned a nonnegative number to every point in weight 
space. You then need only look for the weight vector with the minimum 
cost, and you’re done. 

Of course it would be quite time consuming to compute this MSE cost 
function for all points in weight space, so let’s use a little mathematical 
analysis to zoom in on the MMSE. The MSE cost function is 

L(x) f ((&my) = ((cpl - y’“‘)2) 
= ((&4)2 - 2&7$bl + (p4)2) (10.10) 

= ((d[“l)2) - 2 (d[m$p) + ((y[“‘)2) 

where the expectation ((~@‘l)~) simply means adding up all the errors and 

dividing by the number of examples. Substituting the basic relation (10.8) 
we find 

L(u) = ((d[m1)2) - 2 ( dLml Fwnxn) + (F F w-wn~~) 
= ( (d[m])2) - 2 c 20, (d[m]xn) + cc wnq (xnxz) 

n n 1 

where the sums are all from 1 to N and the expectation on m. 
The expressions in the last line have simple interpretations. The first 

term is the average of the square of the desired outputs; we’ll call it D2. 
The second term contains N crosscorrelations between each of the input 

components Xn and the desired output dImI, C’dZ(~) E ( dimIxn) . The third 

term contains all the input autocorrelations &(n, 2) = (xnxl) . Considering 
the crosscorrelation to be a vector (with index n) and the autocorrelation 
to be a matrix (with indices 72 and Z), we can write the following matrix 
equation for the cost function as a function of the weight vectors. 

L(w) = D2 - 2 C Wn(Cdz)n + C C WnWl(C,>nl (10.11) - 
n n 1 

= D2 - 2~. Cdz -I- wC,w -- -v- 
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To find the minimum of the cost function we need to use the gradient 
operator 

(10.12) 

and set the gradient of the cost equal to zero. 

0 = VL(w) = - -2(cdz>n + 2 ~(&)dW = -2c& -j- 2c, w -- 
1 

Solving, we find the following set of N equations 

i.e. c&g = &ut - -- (10.13) 

which we immediately recognize as the Wiener-Hopf equations (6.63). The 
solution to these equations is immediate. 

To recap, given M input-output examples, we compute N input-output 
crosscorrelations (Cd,), and N2 input autocorrelations (Cz)nl. We then 
write down N coupled algebraic equations that can be solved for wn. For 
realistically large N these equations are difficult to solve explicitly, and it is 
usually worthwhile to find the MMSE iteratively. 

Finding the minimum of a function in high-dimensional space is a hard 
problem, but one that has been extensively studied. The major problem with 
numeric methods for finding a global minima is the fact that they tend to get 
stuck in local minima; in our case, the cost function in weight space defined 
in equation (10.11) is a quadratic function that can never become negative; 
as such it is always a hyperparaboloid with a single global minimum. 

One family of minima (or maxima) finding methods is iterative descent. 
These methods start with some initial guess and repeatedly update this 
guess using 

WI =w+6w (10.15) - - - 
choosing the correction term such that the cost function decreases. 

L(w’) < L(w) (10.16) - - 

If the cost function indeed decreases at each step, we must eventually arrive 
at a minimum. 

The simplest type of iterative step is gradient descent, where the new 
guess is found by moving in the direction in which the cost function de- 
creases the fastest. To do this we compute the gradient VL( w), which is - 
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Figure 10.10: The effect of different step sizes on constant step size gradient descent. 
Small steps waste iterations while large steps may overshoot the minimum. 

the direction in which the cost function increases most rapidly, and move 
in the opposite direction. More sophisticated methods exploit the matrix of 
second derivatives (the Hessian) as well, but even just calculating and stor- 
ing the N-by-N matrix can be prohibitive in high dimensions. All of these 
methods require inverting the Hessian matrix, an operation that is not only 
computationally costly, but numerically problematic. 

In the simplest type of gradient descent we move some arbitrary step 
size p at every step of the algorithm. 

W1 
w4 

- = If - ppL(w)l 
(10.17) 

In general, this is often not a good idea (see Figure 10.10) since where the 
gradient is steep this step size may be overly small requiring us to take many 
small steps where one large one would have sufficed, while where the gradient 
is shallow we may overshoot the minimum and need to reverse direction at 
the next iteration. Alternatively, we can save computation by moving some 
fraction of the value of the gradient 

wt = w - XVL(w) (10.18) - - 

which is a logical thing to do if the gradient gets larger as we go further 
from the minimum. There are more complex techniques that search along 
the line to determine how far to move (requiring much more computation), 
or vary the step size depending on the absolute value of the gradient or the 
difference between the present gradient direction and that of the previous 
iteration. 
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We have seen that the MMSE weight vector can be found explicitly 
via the Wiener-Hopf equations, or numerically using minimum finding tech- 
niques such as gradient descent. Both of these methods assume that the un- 
derlying system is time-invariant. When the system can constantly change 
we require MMSE finding methods that can dynamically adapt to these 
changes. The rest of the chapter will be devoted to such methods. It is 
an interesting coincidence of alliteration that the equations that constitute 
the simplest adaptive adaptation of the Wiener-Hopf equations is called the 
Widrow-Hoff equation. 

EXERCISES 

10.4.1 Assume that there is but a single weight w, so that the Wiener-Hopf equation 
is simply c& = w*C,. Show that the cost function as a function of this w 
is a simple nonnegative parabola with a single minimum. For what weight is 
the cost precisely zero? 

10.4.2 Assume that there are two weights wr and ~2. Show that the cost function 
surface is a paraboloid with a single minimum. 

10.4.3 What is the computational complexity of the solution in (10.14)? 

10.4.4 Try directly solving the Wiener-Hopf equations for the case of simple aver- 
aging (i.e., the unknown coefficients are all *). Generate some large number 
of input-output pairs, compute the correlations, and use the matrix inversion 
technique of the previous exercise to solve. Have an opponent supply some 
random w and try to discover it. - 

10.4.5 Show that the MMSE weight vector decorrelates the error from the input 

vector, (i.e., for w* the error 61ml and the input z lrnl obey (6’“1~1”‘> = 0). 

What is the deeper meaning of this statement, sometimes called the orthog- 
onality principle? What can be said about the error-output correlation? 

10.5 The LMS Algorithm 

In the previous section we saw that by using gradient descent we could ap- 
proximate the solution to the Wiener-Hopf equations without inverting the 
autocorrelation matrix. However, we still have to set aside memory and com- 
pute the autocorrelation matrix and crosscorrelation vector for some large 
N. We would really like to avoid these as well. Accordingly we make a fur- 
ther approximation; we assume that we can iteratively update the weight 
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vector based on each input-output example taken in isolation. In this way 
each time we observe a new input-output example, we make an indepen- 
dent estimate of the gradient, perform gradient descent, and then discard 
the example before the next one is presented. Of course in general such a 
gradient estimate may not be very good, and we will often take ‘pseudo- 
gradient descent’ steps in the wrong direction! Unfortunately, there is no 
way to avoid this, but if we take small enough steps, and observe enough 
input-output examples, then the majority tendency toward lower cost will 
eventually dominate although there will be some small steps in the wrong 
direction. 

Now it really isn’t so incredible that the gradient can be approximated by 
quantities that relate solely to a single input-output example. We originally 
defined the cost function as the average error; assuming that we are given 
some finite number of samples M, we could equally well have defined it as 
the sum of the errors, or half that sum. 

L(w) f ; 5 (dmq2 = 3 5 (&I - y[4)2 
m=l m=l 

(10.19) 

We can thus expressed the MSE cost function as the sum of M nonnegative 
single example terms, which can be zero only if all the individual terms are 
zero. As an inference the gradient of this cost function must also be the 
sum of single example terms! The problem is that moving w  in the direction 
dictated by one example, although decreasing the present &tribution, may 
increase the contributions from other examples! In particular we may move 
the weight vector in order to optimize for some input-output example, and 
then move it right back for the next example; but when we get close enough 
to the global minimum everything should work out fine. 

So let’s investigate the single example gradient. Its nth coordinate is 

(VLL”l), = Z$ 

where we have used the chain rule, equation (10.19) and equation (10.8). 
Substituting this into equation (10.18) we find 

,I4 = ,b-11 + &4&d (10.20) - - - 
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This is the Widrow-Hoff equation. In neural network terminology it is 
often called the ‘delta rule’, referring to the S that figures in it so prominently. 
The iterative algorithm for finding best weight vector based on the Widrow- 
Hoff equation 

Initialize: wl”l = 0 

Loop until c&verged : 
get new input 321ml and desired output dlml - 
compute new output ylml = 2~1~1 . ~1~1 

calculate error @l = d[ml-- y[mJ 
correct weight vector wlm+ll = wlml+ XS[mlzlml - - - 

is called the LMS algorithm. LMS stands for Least Mean Squared, referring 
to our attempt at finding an MMSE solution. 

Unlike our attempts at finding the MMSE in the previous section, the 
LMS algorithm is an adaptive algorithm. If the true weights v vary slowly in 
time, the LMS algorithm will follow these changes, approxr%ating at each 
instant the best weight vector for that time. Of course if the underlying 
system varies too rapidly, even an adaptive algorithm may not be able to 
keep up. 

The LMS algorithm is by far the most popular adaptive algorithm, and 
the Widrow-Hoff equation appears in many contexts, although sometimes it 
may be hidden. There is an easy way to recognize Widrow-Hoff in disguise; 
all the correction terms contain the same output error term, while each 
weight correction term multiplies it by its own input. Remember that the 
complete correction term is a constant times the input times the output 
error. 

In order to get a ‘feel’ for the use of the LMS algorithm, let’s try a 
simple example. We’ll take a three-dimensional case with the true weight 
vector w” = (5, i, i), and start with an initial guess of w  = (0, 0,O). Now 
assuming that the first input is x = (1 , 1,l) , we’ll be told that the desired - 
output is 

d = w” l x = (f, $, 8, * (1, 1,l) = 1 - - 

while the present system outputs w  l x = (0, 0,O) . (1, 1,l) = 0. The output -- 
erroristhusS=d-y= l.IfweuseX= i the corrections will be as follows. 

w  * w  + X6x = (O,O,O) + $ ’ 1’ (l,l, 1) = (i, h, ;, - - - 
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Let’s take the same input and perform another iteration. The output is 

w*x = ( -- i, ;, $) * (l,l, 1) = $ 

so that the error is 6 = d - y = 1 - i = i. The new weight vector is 

w +- w + X6x = <+, 4, ;, + i * a * - - - (17 171) = ($ ;: ;) 

with each component deviating only about 2% from the true value. 
In this case two iterations were sufficient to obtain a weight vector quite 

close to the correct one. Of course all of the components were equal at 
every iteration, since both the initial guess and inputs had this symmetry. 
In Figure 10.11 we plot the convergence of the LMS algorithm for a slightly 
harder problem. The correct weight vector is as before, but we select inputs 
randomly, and observe the desired output in 10% uniform additive noise. 
We decided to use a smaller X = 0.1 here, in order to better average out the 
noise and randomness. We see in the figure the three weights are no longer 
identical, but nevertheless remain close to each other. The convergence takes 
longer, partially because of the noise but mainly due to the lower A, but the 
weights consistently approach their proper values. 

wn 

f  

l/3 

0 
0 10 20 30 40 

m 

Figure 10.11: The convergence of the Widrow-Hoff algorithm. Here the correct weight 
vector has three components equal to 4, the initial guess is zero, the inputs are random, 
the desired output is observed with 10% noise, and X = O,l, We see that the weights ~1, 
~2, and wg converge slowly but are close to the proper values after m FZ 50 iterations. 
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We just used the word ‘convergence’ without specifying what this means. 
We may mean that the difference between the derived weight vector and the 
true one must converge to zero, or that the MSE must converge to zero, but 
for the LMS algorithm we usually mean that the mean squared error should 
converge to some small value (nonzero due to the noise). How do we know 
when the weights have converged? In Figure 10.11 we see that the changes 
have become much less drastic after about thirty cycles, but can we really 
be sure that this isn’t a temporary phenomenon? Around cycle 15 there was 
a short stretch where the weights did not change much for a few cycles, but 
afterward the changes returned. In practice it really can be a tricky decision, 
and usually the convergence criterion can be concocted only after in-depth 
study of the particular problem at hand. 

Assuming that the LMS algorithm does indeed converge, can we be sure 
that it will converge to the right answer? Happily we can prove that the 
expectation of the weight vector approaches the MMSE solution as M in- 

creases. To show this we first slightly rewrite the n th component of the 
Widrow-Hoff equation. 

In matrix notation we can write this 

Jm+ll = QdJJ4 + I - @+JJ~l ,bl 
- - ( (10.21) 

= - - > - 

where the two input vectors form an outer product. Now we unfold this 
recursion into an iteration 

wb+ll = x m 
- c( 

I - ~,bl&4 m-‘L&l&l + I - ~&4,bl)m JOI 
p=o = - - > - ( = - - - 

and take the expectation of both sides. 

(wrm”]) = x 2 (I - Kq C& + (I - Acqrn lJ”l - CL=0 = = - = c - 
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This last equation, being a matrix equation, must be true in all coordinate 
systems, in particular in a coordinate system where the input autocorrela- 
tion matrix is diagonal. In this system I - XC, is also diagonalized. The 

diagonal elements l- Xc, will be less thai unitzn absolute value if X obeys 

2 o<x<c (10.22) 

where c = maxn cn is the maximum eigenvalue of the input autocorrelation 

matrix. Assuming that X obeys this criterion the m th power of this matrix 
approaches the zero matrix as m increases without limit. Hence, with this 
proviso on X, the second term above vanishes as m + 00. In the same 
coordinate system and limit we can sum the geometric series in the first 
term according to (A.47) 

xg Cl-bY= 1 (1x xc ) =- - - p=o n 
XL 

n 

which is the inverse of the correlation matrix in these coordinates. Plugging 
this back in we find 

(,[m”l) -+ S-l& (10.23) 

which is precisely the solution to the Wiener-Hopf equations, and so the 
MMSE solution! 

This proof is not only reassuring, it also incidentally provides the maxi- 
mal step size for convergence. We noted above that we may choose a small 
step size because of noise, but if X is chosen too low it will take ages for 
the weight vector to converge. In adaptive applications we may not even 
find the weight vector before it changes! So we wish to use as large a X as 
possible, but no larger than dictated by equation (10.22) since otherwise the 
LMS algorithm may diverge. Of course only in unusual cases do we know the 
value of the largest input autocorrelation eigenvalue, but if it is significantly 
larger than the rest of the eigenvalues, we may take it to be approximately 
equal to the trace of the autocorrelation, namely 

vmax = Tr Cx = NE, 
Z 

where Ez is the energy of the input signal. This leads to a useful approximate 
range for X. 

2 
o<x<- 

(E ) 
(10.24) 

2 
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Up to now our discussion has been completely general; we end this section 
by restricting the general discussion of input-output pairs to the system 
identification case. By using the observed recent inputs and output of an 
FIR system we can combine FIR convolution and LMS adaptation, thus 
defining the standard adaptive FIR filter. We can make a new input-output 
example for ewemJ new time instant 

Z-Nfl, x--N+2, * ’ ’ x-1, x0 - Yo 
x--N+2, x-N+3, “a x0, 21 - Yl 

x-N+3, x-N+4, .** xl, zi - Y2 
x--N+4, x--N+5, *.- x2, x3 - Y3 

x-N+5, x-N+6, ..’ x3, x4 - Y4 

etc., or we can use only some of these possibilities. By choosing examples 
at the maximum rate we get the most information for adaptation and track 
changes in the signal at the highest time resolution. However, this requires 
the most computational power as well. 

EXERCISES 

10.5.1 It is easy to extend the derivation of the delta rule to nonlinear combinations, 
the most important of which is the sigmoidal nonlinearity of equation (8.11). 
Show that in this case the delta rule reads w, + wn + X6Y(l - y)zn. (Hint: 
Use a further chain rule and exercise 8.4.5). 

10.5.2 Assume the unknown weights of a three-parameter linear combination are 
w” = ($, $,O) and that the inputs are x = (l,O,O), (O,l,O), (O,O, 1) over and 

over again. Simulate this system with x = 4 and no noise. Try other values 
for X and add noise. How fast can you make the LMS algorithm converge? 
What happens if X is too large? What happens if we multiply all the inputs 
by 100? 

10.5.3 Although LMS finds the best direction, its choice of constant step size seems 
overly primitive. A more sophisticated approach would be to search for min- 
imal cost along the gradient direction. Compare LMS and this line-search 
gradient algorithm on a simulated problem. How many cycles are required 
for convergence? How many output and error evaluations? 

10.5.4 Equation (10.20) seems to require two multiplications and one addition for 
each tap update. Show how this can be reduced. Compare the computational 
complexity of LMS update to that of running the FIR filter. Why do some 
DSP processors have an LMS instruction? 

10.5.5 What is necessary to make the LMS algorithm work for complex-valued sig- 
nals? What is the complexity compared to a real signal? 
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10.5.6 In exercise 10.1.3 we discussed the cancellation of power line noise from weak 
medical signals. Even when a narrow notch filter could be used LMS fil- 
ters may require less computation. For example, assume that an ECG is 
a quasiperiodic with period about one Hz. For the purposes of simulation, 
model the ECG signal as two sinusoidal cycles one after the other, the first 
with period one-tenth of the whole period, and the second filling the remain- 
ing 0.9, but with amplitude one-tenth of the first. Add some white noise 
and a nominal power line frequency with total energy about the same as the 
desired signal. Try to remove the power line signal with a static FIR notch 
filter; how many coefficients are required? Now use an LMS filter; how many 
taps are required now? 

10.6 Other Adaptive Algorithms 

Although vanilla LMS is the most popular adaptive algorithm, it is certainly 
not the only one. There are both countless variants on the LMS theme, and 
also a few completely different algorithms. The LMS variants all start off 
with standard LMS and try to rectify some potential problem. 

What problems does LMS potentially have? The need to guess the best 
step size, the possibly slow speed of convergence, dependence on initial condi- 
tions, and numerical instability are related but distinct problems that many 
variants try to resolve. 

One LMS variant that frequently converges faster and that helps in 
the step size problem is Normalized LMS (NLMS). In the spirit of equa- 
tion (10.17) we normalize the input vectors 

(10.25) 

where Ex is the input signal’s energy. One way of thinking about NLMS is 
to cast it in standard LMS form with a normalized X; 

accordingly NLMS is LMS with the step size tuned individually for each 
input’s energy. In many applications NLMS converges faster than vanilla 
LMS. More good news about NLMS is that it converges when 0 < p < 2, 
so we needn’t estimate input energy or autocorrelation eigenvalues. In fact, 
p = 1 is just about always best. One drawback is that NLMS requires the 
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additional computation of the input signal’s energy and a division. Even 
more worrisome is the fact that for low-energy signals the division is by a 
small number, causing numeric problems for fixed-point implement at ions. 

Another popular LMS variant, called block LMS, strives to speed conver- 
gence by smoothing out the weight vector fluctuations while still allowing 
a relatively large X. BLMS is less computationally expensive than conven- 
tional LMS since it does not perform the actual correction for every input. 
Instead an averaged estimate of the gradient in weight space is computed 

by adding up the error times input for all m in the block; then once the 
entire block has been seen a single correction 

w  +-- w+AV (10.26) - - 

is performed. 
Block LMS is preferable to vanilla LMS when the input signal fluctuates 

rapidly, but converges more slowly for relatively stationary signals. To con- 
vince yourself of this latter fact think of a block of length M in which the 
signal is constant. Standard LMS will perform M separate iterations while 
block LMS essentially performs only the first of these. 

A compromise between BLMS and vanilla LMS is LMS with momentum. 
In this variant we smooth the weight changes by a kind of AR filtering 

wb+11 = ,M + X&“l &d (10.27) - - - 
+ a (,,bl - ,c-11) 

- - 

the new term approximating the derivative of the movement in weight space. 
If QI = 0 we have vanilla LMS, while for larger Q! the new term tends to cause 
the weight vector to continue as in the previous iteration (hence the term 
‘momentum’). 

After seeing all these LMS variants the time has come to discuss a com- 
pletely different algorithm. In deriving the LMS algorithm we wrote the MSE 
as a sum of single example terms. This allowed us to adapt to time-varying 
systems, but is not the only way to acquire this adaptability. An alternative 
policy is to take the MSE as the average over the last M examples seen, 

1 M 

Mm=1 - - 
c pbl - w . ,[my (10.28) 

where M is taken small enough that the underlying system does not vary 
appreciably during the M time instants. This policy automatically provides 
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a certain amount of averaging, curing one of the aforementioned potential 
problems. If the underlying system changes rapidly, it is more appropriate 
to use a recursive filter rather than a plain average. Calling the forgetting 
factor cp, we have 

M 

c 
cpM-~~&l - 20 . J412 (10.29) -- 

m=l 

where we have discarded any normalization factors that will not affect the 
minimization. For this to be exponentially decaying weighting, we require 
0 < p < 1. We can use the arguments that lead up to equations (10.13) 
almost without change to show that the MMSE solution here is 

w = c,-led, (10.30) - Z 

where the correlations appearing here are only slightly different from the 
usual ones. 

cz = 5 p-mZ[mlZ[ml 
Z - - 

m=l 

M 

cdz = c 
(pM-mdb’d x [ml 

- 
m=l 

The useful thing about exponential weighting is that these quantities can 
be built up recursively. 

Cz Lrnl = (&p-l1 + ,JmlJml (10.31) - - 

= ipFh b-11 + &‘d x[m] 
- 

Now if we only knew how to recursively update the inverse autocorrela- 
tion matrix P s C/l we could substitute these recursions into (10.30) to - 
obtain a re&&ion=fr the weight vector. Luckily, there are ways to recur- 
sively update the inverse of a matrix of this sort. Using the matrix inversion 
lemma (A.100) with A = cpCZlm-ll, g = D = ~1~1 and C = 1 we find 

= C = - = 

( 
(pc,b11 + &4JJ4 -l 

Z > 
= ~-1~In-11 - 

@pb-11 &d &-d p[m-11 

- - (P-~&lp[ 
- 

-m&T+ 1 

which looks messy but contains only quantities known at step m of the 
recursion. In order to clean it up a little we define the gain vector 

p.4 =, 
pb-11 xb.4 - 

xIml;b-llxbl + cp (10.32) 
- = 
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in terms of which we can rewrite the recursion for the inverse autocorrelation. 

fml = 9-l (g b-11 - j&d rJm1 pb-11 - - = ) (10.33) 

Now the expression for the gain vector looks terrible, but it really has a 
simple interpretation. Rearranging equation (10.32) 

@d = 
- ( 

qlpim-ll - ,-QJmlzM pb-11) .[m] 
- - = 

and from equation (10.33) we recognize the factor in the parenthesis to be 
precisely P Lrn]. As a result the gain vector 

= 

r;[ml = pbQm1 = C,bl&l 
- = - c - 

(10.34) 

is the input partially decorrelated by its own inverse autocorrelation. 
Now we can finally substitute the recursions (10.31) back into equa- 

tion (10.30). 

,bl = (C,byC&,bl 
- 

= pTl cpcd,bd + &4&d) 
L 

= ~p[ml ch b-11 + &d piA &4 
= = - 

We now substitute the recursive update of the inverse autocorrelation (10.33) 
and use equations (10.30) and (10.34). 

,M = pb-1lCd,b-ll - ~[mlz[mlp[m-ll~~[m-ll + &4pbl&l 
- 

= ,Wl - pdJJmlq-&-i +;r4 p[ml,bl 
= - 

- - - 
= ,c-11 - ~[ml (Jd,bM - $) 

- 

- - - - 

The final step is to recognize the error SLrn] in the parentheses and we have 
found the desired recursion. 

,bl = J-11 + &“I j&ml (10.35) - - 

We now understand why we called k the ‘gain vector’; it is a directed gain 
that multiplies the error in the weight update recursion. 
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We can at last give the Recursive Least Squares (RLS) algorithm. 

Initialize: w[Ol = 0 - 
Loop until converged: 

get new input x Iml and desired output 61m] - 
compute new output ~1~1 = wlml .x[~l 
calculate error 61ml = d[~l- grmJ 
compute gain vector /cl”] using equation (10.32) 
correct weight vector using equation (10.35) 
update inverse autocorrelation P using equation (10.33) 

= 

Comparing this to the LMS algorithm we see some differences but a 
strong similarity. Recalling equation (10.34) we can write the weight update 

,bl = wb-11 + pbl&ml &I 

Hence RLS can be thought of as LMS with a very intelligent adaptive step 
size. This step size is a matrix, and hence takes care of cost function surfaces 
in weight space that are steep in some directions but flat in others. The step 
size is optimized at every step to ensure rapid convergence. 

Each iteration of the RLS algorithm is more complex than an iteration 
of the LMS algorithm, and indeed RLS is often impractical for real-time 
applications. However, the RLS algorithm will normally converge faster than 
the LMS one, at least when the noise is small. When there is strong additive 
noise a long period of averaging is necessary in order to average out the 
noise, and so RLS cannot significantly decrease the number of iterations 
needed. 

As with many recursive update formulas, the RLS updates can accumu- 
late numerical error, eventually leading to a noninvertible CZ. This usually 

isn’t a problem when only a few w  are needed, but becomeszolerable when 
we must continuously update weFght vectors. One solution to this problem is 
to iteratively update the Cholesky decomposition of CZ (see equation (A.94)) 

rather than the matrix itself. Another is the so-called QR-RLS algorithm, 
which multiplies the equations by an orthogonal matrix in order to keep 
them triangular; but further discussion of these topics would take us too far 
astray. 



BIBLIOGRAPHICAL NOTES 425 

EXERCISES 

10.6.1 Compare the LMS, NLMS, and RLS algorithms on benchmarks of your 
choice. Which is fastest? Which is most robust? 

10.6.2 One way of ameliorating the numeric difficulties of NLMS is by using the 
following regularization. 

2 
w’=w+p&-=--- - - E -I- Ez 

Experiment with NLMS and regularized NLMS for signals with large dynamic 
range. 

Bibliographical Notes 

There are many good textbooks on adaptive signal processing. A classic text is that 
of Widrow and Stearns [275] and a more recent text is that of Haykin [96]. 

The invention of adaptive filters was necessitated by the conversion of the phone 
to digital technologies and the consequent problems of echo cancellation and adap- 
tive differential coding of speech. Adaptive beamforming [272] and equalization 
were not far behind, and the use of LMS in the related field of pattern recognition 
helped enrich the field. 

In 1960, Bernard Widrow and one of his graduate students, Marcian (Ted) Hoff, 
presented the Widrow-Hoff approach [274] which is basically the LMS algorithm. 
Widrow went on to adapt this approach to become one of the fathers of the neu- 
ral network; Hoff joined Intel and went on to become one of the fathers of the 
microprocessor. 

The applications we presented are covered by review articles of note; adaptive 
noise cancelling in [273, 591, echo cancellation in (87, 1781, and equalizers in (202, 
2031. 

Adaptive equalization for digital communications was originally developed by 
Lucky at Bell Labs [152, 1531 and was the main reason for the increase of speed of 
telephone modems from 2400 b/s to 9600 b/s. 

The technique for equalization at the transmitter discussed in exercise 10.3.1 
was developed in the early 1970s by Tomlinson and by Harashima in Japan [260,92]. 
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Biological Signal Processing 

At first it may seem a bit unusual to find a chapter on biological signal pro- 
cessing in a book dedicated to digital signal processing; yet this is in reality 
no more peculiar than motivating DSP by starting with the analogous prin- 
ciples of analog signal processing. Indeed the biological motivation should 
be somewhat closer to our hearts (or eyes, ears and brains). In this book we 
have chosen to introduce analog and digital signal processing together, but 
have confined our discussion of biological signal processing to this chapter. 

In the first two sections we examine how we map external signal param- 
eters into internal (biological/psychological) representations. This question 
belongs to the realm of psychophysics, the birth of which we describe. Our 
senses are highly sensitive and yet have a remarkably large dynamic range; 
we would like to understand and emulate this ability. We will see that a 
form of universal compression is employed, one that is useful in many DSP 
contexts. 

The majority of the signals we acquire from the outside world and pro- 
cess in our brains are visual, and much interesting signal processing takes 
place in our visual system. Much has been discovered about the function- 
ing of this system but here we concentrate on audio biological mechanisms 
since the focus of this book is one-dimensional signals. Hearing is the sense 
with the second largest bandwidth, and speech is our primary method of 
communications. We will devote a section each to speech production and 
perception mechanisms. In a later chapter we will study a DSP model of 
speech production that is based on this simplified biology. 

After studying the signal input and output mechanisms we proceed to 
the processing apparatus, namely the brain. We discuss the basic processor, 
the neuron, and compare its architecture with that of processors with which 
we are more familiar. We introduce a simple model neuron and the concept 
of a neural network, and conclude with a performance comparison of man 
vs. machine. 

427 
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11.1 Weber’s Discovery 

Ernst Weber was professor of physiology and anatomy at the university of 
Leipzig in the first half of the nineteenth century. His investigations involved 
the sensitivity of the senses. His initial studies dealt with the tactile sense, 
for example, the effect of temperature, pressure and location on the sense of 
touch. One of his discoveries was that cold objects felt subjectively heavier 
than hot objects of the same weight. 

In his laboratory Weber would study the effect of different stimuli on 
human subjects. In order to measure subjective sensitivity he invented the 
idea of the Just Noticeable Difference (JND), which is the minimal change 
in the physical world that produces a noticeable difference to the subject’s 
senses. For example, he studied the minimal separation required between 
two points of contact with the skin, in order to be noticeable. He found 
that this varied widely, with large separations required on the back while 
very small separations could be distinguished on the fingertips. From this 
he could infer the relative densities of neural coverage. 

In order to study the subjective feeling of weight he defined the JND to 
be the minimal weight that must be added in order for a subject to perceive 
them as different. In a typical experiment (from about 1830) a subject would 
be given two bags of coins to hold, one placed on each hand. Let’s assume 
that there were 29 coins on the left hand and 30 coins on the right. If most 
subjects could reliably report the right-hand bag as heavier than the left, 
Weber would be able to conclude that the threshold was equal or less than 
the weight of a single coin. 

Weber’s most important discovery that the JND varied with total weight. 
Adding a single coin to 29 coins produced a discernible difference, but 59 
coins were indistinguishable from 58. Albeit subjects could reliably and re- 
peatably distinguish between 58 and 60 coins. Likewise, most subjects could 
not reliably feel the difference between 116 coins in one hand and 118 or 119 
in the other, only the addition of 4 coins caused a reliably distinguishable 
effect. Thus the JND definitely increased with increasing total weight. 

Upon closer examination Weber noticed something even more signifi- 
cant. The threshold was a single coin when the total weight was that of 29 
coins, two coins for 58, 4 coins for 116. The conclusion was obvious-the 
ratios (1:29, 2:58, 4:116) were all the same. Weber stated this result as ‘the 
sensitivity of a subject to weight is in direct proportion to the weight itself’, 
which translated into mathematics looks like this. 

AW=KW K x 0.034 
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This means that in order for a change in weight to be noticeable, one has to 
add a specific percentage of the present weight, not an absolute weight value. 

This radically changed the way Weber understood the JND. He set out 
to check the dependence of other sensitivity thresholds on total stimulus 
intensity and found similar relationships. 

AI = KII (11.1) 

In each case the ratio KI, called Weber’s constant, was different, but the 
linear dependence of the JND on total stimulus was universal. 

Although this relationship surprised Weber it really is quite familiar. 
Have you ever lain awake in the middle of the night and heard the ticking of 
a clock or the barking of a distant dog? These sounds are not heard during 
the day when the ambient noise is higher, but seem quite loud at night when 
the total stimulus is low. Yet they must be there during the day even if not 
discernible. It is simply that the addition of the ticking or distant barking to 
the other sounds does not increase the total sound by a sufficient percentage. 

You get out of bed and open the window. You remember how the stars 
were so bright when you were a child, yet seem so dim now. During the day 
you can’t see them at all. Yet they must be there during the day even if 
not discernible. It is simply that with no light from the sun the starlight 
is a more significant fraction of the total stimulus. With the expansion of 
cities and the resulting ‘light pollution’ the stars are disappearing, and one 
has to go further and further out into the countryside in order to see them. 
You close the window and strike a match in the dark room. The entire room 
seems to light up, yet had you struck the same match during the day no 
change in illumination would have been noticed. 

Let’s now consider the sequence of physical values that are perceivably 
different. Think of turning on the radio and slowly increasing the volume 
until you just begin to hear something. You then turn a bit more until you 
notice that the sound has definitely grown louder. Continuing this way we 
can mark the points on the volume control where the sound has become 
noticeably louder. A direct application of Weber’s law tells us that these 
marks will not be evenly spaced. 

Assume for the purpose of argument that the particular stimulus we 
are studying just becomes detectable at one physical unit 10 = 1 and that 
Weber’s constant for this stimulus is a whopping 100%. Then the second 
distinguishable level will be 11 = 2 because any value of I that adds less 
than one unit is indistinguishable from lo. Continuing, we must now add 
KI1 = 2 units to the existing two in order to obtain the third distinguishable 
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level I3 = 4. It is easy to see that Il = 2”, i.e., that the levels of Just 
Noticeable Differences (JNDs) form a geometric progression. Similarly, the 
distinguishable intensity levels for a stimulus that just becomes detectable 
at 10 physical units, and for which Weber’s constant is KI, obey 

Iz = lo(l + &)l (11.2) 

which is an alternative statement of Weber’s law. 
Weber’s law, equation (11.1) or (11.2), has been found to hold, at least 

approximately, for hundreds of different stimuli. Scientists have measured 
the required increase in the length of lines, the amount of salt that must be 
added to soup, and even the extra potency perfume requires. At extremely 
low and high stimuli there are deviations from Weber’s law, but over most 
of the range the linear relationship between threshold and stimulus holds 
astonishingly well. 

EXERCISES 

11.1.1 Try Weber’s coin experiment. Can you measure Weber’s constant? 

11.1.2 Write a computer program that presents a random rectangle on one part of 
the graphics screen, and allows subjects to reproduce it as closely as possible 
somewhere else on the screen. What is K here? 

11.1.3 Allow a subject to listen for a few seconds to a pure sinusoid of constant 
frequency and then attempt to adjust the frequency of a sinusoid to match it. 
What is K here? Repeat the experiment with amplitude instead of frequency. 

11 .1.4 Patterns of dots can be hidden by randomly placing large numbers of dots 
around them. The original pictures stand out if the dots are of different color 
or size, are made to slowly move, etc. Devise an experiment to determine 
different people’s thresholds for detecting patterns in random dot pictures. 

11.2 The Birth of Psychophysics 

Psychophysics is precisely what its name implies, the subject that combines 
psychology and physics. At first, such a combination sounds ridiculous, how 
could there possibly be any relationship between physics, the queen of the 
rationalistic empirical sciences, and psychology, the most subjective and hard 
to predict study? On second thought scientists learn everything they know 
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by observing the world with their senses. So even scientists are completely 
dependent on the subjective in order to arrive at the objective. 

The English philosopher Berkeley was fond of saying ‘esse est percipi’, 
that is, ‘existence is being perceived’. We have all heard the famous conun- 
drum about a tree falling in a forest not making a sound if there is no one 
around to hear it. A physical signal that is not captured by our senses might 
as well not exist. This capturing of physical signals and their translation 
into internal representations is called perception. 

The connection between physical signals and psychological manifesta- 
tions is by no means simple. The cover of this book looks the same in di- 
rect sunlight, under a fluorescent lamp, and by the light of a candle. Your 
mother’s voice sounds the same outside, in a train car, and over the phone. 
Your friend seems the same height when he is standing close to you, when 
he has walked across the street, and even on television. In all these cases the 
physical signals varied widely but the internal psychological representation 
remained the same. Our perception of quite different physical phenomena 
may be the nearly the same. 

Is it possible to say anything quantitative about internal psychologi- 
cal representations? Can feelings be measured? Surely our perceptions and 
thoughts are personal and unobservable to the outside world. How then can 
we talk about representing them quantitatively? Although consideration of 
such questions has convinced many sages to completely reject psychophysics, 
these very same questions can be raised regarding much of modern science. 
We cannot directly observe quarks, electrons, protons, or even atoms, but 
we become convinced of their existence by indirectly perceiving their effects. 
Individual cells cannot be seen, but biologists are convinced of their exis- 
tence. We cannot hold the Milky way galaxy in our hand, yet astronomers 
have deduced its existence. Feelings may not be openly witnessed, but their 
existence may be inferred from psychophysical experiments. 

Notwithstanding the importance and wide applicability of Weber’s law, it 
is not a true psychophysical law. Psychophysical laws should relate external 
physical signals to internal psychological representations. Weber’s law relates 
the intensity threshold AI to the total stimulus I, both of which are physical 
entities. Yet another step is needed to make a true psychophysical law. 

The first direct attempt to quantitatively pin down feelings was made by 
one of Weber’s students, Gustav Theodor Fechner. Fechner initially studied 
medicine, but after graduation was more involved in physics. Weber’s discov- 
eries retriggered his interest in psychophysics. Fechner started studying color 
perception, and later performed a series of experiments on the persistence 
of color after a bright light has been removed. 
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One series of experiments involved viewing sunlight filtered through col- 
ored lenses. Fechner, who acted as his own subject, was tragically blinded 
from the prolonged exposure to direct sunlight. Without his eyesight his 
promising scientific career was finished. Fechner became depressed and took 
up the study of philosophy, religion, and mysticism. His main interest was in 
the so-called ‘body and mind’ problem. Unlike many of his contemporaries, 
Fechner believed that the external physical world and the world as viewed 
internally by the mind were two aspects of one entity. 

Then, in 1850, his eyesight miraculously returned. Fechner was convinced 
that this was a sign that he was to complete the solution to the body and 
mind problem once and for all. His unique background, combining medicine, 
physics, and philosophy, allowed him to make a mental leap that his con- 
temporaries were not able or willing to achieve. The solution came to him 
in what is called a ‘Eureka experience’ while lying in bed on the morning 
of October 22, 1850. The anniversaries of this day are celebrated the world 
over as ‘Fechner day’. 

Fechner’s solution was made up of two parts, a physical part and a 
psychological part. For the physical part Fechner assumed that Weber’s law 
was correct, namely that equation (11.2) regarding the geometric progression 
of JND levels holds. For the psychological part Fechner made the simple 
assumption that all just noticeable changes were somehow equivalent. When 
we feel that the music has become noticeably louder, or that the light has 
become brighter, or the soup just a little saltier, or the joke just noticeably 
funnier, these all indicate an internal change of one unit. 

Fechner invented three different methods of experimentally determin- 
ing the connection between physical and psychological variables. We will 
demonstrate one by considering a scientist sitting on a mountaintop wait- 
ing for the sun to rise. The scientist has brought along nothing save a light 
meter (which measures physical units 1) and a pair of eyes (which regis- 
ter psychological units Y). Sometime before the scientist notices anything 
happening the light meter shows an increase in the illumination. Suddenly 
the scientist perceives the light and records that Y = 0 corresponds to the 
physical reading lo. When the light becomes just noticeably brighter the 
scientist records that Y = 1 corresponds to I1 = Io( 1 + KI). The next event 
is recorded as Y = 2, which corresponds to IQ = 1o(l + Q2. In general 
we see that the scientist’s personal feeling of Y corresponds to a physical 
reading of I’ = Io( 1+ KI)~. We are more interested in knowing the converse 
connection-given the physical event of intensity I, what is the psychological 
intensity Y? It is easy to show that 
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Y=AlogI+B (11.3) 

i.e., that apart from an additive constant that derives from the minimum 
biological sensitivity, the psychological intensity is proportional to the loga- 
rithm of the physical intensity. 

We know that the logarithm is an extremely compressive function. A log- 
arithmic psychophysical connection would explain the fantastic ranges that 
our senses can handle. Under proper conditions we can hear a sound that 
corresponds to our ear drum moving less than the diameter of a hydrogen 
atom, and we can actually see single photons. Yet we can also tolerate the 
sound of a jet engine corresponding to 1012 times the minimum intensity 
and see (for short periods of time as Fechner learned) direct sunlight 15 or- 
ders of magnitude stronger. In order to quantitatively compare two signals 
that may differ by such large amounts we introduce the BeZ (named after 
Alexander Graham), defined as the base 10 logarithm of the ratio of the 
powers of the two signals. In other words, if the power of the second signal 
is greater than that of the first by a factor of ten, we say that it is one Be1 
(1 B) stronger. In turns out that the Be1 is a bit too large a unit for most 
purposes, and so we usually use the decibel (dB), which is ten times smaller. 

Pl d(m) = lOlog g (11.4) 

Since power is the integral of the square of the signal values, if we know RMS 
signal values we can directly compute the difference between two signals. 

Sl d(m) = 2Olog g (11.5) 

The JND for strong sounds is about 0.5 dB, while at the threshold of hearing 
about 3 dB is needed. 

An audio signal’s amplitude is not the only characteristic that is per- 
ceived approximately logarithmically. Humans can hear from about 20 Hz 
(lower than that is felt rather than heard) to over 20 KHz (the precise upper 
limit depending on age). This corresponds to about 10 octaves, each octave 
being a doubling of frequency. Sinusoids separated by whole octaves sound 
similar to us, this fact being the principle behind the musical scale. Inside 
each octave the conventional western (‘well-tempered’) division is into twelve 
chromatic keys, each having frequency ‘$6 higher than the previous one. 
These keys sound to us approximately equally spaced, pointing once again 
to a logarithmic perception scale. 
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The mel (from ‘melody’) frequency scale is designed to correspond to the 
subjective psychophysical sensation of a tone’s pitch. The perceived pitch 
of a 1 KHz tone at 40 dB above the hearing threshold is defined to be 1000 
mels. Equal me1 intervals correspond to equal pitch perception differences; 
under about 1 KHz the me1 scale is approximately linear in frequency, but 
at higher frequencies it is approximately logarithmic. 

M = lOOOlog,(f,,, + 1) 

The Bark (named after the acoustician H.G. Barkhausen) scale approxi- 
mates the natural frequency scale of the auditory system. Psychophysically, 
signals heard simultaneously are perceived as separate sounds when sep- 
arated by one Bark or more since they excite different basilar membrane 
regions. A Bark is about 100 Hz for frequencies under 500 Hz, is about 150 
Hz at 1 KHz, and a full KHz at about 5 KHz. 

1 BarkH, M 25 + 75(1 + 1.4f,2,,)“.6g 

If we divide the entire audio range into nonoverlapping regions of one Bark 
bandwidth we get 24 ‘critical bands’. Both the me1 and Bark scales are 
approximately logarithmic in frequency. 

EXERCISES 

11.2.1 Derive equation (11.3). What is the meaning of A and B? What should be 
the base of the logarithm? 

11.2.2 How long does a tone have to be on for its frequency to be identifiable? 
Experiment! 

11.2.3 The well-tempered scale is a relatively recent invention, having become pop- 
ular with the invention of keyboard-based instruments such as the piano. 
Using a computer with a programmable sound generator, test the difference 
between a linearly divided scale and a well-tempered one. Play a series of 
notes each higher than the previous one by 50 Hz. Do the differences sound 
to same? Play a simple tune on the well-tempered scale and on a linearly 
divided octave scale. Can you hear the difference? Can you describe it? 

11.2.4 Since we perceive sound amplitudes logarithmically, we should quantize them 
on a logarithmic scale as well. Compare the p-law and A-law quantizations 
prevalent in the public telephone system (equations (19.3) and (19.4)) with 
logarithmic response. How are negative values handled? Can you guess why 
these particular forms are used? 
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11.2.5 Two approximations to the Bark warping of frequency are 

B M 13 tanA’(0.76f,,,) + 3.5 tan-’ 

= 7 sinh-‘(f&/0.65) 

while the Mel warping was given in the text. Compare these three empirical 
formulas with true logarithmic behavior cy ln( 1 + z) in the range from 50 Hz 
to 5 KHz. 

11.2.6 Recent research has shown that Fechner’s law is only correct over a certain 
range, failing when the stimuli are either very weak or very strong. Stevens 
proposed a power law Y = ICI” where k and n are parameters dependent 
on the sense being described. Research Stevens’ law. For what cases does 
Stevens’ law fit the empirical data better than Fechner’s law? 

11.2.7 Toward the end of his life Fechner studied aesthetically pleasing shapes. Write 
a program that allows the user to vary the ratio of the sides of a rectangle 
and allow a large number of people to find the ‘nicest’ rectangle that is 
not a square. What ratio do people like? (This ratio has been employed in 
architecture since the Greeks.) 

11.3 Speech Production 

In this section we introduce the biological generation mechanism for one of 
the most important signals we process, namely human speech. We give a 
quick overview of how we use our lungs, throats, and mouths to produce 
speech signals. The next section will describe speech perception, i.e., how 
we use our ears, cochlea, and auditory nerves to detect speech. 

It is a curious fact that although we can input and process much more 
visual information than acoustic, the main mode of communications between 
humans is speech. Wouldn’t it have been more efficient for us to communicate 
via some elaborate sign language or perhaps by creating rapidly changing 
color patterns on our skin? Apparently the main reason for our preferring 
acoustic waves is their long wavelengths and thus their diffraction around 
obstacles. We can broadcast our speech to many people in different places; we 
can hear someone talking without looking at the mouth and indeed without 
even being in the same room. These advantages are so great that we are 
willing to give up bandwidth for them; and speech is so crucial to the human 
race that we are even willing to risk our lives for it. 
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To understand this risk we have to compare our mouth and throat re- 
gions with those of the other primates. Comparing the profile of a human 
with that of a chimpanzee reveals that the chimpanzee’s muzzle protrudes 
much further, while the human has a longer pharynx (throat) and a lower 
larynx (voice box). These changes make it easy for the human to change 
the resonances of the vocal cavity, but at the expense of causing the respi- 
ratory and alimentary tracts to overlap. Thus food can ‘go down the wrong 
way’, impeding breathing and possibly even leading to death by choking. 
However, despite this importance of spoken communication, the speech gen- 
eration mechanism is still basically an adapted breathing and eating appa- 
ratus, and the speech acquisition mechanism is still essentially the acoustic 
predator/prey detection apparatus. 

It is convenient to think of speech as being composed of a sequence of ba- 
sic units called phonemes. A phoneme is supposed to be the smallest unit of 
speech that has independent meaning, and thus can be operationally defined 
as the minimal amount of speech that if replaced could change the mean- 
ing of what has been said. Thus b and k are distinct phonemes in English 
(e.g., ‘book’ and ‘cook’ have different meanings), while 1 and r are indis- 
tinguishable to speakers of many oriental languages, b and p are the same 
in Arabic, and various gutturals and clicks are not recognized by speakers 
of Latin-based languages. English speakers replace the French or Spanish r 
with their own because the originals do not exist in English and are thus 
not properly distinguished. Different sources claim that there are between 42 
and 64 phonemes in spoken English, with other languages having typically 
between 25 and 100. Although the concept of a phoneme is an approxima- 
tion to the whole story, we will posit speech generation and perception to 
be the production and detection of sequences of phonemes. 

Speech generation commences with air being exhaled from the lungs 
through the ‘trachea’ (windpipe) to the ‘larynx’ (voice box). The ‘vocal 
cords’ are situated in the larynx. While simply breathing these folds of 
tissue are held open and air passes through them unimpeded, but when 
the laryngeal muscles stretch them taut air must pass through the narrow 
opening between the cords known as the ‘glottis’. The air flow is interrupted 
by the opening and closing of the glottis, producing a periodic series of 
pulses, the basic pulse rate being between 2.5 and 20 milliseconds. The 
frequency corresponding to this pulse interval is called the pitch. The tighter 
the cords are stretched, the faster the cycle of opening the cords, releasing the 
air, and reclosing, and so the higher the pitch. Voice intensities result from 
the pressure with which the expelled air is forced through the vocal cords. 
The roughly triangular-shaped pulses of air then pass into the vocal tract 
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consisting of the ‘pharynx’ (throat), mouth cavity, tongue, lips, and nose 
and are finally expelled. There are two door-like mechanisms that prohibit 
or allow air to flow. Two passages proceed downward from the pharynx, 
the ‘esophagus’ (food pipe) and trachea. The ‘epiglottis’ separates the two 
by closing the air passage during swallowing. In addition, air can enter the 
nasal tract only when the ‘velum’ is open. 

The air pulses exiting the vibrating vocal cords can be thought of as a 
signal with a basic periodicity of between 50 and 400 Hz (typically 50-250 
for men, 150-400 for women) but rich in harmonics. Thus the spectrum 
of this signal consists of a set of equally spaced lines, typically decreasing 
in amplitude between 6 and 12 dB per octave. Because of its physical di- 
mensions, the vocal tract resonates at various frequencies called formants, 
corresponding to the length of the throat (between 200 and 800 Hz), length 
of the nasal passage (500-1500 Hz), and size of the mouth between throat 
and teeth (1000-3000 Hz). These resonances enhance applicable frequen- 
cies in the glottal signal, in the manner of a set of filters. The result is the 
complex waveform that carries the speech information. The spectrum thus 
consists of a set of lines at harmonics of the pitch frequency, with amplitudes 
dependent on the phoneme being spoken. 

The vocal cords do not vibrate for all speech sounds. We call phonemes 
for which they vibrate voiced while the others are unvoiced. Vowels (e.g., a, e, 
i, o, u) are always voiced unless spoken in a whisper, while some consonants 
are voiced while others are not. You can tell when a sound is voiced by 
placing your fingers on your larynx and feeling the vibration. For example, 
the sound s is unvoiced while the sound z is voiced. The vocal tract is the 
same in both cases, and thus the formant frequencies are identical, but z 
has a pitch frequency while s doesn’t. Similarly the sounds t and d share 
vocal tract positions and hence formants, but the former is unvoiced and 
the latter voiced. When there is no voicing the excitation of the vocal tract 
is created by restricting the air flow at some point. Such an excitation is 
noise-like, and hence the spectrum of unvoiced sounds is continuous rather 
than discrete. The filtering of a noise-like signal by vocal tract resonances 
results in a continuous spectrum with peaks at the formant frequencies. 

The unvoiced fricatives f, s, and h are good examples of this; f is gener- 
ated by constricting the air flow between the teeth and lip, s by constricting 
the air flow between the tongue and back of the teeth, and h results from a 
glottal constriction. The h spectrum contains all formants since the excita- 
tion is at the beginning of the vocal tract, while other fricatives only excite 
part of the tract and thus do not exhibit all the formants. 
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Nasal phonemes, such as m and n, are generated by closing the mouth 
and forcing voiced excitation through the nose. They are weaker than the 
vowels because the nasal tract is smaller in cross sectional area than the 
mouth. The closed mouth also results in a spectral zero, but this is not well 
detected by the human speech recognition apparatus. Glides and liquids, 
such as w and 1, are also voiced but weaker than vowels, this time because 
the vocal tract is more closed than for vowels. They also tend to be shorter in 
duration than vowels. Stops, such as b and t, may be voiced or unvoiced, and 
are created by first completely blocking the vocal tract and then suddenly 
opening it. Thus recognition of stops requires observing the signal in the 
time domain. 

We have seen that all phonemes, and thus all speech, can be created by 
using a relatively small number of basic building blocks. We need to create an 
excitation signal, either voiced or unvoiced, and to filter this signal in order 
to create formants. In 1791, Wolfgang von Kempelen described a mechanical 
mechanism that could produce speech in this fashion, and Charles Wheat- 
stone built such a device in the early 1800s. A bellows represented the lungs, 
a vibrating reed simulated the vocal cords, and leather pipes performed as 
mouth and nasal passages. By placing and removing the reed, varying the 
cross-sectional area of the pipes, constricting it in various places, blocking 
it and releasing, etc., Wheatstone was able to create intelligible short sen- 
tences. Bell Labs demonstrated an electronic synthesizer at the 1939 World’s 
Fair in New York. Modern speech synthesizers are electronic and comput- 
erized, digitally creating the excitation and filtering using methods of DSP. 
We will return to this subject in Section 19.1. 

EXERCISES 

11.3.1 What are the main differences between normal speaking 
whispering, singing, and shouting on the other? 

on the one hand and 

11.3.2 Why do some boys’ voices change during adolescence? 

11.3.3 Match the following unvoiced consonants with their voiced counterparts: t, 
s, k, p, f, ch, sh, th (as in think), wh. 

11.3.4 Simulate the speech production mechanism by creating a triangle pulse train 
of variable pitch and filtering with a 3-4 pole AR filter. Can you produce 
signals that sound natural? 

11.3.5 Experiment with a more sophisticated software speech synthesizer (source 
code may be found on the Internet). How difficult is it to produce natural- 
sounding sentences? 
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11.4 Speech Perception 

The human ear along with the human brain are a most impressive sound 
receiver. We can actually detect sounds that are so weak that the air pressure 
density fluctuations are less than one billionth of the average density. These 
sounds are so weak that the ear drum moves only about the diameter of a 
single hydrogen atom! But we can also hear very strong sounds, sounds so 
strong that the ear drum moves a millimeter. The frequency range of the ear 
is also quite remarkable. Not only can we hear over ten octaves (our visual 
system is sensitive over only about one octave), most people can distinguish 
between 998 Hz and 1002 Hz, a difference of a few parts per thousand. Piano 
tuners tune to within much better than this by using beat frequencies. Even 
the most tone deaf can easily distinguish a great variety of timbres, which 
are effects of lack of sinusoidality. 

Sound perception commences with sound waves impinging on the outer 
ear, and being funneled into the ‘auditory canal’ toward the middle ear. The 
sound waves are amplified as they progress along the somewhat narrowing 
canal, and at its end hit the ‘tympanic membrane’ or eardrum and set it into 
vibration. The physical dimensions of the outer ear also tend to band-pass 
the sound waves, enhancing frequencies in the range required for speech. 
The eardrum separates the outer ear from the middle ear, which is a small 
air-filled space, with an opening called the ‘Eustachian tube’ that leads 
to the nasal tract. The Eustachian tube equalizes the air pressure on both 
sides of the eardrum, thus allowing it to vibrate unimpeded. A chain of three 
movable bones called ‘ossicles’ (and further named the ‘hammer’, ‘anvil’ and 
‘stirrup’) traverses the middle ear connecting the eardrum with the inner ear. 
The vibrations of the eardrum set the hammer ossicle into motion, and that 
in turn moves the anvil and it the stirrup. The vibrations are eventually 
transmitted to a second membrane, called the ‘oval window’, which forms 
the boundary between the middle and inner ear. Since the base of the stirrup 
is much smaller than the surface of the eardrum, the overall effect of this 
chain of relay stations is once again to amplify the sound signal. 

Prom the oval window the vibrations are transmitted into a liquid-filled 
tube, coiled up like a snail, called the ‘cochlea’. Were the cochlear tube to 
be straightened out it would be about 3 centimeters in length, but coiled up 
as a 2$- to 3-turn spiral it is only about 0.5 cm. The cochlea is divided in 
half along its length by the ‘basilar membrane’, and contains the organ of 
Corti; both the basilar membrane and the ‘organ of Corti’ spiral the length 
of the cochlea. Vibrations of the oval window excite waves in the liquid in the 
cochlea setting the basilar membrane into mechanical vibration. Were we to 
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What about the auditory cortex itself? We started the previous section 
by contrasting the vocal tracts of the human with those of other primates, 
yet the difference in our brain structure between ourselves and the apes is 
even more remarkable. The human brain is not the most massive of any 
animal’s, but our brain mass divided by body mass is truly extraordinary, 
and our neocortex is much larger than that of any other animal. There 
are two cortical regions that deal specifically with speech, Broca’s area and 
Wernicke’s area, and these areas are much more highly developed in humans 
than in other species. Broca’s area is connected with motor control of speech 
production apparatus, while Wernicke’s area is somehow involved in speech 
comprehension. 

To summarize, the early stages of the biological auditory system perform 
a highly overlapped bank of filters spectral analysis, and it is this represen- 
tation that is passed on to the auditory cortex. This seems to be a rather 
general-purpose system, and is not necessarily the optimal match to the 
speech generation mechanism. For example, there is no low-level extraction 
of pitch or formants, and these features have to be derived based on the 
spectral representation. While the biology of speech generation has histor- 
ically had a profound influence on speech synthesis systems, we are only 
now beginning to explore how to exploit knowledge of the hearing system in 
speech recognition systems. 

EXERCISES 

11.4.1 Experiment to find if the ear is sensitive to phase. Generate combinations of 
evenly spaced sines with different phase differences. Do they sound the same? 

11.4.2 Masking in the context of hearing refers to the psychophysical phenomenon 
whereby weak sounds are covered up by stronger ones at nearby frequencies. 
Generate a strong tone at 1 KHz and a weaker one with variable frequency. 
How far removed in frequency does the tone have to be for detection? Atten- 
uate the weaker signal further and repeat the experiment. 

11.4.3 Sit in a room with a constant background noise (e.g., an air-conditioner) and 
perform some simple task (e.g., read this book). How much time elapses until 
you no longer notice the noise? 

11.4.4 Go to a (cocktail or non-drinking) party and listen to people speaking around 
the room. What effects your ability to separate different voices (e.g. physical 
separation, pitch, gender, topic discussed)? 

11.4.5 Have someone who speaks a language with which you are unfamiliar speak 
a few sentences. Listen carefully and try to transcribe what is being said as 
accurately as you can. How well did you do? 
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11.4.6 Talk to someone about speech recognition and then quickly ask ‘Do you know 
how to wreck a nice peach?‘. Ask your partner to repeat what you just said. 
What does this prove? 

11.4.7 Most of the time and energy of the speech signal is spent in the vowels, and 
hence the speech perception mechanism performs best in them. But do vowels 
carry most of the information? You can find out by performing the following 
experiment. Select several sentences at random from this book. From each 
sentence create two character strings, one in which all consonants are replaced 
by question marks, and one in which all vowels are. Now present these strings 
to subjects and ask them to fill in the blanks. What are your findings? 

11.4.8 Explain the possible mechanisms for acoustic source location. Take into ac- 
count the width of the head, the fact that localization is most accurate for 
high-frequency sounds with sharp attack times, and the idea that the head 
will absorb some sounds casting an acoustic shadow (about 3 dB at 500 
Hz, 20 dB at 6 KHz). How is height determined? Devise a neurobiologically 
plausible model for a time-of-arrival crosscorrelator. 

11.4.9 Simulate the sound perception mechanism by building a bank of overlapping 
band-pass filters (at least 100 are needed) and graphically displaying the 
output power with time as horizontal axis and filter number as vertical axis. 
Test by inputting a sinusoid with slowly varying frequency. Input speech and 
try to segment the words on the graphic display. 

11.5 Brains and Neurons 

The human brain is certainly a remarkable computer and signal processor. 
We have seen above how it can communicate with other brains using audio 
frequency waves in the air by coercing the mouth (an organ developed for 
eating and breathing) to broadcast messages and obliging the ear (originally 
for detecting predators and prey) to capture these messages. It can also com- 
municate by using the hands to write and eyes to read; it can process visual 
information at high speed, recognizing human faces and familiar objects in 
real time; it can instruct the hands to manipulate objects, and enable the 
body to avoid obstacles and navigating in order to get to wherever it wants. 
The brain can use tools, create new tools, find rules in complex phenomena; 
it can write music and poetry, do mathematical calculations, learn to do 
things it didn’t know how to do previously. It can even create new thinking 
machines and signal processing machines that excel in areas where it itself 
is limited. 
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This section contains a short introduction to the brain’s hardware archi- 
tecture. Our purpose is not the study the brain’s physiology per se; rather 
we wish to understand its prominent features in order to gain inspiration 
that may lead to the building of better signal processing and computing 
machines. In the following section we will introduce artificial neural net- 
works, which are models that attempt to capture the essential properties 
of the brain’s computational architecture and are used both to explain the 
functioning of the biological brain and to solve practical problems. 

The brain as an organ had been studied by the ancients, and by the 
mid-nineteenth century it was known that certain well-defined areas of the 
brain were responsible for specific functions such as speech. It was Santiago 
Ramon y Cajal who first convincingly demonstrated, in the latter half of 
the 1880s that the brain is not simply a large mass of fibers, but a vast 
number of richly interconnected brain cells, which we call ‘neurons’. Using 
a cell staining technique earlier developed by Camillo Golgi (with whom he 
shared the 1906 Nobel prize for Physiology or Medicine) he both observed 
neurons and mapped their anatomy. 

Neurons are a specialized type of cell, of which there are over 10 billion 
( lOlo) in the human brain. Prom a functional point of view we can roughly 
categorize neurons into three classes, namely ‘sensory neurons’ (such as those 
in the retina of the eye that are sensitive to light), ‘motor neurons’ (e.g., those 
which activate and control the motion of our fingers), and ‘higher processing 
neurons’ (those in the neocortex). We will discuss mainly the last of these 
categories, but even of these neurobiologists have discovered many different 
varieties, such as pyramidal cells, Golgi cells, spiny stellate cells, smooth 
stellate cells, interneurons, etc. Our description will be so simplified that 
the differences between these various varieties will be unimportant. 

The classical processing neuron, depicted schematically in Figure 11.1, 
is made up of three anatomical structures-the ‘soma’, the ‘axons’, and the 
‘dendritic tree’. The soma is the cell body and is responsible for the process- 
ing itself. The dendrites supply inputs to the neuron, while the axon carries 
the neuron’s output. We can think of the neuron as a simple processing ele- 
ment that inputs multiple signals (about lo* to lo5 is typical) and outputs 
a single signal. 

What kind of signals are input and output? The interior of a neuron 
is usually electrically negative relative to the outside, due to the cell mem- 
brane selectively passing ions from inside the cell outward and from outside 
inward. The membrane’s electric potential is not constant however, and its 
behavior as a function of time can be viewed as a signal. Perhaps the most 
significant type of behavior is the ‘action potential’. This is a very fast event, 
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axon 

Figure 11.1: A highly schematic diagram of the classic higher processing neuron. The 
dendrites at the left are the inputs, the axon at the right is the output, and the processing 
is performed by the soma. 

occupying about a millisecond, although afterward slow oscillations can oc- 
cupy a further 100 milliseconds. The event itself starts with the membrane 
potential becoming even more negative than usual followed by short sign 
reversal. This spike can travel along the neuron’s axon without decrease 
in amplitude; this propagation is not like electric current in a conductor, 
rather it is due to the axon being made of active material with each sec- 
tion exciting the next to spike. Due to the all-or-none nature of the action 
potential we will usually refer to the neuron as ‘firing’ if it has developed 
an action potential, or ‘quiescent’ if it has not. After a spike there is an 
‘absolute refractory period’ during which the neuron cannot fire again, and 
a ‘relative refractory period’ during which the neuron is less susceptible to 
spiking. Although rates of several hundred spikes per second are possible, 
more typical frequencies are on the order of 10 Hz. 

A ‘synapse’ is formed where one neuron touches and influences another. 
While there are other possibilities we will discuss synapses formed by the 
axon of the presynaptic neuron touching a dendrite of the postsynaptic neu- 
ron. At the synapse the two cell membranes touch but cellular material does 
not indiscriminately flow between the cells, the influence of the presynaptic 
potential being indirect. For example, in chemical synapses a presynaptic 
spike causes a transmitter substance to be released that changes the post- 
synaptic membrane permeability. Synapses may be ‘excitatory’, meaning 
that the firing of the presynaptic neuron increases the probability of the 
postsynaptic neuron firing as well; or ‘inhibitory’ if that firing decreases the 
postsynaptic neuron’s chance of firing. 
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No single neuron is really that significant; only the ‘network’ of myriad 
neurons is of consequence. Each neuron’s dendrites are contacted by axons 
of other neurons, and its own axon contacts, in turn, many other neurons. 
Thus the emerging picture is that of a huge number (about lOlo) of neurons, 
each firing or quiescent. The decision whether to fire is made in the soma, 
based on the input from all the (about 105) neurons that make synapses 
upon its dendrites. Once fired the action potential rapidly propagates from 
the soma down the axon to influence the firing of yet more (about 105) 
neurons. 

Neurons in contact need not be physically close, nor do physically close 
neurons need to be in direct contact. Thus in our quest to understand brain 
function we are led to consider large areas of brain matter. The brain is 
highly organized, with specific locales responsible for specific functions, and 
various task geometries mapped onto brain geometries. As early as 1861, 
Paul Broca described a patient who had lost his ability to speak although 
he did understand spoken language. After the patient’s death he tied this 
to a lesion in a specific position in the brain, now called Broca’s area. Hubel 
and Wiesel earned the 1981 Nobel prize in medicine for their description 
of the early visual system. They discovered formations they called hyper- 
columns. The neurons in each hypercolumn respond to lines in certain areas 
of the visual field, with nearby hypercolumns responding to lines in nearby 
locations. As one travels along a hypercolumn the angle of the detected line 
slowly rotates. These facts and more lead us to conclude that the entire brain 
is a large interconnected network of neurons that can be broken down into 
task-specific subnetworks that are tightly connected with other subnetworks. 

Since the days of Cajal and Golgi, neurobiologists have studied in depth 
the characteristics of single isolated neurons, and although much progress 
has been made, this study does not seem to lead to any deep explanation of 
brain function. Others have studied the larger-scale structure of the brain 
and discovered the mappings between function and specific areas of the 
brain, but even this immensely valuable information explains where but not 
how or why. In order to gain insight into the connection between the brain’s 
anatomy and its function it is necessary to simplify things. 

EXERCISES 

11.5.1 The central nervous system is composed of the spinal cord, the brain stem, the 
cerebellum, the midbrain, and the left and right hemispheres of the neocortex. 
What are the functions of these different components? How do we know? 
What creatures (reptiles, mammals, primates) have each component? 
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11.5.2 In addition to neurons the brain also contains glia cells; in fact there are 
more glia than neurons. Why did we focus on neurons and neglect glia cells 
in our explanation? 

11.5.3 There are many morphologies other than the classical model described in 
this section. For example, there are neurons with no axon or many axons, 
synapses may occur between two axons, or between two dendrites, or even 
on the cell body. Research several such variations. What is the function of 
these cells? 

11.5.4 Research the Nobel prize-winning contribution of Hubel and Wiesel to the 
understanding of the neurons in the mammalian visual system. What are 
simple cells, complex cells, and hypercomplex cells? What is a hypercolumn 
and how are the cells arranged geometrically? 

11.6 The Essential Neural Network 

The single neuron does not perform any significant amount of computa- 
tion; computation is performed by large collections of neurons organized 
into ‘neural networks’. The term ‘neural network’ is actually misleading; the 
concept is not that of a network that has neural characteristics, but simply 
a network Of neurons. Perhaps the term should be ‘neuron network’, but the 
original term has become entrenched. By association, other collections of 
interconnected processors, including ones we can make ourselves, are often 
called neural networks as well. However, the term is only fitting when the 
collection of processors is somehow inspired by the brain. A LAN of per- 
sonal computers is a collection of interconnected processors that would not 
normally be considered a neural network. 

When does a collection of processors become a neural network? Any 
definition we give will be subjective, and probably the number of different 
definitions equals the number of people working in the field. However, there 
are a number of requirements that most researchers would agree upon. My 
own definition goes something like this. 

Definition: neural network 
A neural network is a large set of simple, richly interconnected processing 
units that exhibits collective behavior after learning. D 

There must be a large number of processors, at least in the hundreds, 
reach the before we leave the more conventional ‘parallel processing’ and 
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regime where collective behavior is meaningful. The individual neuron must 
be simple, performing one basic operation like calculating the dot product of 
its input with stored weights, or finding the distance between its input and 
a stored pattern. We definitely don’t want to depend on multifunctional, 
highly precise, processors here. Some people would require nonlinearity of 
the neuron’s operation, but we will be lax in this regard. To make up for 
the simplicity of the individual processor, and to exploit the large number of 
processors, we want them to be richly interconnected. Conventional parallel 
processing techniques prefer to connect processors to nearest neighbors on 
a grid or with hypercubic geometry. Biological networks may not be fully 
interconnected, but the connectivity is quite high. 

The robustness to failure of conventional computers is infinitesimal. Were 
one to remove a randomly selected circuit from a personal computer or even 
simply cut a randomly selected conductor, the probability of total system 
failure is very high. This should be contrasted with the brain which loses 
large numbers of neurons daily without serious performance degradation. 
How is this robustness obtained? 

A clue is the fundamentally different methods of storing information in 
the two competing architectures. The conventional computer uses Location 
Addressable Memory (LAM) wherein information is stored in a particular 
location. In order to retrieve this information the location must be known. 
The brain uses content addressable memory (CAM). For example, once an 
image is stored we can present it and ask whether it is a known image. A 
generalization of this idea is associative memow, by which we mean that 
we can present an image and ask if there is a stored picture that is similar 
(the association). In this fashion we can recognize a friend’s face even with 
sunglasses and a different hair cut. 

We can now try to piece the puzzle together. The real motive for the high 
connectivity of neural networks is to obtain collective behavior, also called 
self-organization and related to distributed representations. Were each mem- 
ory to be stored, as in an LAM, in a specific neuron or definite small set of 
neurons, then failure of that neuron would wipe out that memory. Instead it 
seems plausible that memories are stored as eigenstates of the entire network. 
The mechanism that brings this about is spontaneous collective behavior, 
or self-organization. 

Learning refers to the method of introducing memories and storing pro- 
cedures. Conventional computers must be laboriously programmed; each 
new task requires expensive and time-consuming outside intervention. Brains 
learn from experience, automatically adapt to changing environments, and 
tend to be much more forgiving to ‘bugs’. 
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EXERCISES 

11.6.1 Which of the following are neural networks according to the definition given 
in the text? 

1. transistors on the substrate of an integrated circuit 
2. arithmetic registers in a microprocessor 
3. CPUs in a parallel processing environment 
4. cells in the spinal column 
5. neurons in an aplysia 

11.6.2 By introspection, make a rough order-of-magnitude estimate of the amount 
of information (in bits) passed to the brain by the various senses. For vision, 
for example, estimate the size of the main field of vision, the pixel density, 
the dynamic range, and the number of pictures transferred per second. Based 
on the above estimates, how much information must the brain store in a day? 
A year? A lifetime? The brain contains about lOlo neurons. Does the above 
estimate make sense? 

11.7 The Simplest Model Neuron 

In this section we will consider a simple model neuron. This model does not 
do justice to the real biological neuron. Even using a single model, no matter 
how complex, is a gross simplification. Real neurons have complex time- 
dependent properties that we will completely ignore in this simple model; 
and the functioning of our model will be a mere caricature of the real thing. 

So why should we attempt to model the neuron? An analogy is useful 
here. The reader will remember the ideal gas law PV = ?&BT, which re- 
liably relates the pressure, volume and temperature for a large number of 
gases. This law is only approximate, and indeed it breaks down at very high 
pressures or a temperatures close to the condensation temperature of the 
particular gas. However, it is a good approximation for a very large number 
of gases over a large regions of P, V, and T, and furthermore corrections 
can be added to better approximate the actual behavior. The ideal gas law 
can be derived in statistical physics from the microscopic behavior of the gas 
molecules under the assumption that they are essentially ping pong balls. 
By this we mean that the gas molecules are assumed to be small spheres 
of definite size, which only interact with other molecules by colliding with 
them. Upon collision the molecules change their velocities as colliding ping 
pong balls would. Using techniques of statistical physics, which is a math- 
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ematical formalism designed to derive macroscopic ‘average’ laws from the 
behavior of huge numbers of simple particles, the ideal gas can be derived. 

No-one really believes that the gas molecules are ping pong balls. They 
are definitely not spheres of well-defined radius-they are composed of a 
nucleus with protons and neutrons surrounded by electron ‘clouds’. They 
definitely do not interacting like ping pong balls-there are electromagnetic 
fields that act at a distance and the dynamics is inherently quantum me- 
chanical. So why does the ideal gas law work? 

The answer is that it doesn’t. When the pressure is high or the tem- 
perature low, the molecules are close together and the model breaks down 
miserably. The gas condenses into a liquid, and the temperature at which 
this happens is different for different gases. But for a large range of pa- 
rameters the most important thing is that there are a very large number of 
molecules that interact only weakly with the others, except for short periods 
of time when they are close. Thus any model that obeys these constraints 
will give approximately the same behavior, so we might as well pick the 
easiest model to work with. Since the ping pong ball model is the simplest 
to handle mathematically, it is the natural starting point. 

Let’s return to the neuron. There is a large variety of types, and each is 
an extremely complex entity; but we believe that as a first approximation 
the most important features are the huge number of neurons, and the fact 
that these are so richly interconnected. In the spirit of statistical physics 
we search for the simplest ‘ping pong ball’ model of a neuron. This is the 
McCulloch-Pitts model, first proposed in the early 1940s. 

The McCulloch-Pitts neuron was originally designed to show that a sim- 
ple neuron-like device could calculate logical functions such as AND and OR. 
The neuronal output is calculated by comparing a weighted linear combina- 
tion (convolution) of the inputs to a threshold. Only if the linear combination 
is above the threshold will the neuron fire. Such a function is often called a 
linear threshold function. 

In order to state this description mathematically, we must introduce 
some notation. The output of the neuron under consideration will be called 
0, while its N inputs will be called Ij with j = 1. . . N. At this early stage 
the neural computation community already divides into two rival camps. 
Both camps represent the neuron firing as 0 = +l, but one uses 0 = 0 
for quiescence, while the other prefers 0 = -1. The synaptic efficacy of 
the connection from input j will be represented by a real number Wj. For 
excitatory synapses Wj > 0, while for inhibitory ones Wj < 0. The absolute 
value of wj is also important since not all inputs affect the output in the 
same measure. If Wj = 0 then the input does not affect the output at all 
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(there is no synapse). If 1 lVj 1 is large then the effect of this input is significant, 
while small IVV” 1 means the input only marginally affects the output. 

The linear combination of the McCulloch-Pitts neuron means that the 
cell’s potential is assumed to be 

N 

h=CWjIj 
j=l 

(11.6) 

and the neuron will fire when this potential surpasses the threshold potential 
required to excite an action potential 8. Using the 0,l representation we can 
write 

O=O(h-8)=@ (11.7) 

where 0 is the step function. With the fl representation we write 

0= sgn(h - 0) = I (11.8) 

where the Signum function sgn returns the sign of its argument. Note that 
the meaning of this latter equation is somewhat different from the previous 
one; here neurons that are not firing also contribute to the sum. 

The McCulloch-Pitts neuron is the simplest possible neuron model. The 
inputs are combined in a simple deterministic way. The decision is made 
based on a simple deterministic comparison. The summation and comparison 
are instantaneous and time-independent. Yet this completely nonbiological 
formal neuron is already strong enough to perform nontrivial computations. 
For example, consider the following image processing problem. We are pre- 
sented with a black-and-white image, such as a fax, that has been degraded 
by noise. The classic DSP approach would be to filter this binary-valued 
image with a two-dimensional low-pass filter, which could be implemented 
by averaging neighboring pixels with appropriate coefficients. This would 
leave a gray-scale image that could be converted back to a black-and-white 
image by thresholding. This combination of the linear combination of input 
pixels in neighborhoods followed by thresholding can be implemented by a 
two-dimensional array of McCulloch-Pitts neurons. This same architecture 
can implement a large variety of other image processing operators. 

What is the most general operation a single linear threshold function 
can implement? For every possible input vector the McCulloch-Pitts neuron 
outputs 0 or 1 (or &l). Such a function is called a ‘decision function’ or 
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a dichotomy. Thinking of the 2N possible input configurations as points in 
N-dimensional space, the linear combination is obviously the equation for 
a N - l-dimensional hyperplane, and the thresholding separates the inputs 
that cause positive output (which are all on one side of the hyperplane) 
from the others. Thus we see that the threshold linear function implements 
linearly separable dichotomies. 

This is only a tiny fraction of all the dichotomizations we might need to 
use. If this were all neuron models could do, they would find little practical 
use. The modern reincarnation of neural networks exploits such architectures 
as the multilayer perceptron (see Section 8.4), which broaden the scope of 
implementable dichotomies. In fact, feedforward networks of neurons can 
implement arbitrarily complex functions. 

How does the brain learn the weights it needs to function? Hebb proposed 
a principle that can be interpreted at the neuron level in the following way. 

Theorem: Hebb’s Principle 
The synaptic weight increases when the input to a neuron and its output 
tend to fire simultaneously. Using the notation W..j for the weight that con- 
nects presynaptic neuron sj with postsynaptic neuron si, 

Wij + Wij + ASiSj (11.9) 

where the si are either 0,l or 33. n 

This form, where weights are updated accordingly to a constant times 
the product of the input and output, strongly reminds us of the LMS rule, 
only there the product is of the input and error. However, this difference 
is only apparent since if the postsynaptic neuron fires si = +l when it 
shouldn’t have the error is 1 - (-1) = 2 while in the opposite case the error 
is -1 - (+l) = -2 and the difference is only a factor of two that can be 
absorbed into A. The true difference is that the desired si can only take on 
the discrete values (0,l or &l); so rather than converging to the true answer 
like LMS, we expect a neuron-motivated adaptation algorithm to eventually 
attain precisely the right answer. The first such algorithm, the ‘perceptron 
learning algorithm’ was actually discovered before the LMS algorithm. It 
can be shown to converge to an answer in a finite number of steps, assuming 
there is an answer to the problem at hand. 

The problem with the perceptron learning algorithm is that it does not 
readily generalize to the more capable architectures, such as the multilayer 
perceptron. The most popular of the modern algorithms is based on a variant 
of LMS. 
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EXERCISES 

11.7.1 One can convert 0,l neurons into fl neurons by using the transformation 
S -+ 2s - 1. Show that equations (11.7) and (11.8) are equivalent by thus 
transforming the Ij and finding transformations for Wj and 8. 

11.7.2 Show that AND and OR gates of in-degree N can be implemented using 
McCulloch-Pitts neurons. That is, specify Wj and 8 such that the neuron 
will fire only if all inputs fire, or if at least one input fires. 

11.7.3 Draw and label the possible input configurations of a three-input linear 
threshold function as vertices of a cube. Show graphically which dichotomies 
can be implemented with zero threshold. 

11.7.4 Extend the results of the previous problem to general McCulloch-Pitts neu- 
rons (nonzero threshold) . 

11.7.5 The McCulloch-Pitts neuron can be used as a signal detection mechanism. 
Assume we wish to detect a signal s, of N samples and report the time that it 
appears. One builds a neuron with N continuous inputs and weights precisely 
Wj = sj. We then have the input flow past the neuron, so that at any time 
the neuron sees N consecutive inputs. Consider the fl representation and 
show that the PSP will be maximal when the required signal is precisely 
lined up with the neural inputs. How should the threshold be set (take noise 
and false alarms into account)? To what signal processing technique does this 
correspond? 

11.7.6 Extend the results of the previous exercise to image recognition. Would such 
an approach be useful for recognition of printed characters on a page? If not 
why not? What about cursive handwriting? 

11.7.7 Discuss the use of McCulloch-Pitts neurons for associative memory. 

11.7.8 What is the difference between Hebb’s principle for 0,l neurons and f 1 
neurons? 

11.8 Man vs. Machine 

Now that we have a basic understanding of the brain’s computational archi- 
tecture we can attempt a quantitative comparison between the brain and the 
conventional computer. The pioneers of the modern computer were aware 
of the basic facts of the previous section, and were interested in eventually 
building a brain-like device. However, the prospect of lOlo parallel process- 
ing elements was quite daunting to these early computer engineers, who thus 
compromised on a single processing element as a kind of first approximation. 
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Surprisingly, by making this one processing element faster and more pow- 
erful, this computer evolved into a completely different architecture, quite 
powerful in its own right. Only now, with computer speeds approaching the 
absolute limits that physics imposes, is parallel processing being once again 
seriously considered; but even now when computer engineers talk about par- 
allel processing they are referring to small numbers of CPUs, such as two, 
four, or eight. A comparison of the human brain to a conventional com- 
puter, based on the information of the last few sections, is to be found in 
Table 11.1. 

processors 
processor 

complexity 
processor 

speed 
inter-processor 

communications 
learning mode 

failure 
robustness 

memory 
organization 

Brain 
x 10 billion neurons 
(massively parallel) 
simple 
inaccurate 
slow 
(millisec) 
fast 

bsf4 
learn from experience 
many neurons die 
without drastic effect 
content addressable 
(CAM) 

Computer 
1 CPU 
(intrinsically serial) 
complex 
accurate 
fast 
(nanosec) 
slow 
(millisec) 
manual programming 
single fault often 
leads to svstem failure 
location addressable 
(LAM) 

Table 11.1: A quantitative and functional comparison of the human brain and a serial 
processing computer. 

The term architecture as applied to computers was invented to describe 
all the aspects of the computer’s hardware that software must take into ac- 
count. Two computers of identical architectures but different speeds can be 
uniquely compared as to strength-if the clock speed of one is twice that of 
the other, every program will run on it twice as fast. Two computers of sim- 
ilar, but not identical architectures are not uniquely comparable, and thus 
different programs will run at slightly different speed-up ratios. The more 
the architectures differ, the greater will be the divergence of the benchmark- 
ing results. This does not mean that we cannot say that a supercomputer 
is stronger than a desktop computer! There is another way to define the 
concept of ‘stronger’. 
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Many engineering workstations today come with software emulations of 
personal computer environments. These emulations can run actual applica- 
tions designed for the personal computer by emulating that entire platform 
in software. When a PC program is input to the emulation, all the PC op- 
codes must be read and interpreted and the required operation precisely 
simulated by an appropriate workstation command or routine. Were the 
program to run on the workstation emulation faster than on the target PC, 
we would be justified in concluding that the workstation is stronger than 
the PC, even though their architectures are dissimilar. Can we make such a 
comparison between the conventional computer and the brain? 

To answer this question definitively we require an estimate as to the 
number of computers required to emulate a human brain at the hardware 
level. Prom the previous section we know that to emulate the simplest pos- 
sible neuron, we would have to carry out N multiplications and accumu- 
late operations (see Section 17.1) every ‘clock’ period. Here the number of 
synapses N = lo5 and the clock period is about 5 milliseconds, and so a sin- 
gle neuron would require at least 2107 MACs per second, and lOlo neurons 
would require over 21017 MAC/ sec. Assuming even an extremely fast CPU 
that could carry out a MAC in 5 nanoseconds, we would require 10’ such 
computers in parallel to simulate a single human brain! 

So the brain is equivalent to 1 gigacomputer! This sounds quite impres- 
sive, even without taking the small physical size and low power requirements 
into account. Now let’s ask the converse question. How many humans would 
be required to emulate this same 5 nanosecond computer? Even assuming 
that a human could carry out the average operation in five seconds (and it 
is doubtful that many of us can perform an arbitrary 16-bit multiplication 
in this time, let alone 32-bit divisions) the computer would have carried out 
log operations in this same 5 seconds, and so we would need 10’ humans 
in parallel to emulate the computer! So the computer is equivalent to a 
gigahuman as well. 

How could these comparisons have turned out so perverse? The reason 
is that the underlying architectures are so very different. In such a case 
cross-emulation is extremely inefficient and direct comparison essentially 
meaningless. Certain benchmarking programs will run much faster on one 
machine while others will demonstrate the reverse behavior. The concept of 
‘stronger’ must be replaced with the idea of ‘best suited’. 

Thus when two quite different computational architectures are avail- 
able and a new problem presents itself, the would-be solver must first ask 
‘Which architecture is more suited to this problem?‘. Although it may in- 
deed be possible to solve the problem using either architecture, choosing the 
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wrong one may make the solution extremely inefficient or even unsolvable in 
practice. For example, were we required to calculate the 137th root of a SO- 
digit number, I believe that most readers would agree that the conventional 
number-crunching computer is more suited to the task than the human (or 
chimpanzee). However, when the problem is the understanding of spoken 
language, the reading of cursive handwriting, or the recognition of faces, the 
architecture of the brain has proved the more viable. Indeed for these tasks 
there is at least an existence proof for a neural network solution, but none 
has yet been proffered for the serial computer! 

Despite the above argument for neural computation, the neural network 
approach has had only limited success so far. Optical Character Recognition 
(OCR) engines based on neural networks have indeed eclipsed other tech- 
nologies, yet progress on speech recognition has been slow. At least part of 
the fault lies in the size of network we can presently build, see Figure 11.2. 
Our largest systems seem to be on the level of a mentally retarded mosquito! 
We are forced to conclude that our previous ‘existence proof’ for neural so- 
lutions to ASR, OCR, face recognition, and other problems is contrived at 
best. The only way our present-day artificial neural networks will be able 
to solve practical problems is by being more efficient than biology by many 
orders of magnitude. 

connections 
set 

1020 - 
I I I I I I I I 

0 human 

10’5 - 
0 rabbit 

0 bee 

1010 - * chip 
* emulation0 fly 

* simulation 

0 worm 

loo I I I I I I I I I 

loo lo2 lo4 lo6 lo8 lOlo 1012 1014 1016 connections 

Figure 11.2: The speed and complexity of various neural networks. The horizontal axis 
is the number of synapses in the network, a number that determines both the information 
capacity and the complexity of processing attainable. The vertical axis is the number of 
synaptic calculations that must be performed per second to emulate the network on a 
serial computer, and is an estimate of the network’s speed. 
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EXERCISES 

11.8.1 The ‘expert system’ approach to artificial intelligence is based on the tenet 
that anything a human (or other rational agent) can do a standard computer 
can be programmed to do. Discuss the veracity and relevance of this hypoth- 
esis. What types of problems have been solved using expert systems? What 
AI problems have eluded prolonged attempts at solution? 

11.8.2 In the Hopfield model there are N neurons {si}i=r...~ each of which can take 

th on the values fl, where si = +l means that the 2 neurons is firing. The 
synapse from presynaptic neuron j to postsynaptic neuron i is called Wij, 
and the matrix of synaptic efficacies has zeros on the diagonal Wii = 0 and is 
symmetric Wij = Wji. At any given time only one neuron updates its state; 

the updating of the ith neuron is according to 

sip + 1) = sgn 5 WijSj(t) 
j=l 

11.8.3 

after which some other neuron updates. Write a program that generates a ran- 
dom symmetric zero diagonal synaptic matrix, starts at random initial states, 
and implements this dynamics. Display the state of the network graphically 
as a rectangular image, with si = fl represented as different colored pixels. 
What can you say about the behavior of the network after a long enough 
time? What happens if you update all the neurons simultaneously based on 
the previous values of all the neurons? What happens in both of these cases 
if the synaptic matrix is antisymmetric? General asymmetric? 

Given P N-bit memories {~~}~~ir::;v’ t o b e stored, the Hebbian synaptic 
matrix is defined as 

which is the sum of outer products of the memories. Enhance the program 
written for the previous exercise by adding a routine that inputs desired 
memory images and computes the Hebbian matrix. Store P < O.lN memories 
and run the dynamics starting near one of the memories. What happens? 
What happens if you start far from any of the memories? Store P > 0.2N 
memories and run the dynamics again. What happens now? 
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Bibliographical Notes 

Good general introductions to psychophysics can be found in [50, 711. 
Alexander Graham Bell’s original vocation was speech production and much of 

the early research on speech generation mechanisms was performed at Bell Labs 
[54, 551. Th e c assic formant tables [193] and the ear sensitivity curves [62] also 1 
originated there. 

Speech production mechanisms are presented in many books on speech pro- 
cessing, such as [211] and in more depth in [253]. Speech perception is covered in 
[253, 195, 1291. The Bark scale is formally presented in [290, 232, 61 and the me1 
scale was defined in [254]. Cochlear modeling is reviewed in [5]. The application of 
the psychophysical principle of masking to speech compression is discussed in [232]. 

The McCulloch-Pitts neuron was introduced in [171]. In 1957 a team led by 
Frank Rosenblatt and Charles Wightman built an electronic neural network, which 
they called the Murk I Perceptron. This device was designed to perform charac- 
ter recognition. It was Rosenblatt who discovered and popularized the perceptron 
learning algorithm [224]. Minsky and Papert’s charming book [174] both thoroughly 
analyzed the algorithm and dampened all interest in neural network research by 
its gloomy predictions regarding the possibility of algorithms for more capable net- 
works. 

For a light introduction to the functioning of the brain, I suggest [32], while a 
more complete treatment can be found in [180]. [8] is a thorough introduction to 
neuron modeling from a physicist’s point of view. [168] is a seminal work on neural 
network modeling and [169] is the companion book of computer exercises. 
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Graphical Techniques 

Digital signal processing means algorithmic processing, representing signals 
as streams of numbers that can be manipulated by a programmable com- 
puter. Since DSP algorithms are programmed, standard computer languages 
may be used in principle for their implementation. In particular, block dia- 
grams, that are conventionally used to help one grasp the essential elements 
of complex conventional computer programs, may be useful as DSP descrip- 
tion and specification tools as well. 

It is difficult for people to capture and comprehend the structure of 
large pieces of algorithmic code, with the difficulty increasing rapidly with 
the length of uninterrupted code, the number of conditionals and branches, 
and the inherent complexity of the algorithm. In block diagrams, rectangles 
represent calculations the program may perform, straight lines represent pos- 
sible paths between the calculations, and there are also special symbols for 
control structures. The proponents of block diagrams claim that by looking 
at a skillfully prepared block diagram the program structure becomes clear. 
Detractors say that these diagrams are useful only for a certain paradigm of 
programming that went out with the ‘goto’; and that they only describe the 
control structures and not the data structures. Both sides agree that they 
are essentially a second language (in addition to the language in which the 
program is coded) to describe the same functionality, and as such the task 
of keeping them up to date and accurate is arduous. 

In computer science the use of block diagrams was once pervasive but has 
gone out of style. In DSP flow gruphs, which are similar to block diagrams, 
are still very popular. This is not because DSP is old-fashioned or less devel- 
oped than computer science. This is not because DSP lacks other formalisms 
and tools to describe signals and systems. It is simply because the block di- 
agram is a much more useful tool in DSP than it ever was in programming. 
DSP flow graphs graphically depict a DSP system’s signal structure; rect- 
angles and circles represent systems and directed lines represent signals. We 
thus capture the dual nature of systems and signals in one graphic portrait. 

461 
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In addition, many common DSP tasks are highly structured in time and/or 
frequency; this results in DSP block diagrams that have easily perceived 
geometric structure. Finally, an algebra of graphic transformations can be 
developed that allow one to simplify DSP block diagrams. Such transforma- 
tions often result in reductions in computational complexity that would be 
hard to derive without the graphical manipulations. 

In this chapter we will consider DSP graphical techniques. The word 
graphical is not used here as in ‘computer graphics’ (although we advocate 
the use of graphical displays for depicting DSP graphs), rather as in graph 
theory. The term graph refers to a collection of points and lines between these 
points. We start with a historical introduction to graph theory. Thereafter 
we learn about DSP flow graphs and how to manipulate them. RAX is a 
visual programming block diagram system. We describe the operation and 
internals of RAX in order to acquaint the reader with this important class 
of DSP tools. 

12.1 Graph Theory 

Graphic representations have doubtless been used in science and technology 
for as long as humankind has pursued these subjects. The earliest uses were 
probably simple geometric constructions; it is easy to envision chief engi- 
neers in primitive civilizations making rough drawings before embarking on 
major projects; we can imagine sages in ancient civilizations studying figures 
and charts and then surprising kings with their predictions. We know that 
thousands of years ago diagrams were used for engineering and education. 
What the ancients grasped was that one can capture the essential elements 
of a complex problem using simple graphical representations. 

A diagram obviously does not capture all the features of the original. 
A map of a city is not of the original size nor does it reveal the wonders 
of architecture, the smells of the restaurants, the sounds of honking horns, 
etc. Still the map is extremely useful when navigating around town, even 
if it omits which streets are one-way and which tend to have traffic jams. 
Maps of the entire world are even more abstract representations since the 
world is spherical and the map is flat. Yet maps can be designed to correctly 
portray distances between cities, or bearing from one spot to another (but 
not both). As long as one realizes that a diagram can only capture certain 
elements of the original, and selects a diagrammatic method that captures 
the elements needed to solve the problem at hand, diagrams can be helpful. 
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In Euclidean geometry we consider two triangles to be equivalent if one 
could slide one on top of the other and they would coincide. The color or 
line width of such triangles is not taken into account, and neither is their 
orientation or position on the page. The transformations that are considered 
unimportant include arbitrary translations and rotations. When two trian- 
gles are related by such a transformation they are considered to be the same 
triangle. Much of high school geometry deals with methods to show two 
triangles are equivalent in this sense. A simple extension would be to allow 
transformations that include a change of scale. This would make a triangle 
on a map equivalent to the triangle on the ground. In this type of geometry 
any two triangles are considered equivalent if all of their angles are the same. 
In affine geometry even more general transformations are allowed, namely 
those which scale the x axis and y axis differently. In affine geometry all 
triangles are the same, but they are different from all the rectangles (which 
are all equivalent to each other). 

Topology is even more general than affine geometry. It allows completely 
arbitrary transformations as long as they do not rip apart the plane or glue 
it different points together. You can think of this as drawing the figure on 
a sheet of rubber and stretching it however you want-as long as it doesn’t 
rip or stick to another part of itself. In topology a triangle is equivalent to 
a rectangle or a circle, but different from a figure-eight. Graph theory is the 
study of points and the lines between them in topological space. In graph 
theory almost all the original geometry is thrown away, and we are left with 
a single abstraction, the graph. 

The word gruph as used in graph theory means a collection of points 
and lines that connect these points. In the mathematical terminology the 
points are called vertices and the lines edges; in computer science the desig- 
nations nodes and arcs are more common. We shall require arcs to connect 
distinct nodes (no arc loops back to the same node) and rule out multiple 
arcs between identical nodes. The distances between nodes, the lengths or 
thicknesses of the arcs, and the geometric orientations are meaningless in 
graph theory. All that counts is which nodes are connected to which. 

In Figure 12.1 we see all possible types of graphs with up to four nodes. 
Two nodes are said to be ‘adjacent’ if they are connected by an arc. A 
‘path’ is a disjoint collection of arcs that leads from one node to another. 
For example, in Gi there is a path of length 2 from the top-left node to 
the bottom-right, but no path to the top-right node. A ‘cycle’ is a path that 
leads from a node to itself. In G$ there is a cycle, but not in G!. The number 
of arcs emanating from a given node is called its degree; there are always an 
even number of nodes of odd degree. 
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G; . 

Figure 12.1: All graphs with up to 
nodes and disallow self connections. 

four nodes. We only allow arcs connecting distinct 

Many of the most interesting problems in graph theory involve the num- 
ber of graphs of a certain kind. A graph in which there is a path from 
any node to every other node (e.g., Gi, G& Gi, G& G& G;f, G$, Gf,, G&) is 
called ‘connected’, while one that has all nodes connected to all others (e.g., 
Gi , Gi, Gi, G&) is called complete. 

The beginnings of graph theory are usually traced back to 1736. In that 
year the famous mathematician, Leonhard Euler, considered the father of 
analysis, published his solution to a puzzle that he had been working on. 
Euler, who was born in Switzerland, was professor of mathematics at the 
academy of St. Petersburg (founded in 1725 by Catherine, the wife of Peter 
the Great). The cold weather so adversely affected his eyesight that in 1736 
we find him living in the capital of East Prussia, Kiinigsberg (German for 
‘the Kings city’). This city, founded in 1255 by Teutonic knights, was the 
seat of the dukes of Prussia from 1525 through 1618. After World War II 
the city was annexed to the USSR and renamed Kaliningrad (Russian for 
‘Kalinin’s city’) after the Soviet leader M.I. Kalinin. Today it is the capital 
of the Kaliningrad Oblast and is Russia’s sole port that does not freeze-over 
in winter. 
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Kijnigsberg’s topography is even more interesting than its history. The 
Pregel river (Pregolya in Russian) flows through the city from east to west, 
on its way to the Frisches Haff (German for ‘freshwater bay’, called Wislany 

Zalew in Polish, and Vistula in Lithuanian), a lagoon of the Baltic Sea, Not 
only does the river divide the city in two, but the river itself splits into 
northern and southern branches that later reconverge, forming an island in 
the center of town. The island is connected to the other parts of town by 
seven bridges. The question that puzzled Euler was this, Is it possible to 
leave your home for a walk, cross all the bridges exactly once, and return 
home? In terms of graph theory the question is, ‘Is it possible to start at 
some node, traverse all the arcs exactly once, returning to the initial node?’ 
If possible, such a path is called an Euler cycle. Euler recognized the puzzle 
as being a specific example of a general question-does a given graph have 
an Euler cycle or not? Today we call such graphs Eulerian. 

It is obvious that the distance between the nodes of the graph do not 
affect the answer to this question; this is truly a topological problem. What 
Euler discovered is that degree is important. A connected graph is ‘Eulerian’ 
if and only if every node has even degree. Only Eulerian graphs have paths 
of the desired type. With this insight Euler simultaneously founded the 
disciplines of graph theory and topology. 

We pick up our story once again 120 years later in Great Britain. Sir 
William Rowan Hamilton, well known for his extensive contributions to 
physics (the Hamiltonian function, the Hamilton-Jacobi equation) and math- 
ematics (complex numbers, vector algebra, group theory, ‘quaternions’), was 
also studying a puzzle. This puzzle involved the nodes of the regular dodec- 
ahedron (a solid with twelve regular pentagonal faces). Unlike Euler’s prob- 
lem where each m-c of a graph must be traversed exactly once, in Hamilton’s 
puzzle one is required to visit each node exactly once. A graph is ‘Hamil- 
tonian’ if and only if it contains a Hamiltonian cycle, that is, a cycle that 
contains each node exactly once. What Hamilton discovered is that the do- 
decahedron is Hamiltonian, that is, there is a path from node to node that 
returns to the starting point after visiting each node exactly once. Hamilton 
considered finding this path so challenging that he attempted to market the 
puzzle. The determination of necessary and sufficient conditions for a graph 
to be Hamiltonian turned out to be even more challenging; it remains one 
of the major unsolved problems in graph theory. 

‘Directed graphs’ or ‘digraphs’ are just like graphs, only the arcs have an 
associated direction (which we depict with an arrow). In Figure 12.2 we see 
all possible types of digraphs with one or two nodes. Nodes in digraphs have 
in-degree and out-degree (also called fan-in and fan-out), and two nodes may 
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Figure 12.2: All digraphs with up to two nodes. 

be connected by two directed arcs in opposite directions. Paths and cycles 
must traverse arcs in the direction of the arrows. 

A digraph is a ‘forest’ if it does not contain a cycle. For forests the 
direction of the arrow dictates a certain priority, so rather than saying that 
connecting nodes are adjacent, we speak of parent and child nodes. The pre- 
arc node is the parent while the post-arc one is the child. All nodes that can 
be reached from a given node are called descendants and the original node 
the ancestor. Since forests do not have cycles we never have to worry about 
a node being its own ancestor. A forest that has a single ancestor node (the 
‘root’) from which all other nodes descend is called a tree. Actually it is 
easier to think of the tree as being the basic graph and the forest as being 
a collection of trees. 

Digraphs are the basis of a computational model used extensively in DSP 
called the flow graph (or ‘flow diagram ‘, ‘dataflow network’, ‘DSP block dia- 
gram’, ‘graphical flow programming’, ‘visual programming language’, etc.). 
The directed arcs of the digraph represent signals while the nodes stand for 
processing subsystems. If the digraph is a forest we say that the system is a 
feedfomoard system, while digraphs with cycles are called feedback systems. 
The study of flow graphs will be the subject of the next section. 

EXERCISES 

12.1.1 Special types of graphs are used in electronics (schematic diagrams), physics 
(Feynman diagrams), computer science (search trees), and many other fields. 
Research and explain at least three such uses. 

12.1.2 Why isn’t K on the list of graphs with four nodes? What about w ? 

12.1.3 How many different kinds of graphs are there for five nodes? 

12.1.4 Draw all digraphs for 3 nodes. 

12.1.5 Explain Euler’s rule intuitively. 

12.1.6 A graph is called nonplanar if it cannot be drawn on a piece of paper without 
arcs crossing each other. Draw a nonplanar graph. 
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12.1.7 An Euler path is similar to an Euler cycle except that one needn’t return to 
the same node. Similarly we can define a Hamiltonian path. Draw Euler and 
Hamilton path for points on a two-dimensional grid. Which paths are cycles? 
Find Euler paths that are not Hamilton paths and vice versa. 

12.1.8 A trellis is a digraph created by mapping possible transitions between N 
states as a function of time. Conventionally the time axis is from left to right 
and the N states are drawn vertically. There is an arc between each state 
at time t and a several possible states at time t + 1. Assume a trellis with 
four states (called 0, 1, 2 and 3) with states 0 and 1 at time n being able to 
transition to even states at time n + 1, while 2 and 3 can only transition to 
odd states. Draw this trellis from time n = 0 through 4. How many different 
trellises of length L are there? How may a trellis be stored in a file? What 
data structure may be used in a program? 

12.2 DSP Flow Graphs 

Superficially DSP flow graphs look similar to the block diagrams used to de- 
scribe algorithms in computer science. In computer science the arcs indicate 
control paths, and computation is performed or decisions taken at nodes. De- 
pending on decisions taken the processing will continue down different arcs 
to different computational nodes. Thus by the use of this graphical tech- 
nique we can capture the control structure of computer programs. Other 
aspects of the program, such as data types and memory requirements, are 
not captured in these diagrams, and must be documented in some other way. 

The metaphor behind the use of DSP flow graphs is that of signals ‘flow- 
ing’ between processing subsystems. At each of the nodes input signals are 
processed to produce output signals that are passed along arcs to the fol- 
lowing nodes. Thus DSP flow graphs capture both the signal and processing 
system aspects of a problem. Since the vertices contain processing elements 
that we must identify, we will have to enrich the graphic notation of the 
previous section. 

Let’s see how to make DSP flow graphs. When a signal CC is the input to 
some system we will depict this 

and similarly we depict y as the output of a system in the following way. 
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Thus the identity system, which leaves a signal z unchanged, is depicted 

X Y 

which means precisely y = x. A hidden signal, that is, a signal that is 
neither a system input nor output, can be named by placing a symbol near 
the corresponding arc. All the above are standard digraph figures. 

As we mentioned before, nodes correspond to processing, which must be 
identified. We do this by drawing circles (for simple common processes) or 
squares (for more general processes). For example, y = f(x) is depicted 

and z = g(y) = g (f(x)) is shown 

9 *= 
Y 

x = - - f -= x 

where the hidden signal y has been identified. 
A very common operation is to multiply a signal by a real number. The 

standard digraph would have a multiplication node perform this function, 
i.e., we would expect y = Gx to be depicted something like 

X+-+-Y 

but since the operation is so common, we introduce a short-hand notation. 

G 
X Y 

Whenever a symbol appears near an arrow we understand an implicit mul- 
tiplication node y = Gx. Do not confuse this with the symbol representing 
a hidden signal that is placed close to an arc but not near an arrow. In such 
cases no multiplication is intended, and eliminating this symbol would not 
change the system’s operation at all. 

Many times we wish to have the signal x reach more than one processing 
system. In regular digraphs each arc connects a single pre-arc node with a 
unique post-arc node; in DSP we allow the connection of a single pre-arc 
node to multiple post-arc nodes with a single arc. The point where the signal 
splits into two is called a branch point or a tee connector. 
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--c 

Yl 

X 

Y2 

This means that the same signal is delivered to both nodes, yr = y2 = x. 
Of course it is meaningless to connect more than one pre-arc node to- 

gether; but we can add two signals x1 and x2 to get y = x1 + x2. This is 
depicted in the standard notation using an addition node. 

Xl 

-T- 

Y 
+ 

x2 

The small + signs mean that addition is to be performed. Subtraction y = 

Xl - x2 is depicted 
Xl-+p-Y 

and other combinations of signs are possible. 
Value-by-value multiplication y = 2122 is depicted as you would expect. 

Xl 

-r 

Y 

x2 

We can combine these basic elements in many ways. For example, the 
basic N = 2 DFT of equation (4.33) is depicted 

X0 X0 

Xl 
XL 

Xl 
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and signifies Xe = zo + zr and Xr = zo - q. 
One of the most important processing nodes is the unit delay, which is 

depicted by 2-l inscribed in a circle. 

This diagram means that the signal y is the same as the signal x delayed one 
digital unit of time, that is, yn = xn-r for all n. Often we loosely think of 
the signal value at some time n as entering the delay, and its previous value 
exiting. Since we only represent time-invariant systems with flow graphs 
this interpretation is acceptable, as long as it is remembered that this same 
operation is performed for every unit of time. Also note that we shall never 
see a z in a signal flow diagram. We represent only causal, realizable systems. 

Using the unit delay we can easily represent the simple difference ap- 
proximation to the derivative yn = A xn = xn - x,+1 

or a general single delay convolution yn = aOx, + alxnml. 

You will notice that we have drawn a small filled circle in each of these 
diagrams. This circle does not represent a processing system, rather it is a 
reminder that a memory location must be set aside to store a signal value. 
In order to continuously calculate the simple difference or single delay con- 
volution, we must store xn at every time n so that at the next time step it 
will be available as ~~-1. We do not usually explicitly mark these memory 
locations, only stressing them when the additional emphasis is desired. 
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Figure 12.3: Four other ways of drawing a basic MA (FIR) block as a DSP flow graph. 

The beauty of using graphs is that we can redraw them any way we 
consider Esthetic or useful, as long as the topology stays the same. Thus, 
the basic single delay FIR block also can be drawn in the ways depicted in 
Figure 12.3 and in many other ways. 

All the different DSP graphs that depict the same DSP process are 
called implementations of this process. Note that the implementation of Fig- 
ure 12.3.A is topologically identical to the previous graph, but has the gains 
appearing more symmetrically. In Figure 12.3.B we interchanged the order 
of the gain and the delay. Thus this implementation is not identical from the 
pure graph-theoretic point of view, but is an identical DSP process since the 
gain and delay operators commute. Figure 12.3.C looks different but one can 
easily convince oneself that it too represents the same block. Figure 12.3.D 
is similar to Figure 12.3.C but with the gains positioned symmetrically. 

How can we implement the more general convolution? 

L 

?)n = c wh-2 

z=o 
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x = 

a0lr 

Y 

Figure 12.4: A straightforward implementation of the FIR filter using an adder of in- 
degree L+ 1. 

In Figure 12.4 we see a straightforward implementation, where the large 
node at the bottom is an adder of in-degree L + 1. Such an adder is not 
always available, and is not really required, since we can also implement the 
FIR filter using the standard two-input adder, as in Figure 12.5. 

Figure 12.5: A straightforward implementation of the FIR filter using standard two- 
input adders. 

This figure is worth studying. To assure yourself that you understand 
it completely, mark all the vertical arcs, especially those marked with filled 
circles. For example, the arc that descends after the first delay and then 
is summed with aoxn splits should be marked x,+1. By this we mean the 
signal that for all n is equal to the incoming signal x delayed by one time 
unit. When you consider a complex DSP graph of this type it is worthwhile 
interpreting it in two stages. First think of analog signals flowing through 
the graph. In order to assist in this interpretation assume that every process- 
ing node corresponds to a separate hardware component. Ignore any filled 
circles and treat z-l nodes as time delays that happen to correspond to the 
sampling interval t, . 
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Once you understand the graph at this level you can return to the world 
of DSP programming. The delays are now single sample delays, the pro- 
cessing nodes are computations that may all be carried out by the same 
processor, and the filled circles are memory locations. When thinking in this 
mode we often think of ‘typical values’, such as xn and ~~-1, rather than 
entire signals such as x. We implicitly allow the same computation to be 
carried out over and over by a single processor. The basic computation to 
be performed repeatedly consists of multiplication of a delayed input value 
by a filter coefficient and adding; this combination is called a Multiply-And- 
Accumulate (MAC) operation. 

Looking closely at Figure 12.5 we see that this FIR implementation is 
based on the block from Figure 12.3.D. Several of these blocks are con- 
catenated in order to form the entire convolution. This is a widely used 
technique-after perfecting an implementation we replicate it and use it 
again and again. You can think of an implementation as being similar in 
this regard to a subroutine in standard procedural programming languages. 

-1 P aL 

Figure 12.6: An alternative way to depict the all-zero (MA) filter, 
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Of course this is not the only way to draw an FIR filter. A particularly 
interesting way to depict the same graph is shown in Figure 12.6. In this 
implementation we replicate the FIR block of Figure 12.3.A. It is easy to 
see that this graph is topologically identical to the previous one. 

Up to now we have only seen graphs without cycles, graphs that corre- 
spond to feedforward systems. The simple feedback system, yn = i&+i+zn, 
is depicted as 

while a full all-pole system 

Yn = Xn - e bmyn-m 
m=l 

can be depicted as in Figure 12.7. 

Figure 12.7: A full all-pole filter implemented using MAC operations. 

Once again it is worthwhile to carefully mark all the arcs to be sure that 
you understand how this implementation works. Don’t be concerned that 
signal values are transported backward in time and then influence their own 
values like characters in science fiction time-travel stories. This is precisely 
the purpose of using feedback (remember Section 7.4). 

Of course this is not the only way to draw this AR filter. A particu- 
larly interesting implementation is depicted in Figure 12.8.A. We purposely 
made this implementation a mirror reflection of the FIR implementation of 
Figure 12.6. Now by concatenating the MA and AR portions we can at last 
implement 

L 

Yn = c al%-l - 5 bmYn-n-l 
I=0 m=l 



12.2. DSP FLOW GRAPHS 475 

X- 

B 

-1 P 

Figure 12.8: In (A) we present an alternative graphical representation of the all-pole 
(AR) filter. (B) is an implementation of the full ARMA filter. 

the full ARMA filter. We do this in Figure 12.8.B. 
Take a few moments to appreciate this diagram. First, by its very con- 

struction, it graphically demonstrates how ARMA filters can be decomposed 
into separate MA and AR subsystems. These FIR and all-pole systems are 
seen to be quite different in character. Of course the order of the AR and 
MA subsystems are not necessarily equal; they only look the same here since 
an ellipsis can hide different heights. Second, it’s pleasingly symmetric; there 
are computational commonalities between the subsystems. Thus computa- 
tional hardware or software designed for one may be modified to compute 
the other as well. Finally, this diagram gives us a novel way of understand- 
ing filters. Looking at the analog level we cannot avoid imagining the signal 
flowing in on the left, traveling down, splitting up, and recombining with 
differently weighted and delayed versions of itself. It then enters the feed- 
back portion where it loops around endlessly, each time delayed, weighted, 
and combined with itself, until it finally exits at the right. 
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EXERCISES 

12.2.1 The following examples demonstrate simplification of diagrams with gains. 
In all cases identify the gain(s) that appear in the right diagram in terms of 
those that appear in the left diagram. 

b 
X-L-WY x 

A 
Y 

A 

X+f--J-+YX 4 Y 

C D 

12.2.2 Draw an ARMA filter with MA order 3 and AR order 4. How many memory 
locations are required? Label all the signals. 

12.2.3 A filter implementation with minimal number of memory allocations is called 
canonical. What is the number of memory locations in the canonical ARMA 
filter with MA order p and AR order q? 

12.2.4 The transposition theorem states that reversing all the arc directions, chang- 
ing adders to tee connections and vice-versa, and interchanging the input and 
output, does not alter the system’s transfer function. Prove this theorem for 
the simple case of yn = xn + by,-1. 

12.3 DSP Graph Manipulation 

Let’s summarize all that we have learned so far. Flow graphs are used to 
represent realizable, time-invariant signal processing systems. The most im- 
portant graphic elements are depicted in Figure 12.9. Combining these basic 
elements in various ways we can depict many different systems. Every DSP 
flow graph corresponds to a unique signal processing system, but every sys- 
tem can be implemented by many seemingly different graphs. 

Different implementations may have somewhat different characteristics, 
and may correspond to hardware implementations of differing cost and soft- 
ware implementations of varying complexity. It is thus useful to learn ways 

of manipulating flow graphs, that is, to change the graph without changing 
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X x is the input to a calculation 

Y y is the output from a calculation 1 
X Y Y x = 

x the hidden signal x 

a memory location 

splitting a signal y1 = x and Y2 = x 

G 
X Y a gain y = Gx 

Xl Y 
+ 

“p’ 

adding signals y = x1 + x2 

x ={q-y / / an arbitrary system y = f(x) 

Figure 12.9: The most important DSP graph elements. 
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the system implemented. Remember that a system is defined only by the 
outputs generated for all inputs. As long as these remain unchanged the 
system is unchanged, no matter what the flow diagram looks like. We will 
often call graph operations that leave the system unchanged ‘symmetries’. 

The first symmetry, which we have already stressed, is that graphs are to 
be understood topologically. Geometric quantities such as arc length, angles, 
and such are irrelevant. We can even perform mirror reflections drawing the 
whole picture backward as long as all the arrows are reversed (but please 
print the alphanumeric characters in the conventional orientation). 

Since the topology remains unchanged one can always move a gain along 
an arc to a convenient place. You will doubtless recall that we did this when 
redrawing the basic FIR block. More generally, you can move a gain along 
an arc until the first addition or nonlinear system as long as you replicate it 
at tee connectors. You can also combine consecutive gains into a single gain 
or split a single gain into two in series. 

These operations are special cases of the ‘like signal merging’ symmetry. 
Whenever we find identical hidden signals in two different places, we can 
consolidate the graph, eliminating extraneous arcs and nodes, as long as no 
input or output signals are affected. For example, consider the graph 

where we have identified the signal 4x,-r on two different arcs. We can 
consolidate everything between the input and these two signals. 
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Two signal processing systems f and g are said to ‘commute’ if one can 
interchange their order without changing the overall system. 

In particular any two linear systems, and thus any two filters commute. We 
often exploit commutation of filters to simplify DSP flow graphs. 

7, 

-bM 
. 

Figure 12.10: An alternative way to depict the ARMA filter. Here we perform the au- 
toregressive (all-pole) filter before the moving average (FIR) filter. 

As an example, let’s simplify Figure 12.8.B for the full ARMA filter. 
Note that there we actually performed the MA portion before the AR, which 
would make this an MAAR filter (were this possible to pronounce). Since 
the MA and AR subsystems are filters and thus commute we can place the 
AR portion before the MA part, and obtain Figure 12.10. 

This diagram is just as symmetric as the first but seems to portray a 
different story. The signal first enters the infinite loop, cycling around and 
around inside the left subsystem, and only the signal that manages to leak 
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\+ -bM-1 
\, 

J + 7, 

-bM aL 

Figure 12.11: Yet another way to depict the ARMA filter. This graph requires the min- 
imal number of internal memory locations. 

out proceeds to the more straightforward convolution subsystem. Once again 
we suggest taking the time to label the arcs, for example, calling the output 
of the all-pole subsystem w. Comparing arcs we discover a common hidden 
signal and can consolidate to obtain the more efficient graph of Figure 12.11. 

The final symmetry we will discuss is that of grouping and ungrouping 
in hierarchical flow graphs. Up to now we have seen graphs made up of 
primitive processes such as delays, gains, and additions. Although we spoke 
of using rectangles to represent general systems, we have not yet discussed 
how these subsystems are to be specified. One way would be to describe them 
ad hoc as algorithms in pseudocode or some programming language; but a 
more consistent description would be in terms of flow graphs! For example, 
once we have presented the flow graph for a general ARMA filter, we can 
represent it from then on as a single rectangle, or ‘black box’. The processes 
of grouping elements of a flow graph together to form a new subsystem, and 
of ungrouping a black box to its lower-level components, are symmetries. 
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The grouping into higher-level subsystems results in a simplification sim- 
ilar to that of using subroutines in programming languages. Of course these 
new black boxes can be used in turn to recursively build up yet more complex 
subsystems. Such a system, built up from various levels of subsystems that 
can be graphically decomposed into simpler subsystems, is called a hierar- 
chical flow graph. Recursively applying the ungrouping symmetries reduces 
hierarchical graphs to graphs composed solely of primitive processes. 

EXERCISES 

12.3.1 Draw the basic all-pole block in four different ways. 

12.3.2 Recall that the main entity of the state-space description is the system’s 
internal state. One way to encode the internal state involves specifying hidden 
signals. Which hidden signals are required to be identified? How does the state 
thus specified evolve with time? 

12.3.3 Give an example of two systems that do not commute. 

12.3.4 Draw high-level hierarchical flow graphs for the following 
decompose the high-level description into primitives. 

systems, and then 

l a filter composed of several copies of the same FIR filter in series 

l a band-pass filter that mixes a signal down to zero frequency and then 
low-pass filters it 

l a circuit that computes the instantaneous frequency 

12.4 RAX Externals 

In the early eighties the author was working on signal analysis in a sophisti- 
cated signal processing lab. This lab, like most at that time, was composed 
largely of complex analog signal processing equipment mounted vertically in 
19-inch racks. Each rack would typically house between five and ten different 
pieces of equipment, including function generators, amplifiers, filters, preci- 
sion synthesizers, and oscilloscopes. Each piece of equipment conventionally 
had buttons and knobs on its front panel, and input and output connections 
on its back. These back panel connections would be routed to patch panels 
where the users could rapidly connect them up. 

The lab had several analysis stations, and a typical station consisted of 
two or three racks full of complex and expensive equipment. Each individual 
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piece of equipment could cost tens to hundreds of thousands of dollars, would 
have to be calibrated and serviced regularly, and would usually take about 
two to three days to master. Just mounting a new box would take several 
hours, including placing it onto slides, screwing the slides into the racks, 
routing all the cables from its back panel to the patch panels, testing these 
cables (which would always seem to fail), and properly labeling the patch 
panel connectors. While the veteran lab staff could set up quite complex 
signal processing functions in minutes, someone new to the lab would go 
through a learning process of several months before feeling confident enough 
to work alone. 

This lab was considered both modern and efficient. Outdated equipment 
was continually replaced with the most modern and sophisticated available; 
the lab staff was the most competent that could be found. However, trou- 
ble was definitely on the horizon. Maintenance costs were skyrocketing, the 
training of new lab staff was getting harder and lengthier, and even the most 
sophisticated equipment was not always sufficient for all the new challenges 
the lab faced. For these reasons we embarked on the development of an 
experimental software system. 

The system was originally called RACKS, supposedly an acronym for 
Replace Analog Components with Knowledge-based Software, but actually 
referring to the racks of equipment the system emulated. The name was 
later shortened to RAX as an acronym for Really Awesome boxes. RAX 
was a visual programming environment that simulated the operation of an 
analysis station. Using a pointing device (originally a joystick, but you can 
think of it as a mouse if you prefer), equipment could be instantly taken 
out of a virtual store room, placed into virtual racks, connected by virtual 
cables, and operated. The operation of RAX was not always real-time, but 
it enabled useful analyses to be easily performed. 

RAX was never commercially available, and is hardly state-of-the-art, 
not having been updated since its initial development. It was quite limited, 
for example, not allowing hierarchical definition of blocks. It was also not 
very run-time efficient, generally passing single samples between blocks. The 
host computer and DSP cards used as the platform for RAX are by now 
museum pieces. However, I have several reasons for expounding on it here. 
First and foremost is my own familiarity with its internals; many of the 
issues that we will examine are quite general, and I can discuss them with 
maximum knowledge regarding RAX. Second, RAX is relatively simple and 
thus easy to grasp, but at the same time general and easily extensible. Third, 
I promised my coworkers that one day I would finish the documentation, and 

better fifteen years late than never. 
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The RAX model of the world is that of racks of equipment, which are 

vertical rectangular arrays. These vertical arrays are called racks; racks are 
made up of slots, and each slot can hold a single piece of equipment. The piece 
of equipment in a specific rack and slot position is called a box, while what a 
type of equipment does is called its function. Each box has input connectors, 
output connectors, and buttons. Cables can be connected between a single 
output connector and any number of input connectors. Buttons are used 
to set internal parameters of the different boxes (e.g., input filenames and 
amplification gains). 

STORE ROOfI SUN’ECP,lI BUffON TIBEEB&SE 

0.000 
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GENERATOR’ I : SCOPE . . . ) l +omoe 
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Figure 12.12: The graphics screen of RAX for a simple setup. Note that this figure’s 
resolution and fonts are representative of 1983 computer graphic displays (the original 
had 16 colors). 

An example of a working RAX system is depicted in Figure 12.12. The 
resolution and fonts are representative of the technology of graphic displays 
circa 1985; the original screens had up to 16 colors, which are not observable 
here. In the figure we see a function generator, a synthesizer, an amplifier, 
and a scope connected in a frivolous way. The function generator is a box 
with no inputs and a single output. This output can be a square, triangular, 
or sawtooth wave, with buttons to select the signal type and control the 
amplitude and frequency. The synthesizer generates (real or complex) sinu- 
soids of given amplitude, frequency, and phase. The amplifier (which would 
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never actually be used in this way since the synthesizer has adjustable am- 
plitude) can take up to five inputs. Its output is the sum of these inputs, 
each multiplied by its own gain (selected by appropriate buttons). The scope 
has input channels for one or two signals to be displayed. Its other inputs 
are for external trigger and clock. The scope has no output, but buttons 
that set the volts per division, timebase, trigger mode and level, clock rate, 
number of sweeps. The scope also has a display, called CRT for Cathode 
Ray Tube. The output of the function generator is connected to channel B 
of the scope, while the synthesizer feeds the amplifier which in turn is con- 
nected to channel A of the scope. A sample scope display from this setup is 
depicted in Figure 12.13. 

I PM3E 1 CRT 1 SCOPECP.lI <15.559,2.490> 

IlS.940 

Figure 12.13: The graphics screen of the scope for the simple RAX setup depicted in 
the previous figure. The small + represents the position of the pointing device, and this 
position is indicated in the message window. 

Although completely general, for reasons of efficiency RAX boxes are 
usually relatively high-level functions. For example, an FIR filter would be 
hand coded and called as a box, and not built up from individual multipliers 
and adders. It is relatively easy to add new functions as required; one need 
only code them using special conventions and link them into RAX. Compu- 
tationally demanding functions may actually run on DSP processors, if they 
have been coded to exploit such processors and the processors are available. 
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RAX can be integrated into the real world in two ways. For non-real-time 
use there are ‘input file’ and ‘output file’ boxes. These boxes are stream- 
oriented, reading and writing as required. The input file box has one output 

and a button with which the user specifies the name of the file to read. 
Similarly, the output file box has a single input and a button to specify the 
file to write. For simple processing, or when DSP processors are used, there 
are also A/D and D/A boxes that stream to and from the true devices. 

In RAX the same piece of equipment can be placed into many differ- 
ent rack-slot positions, which is interpreted as different boxes that happen 
to have the function. Boxes are identified by giving the function, the rack 
number, and the slot number (e.g., SCOPE [2,1] ). Connectors and buttons 
have their own notations. When the pointing device enters a rack-slot that 
houses a piece of equipment its identifier is displayed in the message area at 
the upper right. When the pointer is close enough to a button or connector, 
its identifier is displayed as well. Pressing the pointer’s actuator (similar 
to clicking a mouse) over a button causes a pop-up menu to appear where 
the user can edit the corresponding parameter. Pressing the actuator near 
a connector causes a ‘rubber band line’ to be drawn from that connector to 
the pointer, which can then be placed near another connector and pressed 
again. If the connection is valid the rubber band line disappears and in its 
place a connection route is drawn. Valid connections connect a single output 
to any number of inputs. The connection route is drawn to avoid existing 
routes, and is color coded for optimal distinguishability. 

After bringing up the application, the user specifies the number of racks 
and the number of slots per rack. These numbers can be changed at any time, 
with the restriction that no mounted equipment should fall onto the floor. 
Next the user opens the store room and drags pieces of equipment from there, 
placing them into rack-slots. The user can then connect output connectors 
to input connectors and set parameters using the buttons. When satisfied 
the user points and depresses the run button. At that point time starts to 
run and the signal processing begins. The user may at any time select any 
display (e.g., from a scope, spectrum analyzer, or voltmeter) and view the 
graphic results. When such a display is active, the message area continuously 
displays the pointer’s coordinates, for example, volts and time for the scope. 
To return to the racks display the user can then press the return button, 
and equipment buttons can be adjusted while time is running. To stop time 
from running there is a stop button. If the user considers the setup to be 
useful it can be saved to a netlist file, from which it can be loaded at some 
later date. The netlist for the simple setup of Figure 12.12 is printed out as 
Figure 12.14. 
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SAMPLING FREQUENCY = 100.00000 
RACK 1 

SLOT 1 GENERATOR 
FUNC=SQUARE 
FREQ=l 
VOLT=1 
OUT>SCOPE[2,l].CHANB 

SLOT 2 SYNTHESIZER 
FREQ=l 
VOLT=1 
PHASE=1 
COMPL=REAL 
OUT>AMPLIFIER[2,2].IN 

RACK 2 
SLOT 1 SCOPE 

SLOT 2 AMPLIFIER 

VOLTDIV=l 
TIMEBASE=l 
TRIGMODE=FREE 
CLOCK=0 
SWEEPS=1 
TRIGLEV=O 
CHANA<AMPLIFIER[2,2].OUT 
CHANB<GENERATOR[l,l] .OUT 

GAIN=1 
GAIN2=0 
GAINS=0 
GAIN4=0 
GAINS=0 
IN<SYNTHESIZER[l,2].OUT 
OUT>SCOPE[2,l].CHANA 

Figure 12.14: The netlist of the simple example. 

EXERCISES 

12.4.1 RAX is a ‘clock-driven’ system, meaning that some external concept of 
time causes the scheduler to operate. Alternatives include ‘data-driven’ and 
‘control-driven’ systems. In the former, external inputs are the trigger for 
everything to happen; each input is followed through causing box after box 
to operate in turn. In the latter, whenever a box cannot run due to an in- 
put not being ready, the box connected to it is run in order to generate 
that input (and recursively all boxes before it). Discuss the advantages and 
disadvantages of these three techniques. 
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12.4.2 Observe in Figure 12.12 that different cables never overlap, at most they 
cross at a point. Give a simple algorithm for accomplishing this. 

12.4.3 Find some visual programming language to experiment with. How is it similar 
to and how is it different from RAX? 

12.4.4 What are RAX’s main functional deficiencies? 

12.5 RAX Internals 

Now let’s start to peek behind the scenes to see how RAX accomplishes 
its magic. The first thing we must explain is that RAX is an interpreter 
rather than a compiler. The entire RAX run-time system must be present 
for anything to happen and the GUI, IO, signal display, task scheduling, and 
processing are all supplied by RAX itself. Modern systems will usually allow 
the user to operate in interpreted mode in order to debug the system and 
then to compile to some standalone language such as C or DSP assembly 
language. This point understood, let us proceed to the program’s structure. 

The main program looks like this in pseudocode: 

initializations 
main loop 

handle user events 
update graphics 
if RunMode 

schedule tasks 
increment time 

finalizations 

where initializations and finalizations refer to the opening and closing of 
files, allocation and deallocation of memory, starting and terminating the 
graphics environment, and other mundane computer tasks. Handling user 
events refers to checking for motion of the pointing device and updating the 
message area accordingly; and checking for pointer device button presses or 
keyboard entry and the corresponding changing of parameters and program 
modes. RunMode is true whenever the user has pressed the START button, 
and stays true until the STOP button is pressed. 

In the analog world every box is operating all the time. This has to be 

emulated in RAX since the main and all the boxes run on a single CPU. 
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This is the responsibility of the task scheduler. The scheduler runs through 
every piece of equipment in the racks, and decides whether it is ready to 
run. This decision is based on continuity of time and an assumption of 
causality. Each box remembers when it last ran, and each input to each box 
contains a time-stamped value. A box can run only when the present time 
is strictly after the time it last ran, and only when the time is not before 
the time of its inputs. Assuming a box can run, the scheduler is responsible 
for loading the box state, connecting input and output cables, calling the 
proper task (perhaps running on a DSP), and storing the new state. These 
duties determine the context switch time, the minimum time it takes to 
switch from running one box to another. RAX was somewhat wasteful in 
this regard, having originally been designed for simulation purposes and only 
later being retrofitted with DSP boards for real-time use. An alternative 
strategy (one that was employed for the DSP code) is for each box to keep 
its state information internally. This cannot be done using static arrays for 
host code since one equipment type can be used multiple times in a single 
setup. 

Finally, when all boxes have run for the specified time, the time is incre- 
mented according to the present sampling rate. One of the major limitations 
of RAX is the use of a single sampling rate. Although the sampling rate can 
be changed, there cannot be simultaneously more than one rate, and all 
boxes must use the same clock. This is both an efficiency problem (some 
processes might only need updating very infrequently, but must be sched- 
uled every time) and a real constraint (resampling processes, such as those 
required for modems, cannot be implemented). This problem could be fixed 
by simulating real time using a common multiple of all desired sampling rates 
and dividing as required. Hardware systems commonly implement this same 
policy by using a high-frequency crystal oscillator and various frequency 
dividers. 

Behind the simple description of the handling of user events and sched- 
uler are a plethora of infrastructure functions. For example, there is a func- 
tion that given the rack and slot numbers determines whether the rack-slot 
is occupied, and if so retrieves the type of equipment. Another, given a type 
of equipment, finds the meaning of the inputs or buttons. Given a cable 
identifier, the output number, origin rack-slot that feeds it, and all inputs it 
feeds can be found. Given an entire configuration, the minimum number of 
racks and slots may be calculated. Of course there are functions to place a 
piece of equipment in a given position, to remove a piece of equipment, to 
connect a cable between connectors, etc. 
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Behind every graphics display (scope, spectrum analyzer, etc.) there is a 
‘display list’ that contains all lines drawn to that display. Whenever the dis- 
play is to be shown the display list lines are translated into screen coordinates 
and plotted. Every motion of the pointer device in such a screen requires 
translation from screen coordinates back to world coordinates. 

Now let’s discuss how rack-slots are populated and how equipment is 
described. Every box placed in a rack-slot position is assigned a unique 
identification number, starting from 1 and reaching the total number of 
occupied positions. This identifier is used by the scheduler, which loops 
from 1 to the total number of boxes in its main loop. There is a vector of 
this length that holds the position and an equipment pointer, this pointer in 
turn bringing us to the equipment type, state, parameters, cabling, time last 
run, processor (0 for host, otherwise DSP number), and equipment function. 

How is this function defined? When we wish to add a new function we 
must define a constructor that returns the allocated and initialized state, 
buttons, inputs, and outputs; and a destructor that undoes all of the above. 
Then we write the run routine. This routine takes the state, buttons, and 
inputs, and returns the updated state, and outputs (and possibly updates 
the graphic display). All run routines tend to have the same form. First 
the buttons are read. Then the inputs are checked for correctness and type 
(since boxes react differently depending on type, for example, amplification 
of a complex input returns a complex output, while a real returns a real). 
One time step is then performed, generating values that are placed into the 
appropriate outputs. If there is a graphics display, its display list is updated. 
Finally, the state and time variables are updated, and control is returned to 
the scheduler. 

Functions that run on DSP processors are built slightly differently. These 
functions store their state locally and are not as tightly controlled as their 
native counterparts. For them the constructor consists of downloading the 
object code to the appropriate processor and noting this fact. The run rou- 
tine on the host simply passes the inputs to the processor through shared 
memory (SHAM) and collects the outputs. The DSP code is written as an 
infinite loop that checks for the appearance of new inputs in the SHAM, 
processes, and copies the outputs to the SHAM. 

How are all the disjoint entities coupled to make a single coherent sys- 
tem? This is a general problem in systems with many functional parts, and 
there are in general four possibilities. These possibilities are usually known 
as compile-time, link-time, download-time, and run-time bonding. The sim- 
plest method is to gather all the program code for all the different kinds 
of equipment together into a single file, and compile this file together. In 
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such an implementation there can be one global constructor and destruc- 
tor procedure, which allocates and deallocates all memory required for all 
boxes. Such compile-time bonding results in very fast run-time code, but is 
extremely inefficient from the memory utilization point of view. The object 
code for every sort of equipment is present even if we need only a few boxes, 
although in modern paging virtual memory systems this may not actually 
impact performance. A more serious design flaw is the complexity and lack 
of flexibility of the code. 

The next possibility is link-time bonding. Here each function is defined 
in a separate file that is separately compiled into an object file. The linker is 
responsible for bonding all the object files together. Simple link-time bond- 
ing may still waste memory for unused functions, but with proper operating 
system support the unused functions may take up executable file size but 
not actually sit in run-time memory. Also, the reduction of the interde- 
pendence of the different functions reduces system complexity by forcing 
object-oriented techniques. 

Download-time bonding involves compiling and linking each function 
into a separately executable program. When the system is run the con- 
trol system selects which function programs need to be downloaded and 
launched, and then either the control system, the operating system, or hard- 
ware are responsible for moving data between these programs. For example, 
the data may be passed between these programs using ‘interprocess commu- 
nications’ or ‘sockets’ or ‘pipes’, or each program may run on separate DSP 
processors with hardware communications links between them. 

The most complex and most memory-efficient form of bonding is run- 
time, also known as dynamic allocation. Like download-time bonding, each 
function is a separate program unit. However, functions may be loaded and 
launched during the running of the system. This is a particularly useful 
feature when the functioning of the system depends on the input signal. 
For example, consider a voicemail system that must decode DTMF tones, 
compress and store speech, and demodulate, decode, and store facsimile 
transmissions. Since DTMF tones are used to control the system and may 
be used at any time, the DTMF decoder must be continuously available. 
When a session commences the speech function may be loaded by default, 
but upon detection of fax tones the facsimile function must take its place. 

In the original implementation of RAX the host code for each piece 
of equipment was compiled separately, but the entire program was linked 
together before execution. This link-time bonding was chosen since the pro- 
gramming system used did not support dynamic allocation for user routines. 
The DSP code, however, was compiled into individually executable pro- 
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grams, and downloaded upon pressing START. This download-time bonding 
could be efficiently performed since it only required loading the appropriate 
DSP code and data, and releasing the processor. 

The full algorithm for bonding went something like this. Each function 
for which there was DSP code was assigned a complexity number between 
1 and 10; functions with no DSP code received a zero. For example, the N 
sample delay had complexity 0, the amplifier was given a 1, while the spec- 
trum analyzer (which had to window, perform FFT, square, average, take 
logarithms, perform graphics, etc.) rated a 10. In no case did the functions 
exceed the capabilities of a single DSP processor. Whenever the configura- 
tion changed and START was pressed, the functions with nonzero complex- 
ity were sorted in descending order of complexity. Assuming there were P 
available processors, the first P functions would be downloaded to DSPs, 
while the rest of the functions would run on the host processor. 

We have yet to fully explain the cable mechanism. Cables are internally 
arranged in a array, every cable having one source and any number of sinks. 
Each element in the cable array consists of three parts, namely a time, a 
type (boolean, integer, real, or complex), and a value. When a box computes 
an output value, the time, this value and its type are written into the cable 
array where they can be read by all those boxes that require it. In RAX 
only one value can be placed into a given cable at a time; once a value is 
placed in the cable it remains there until overwritten. As mentioned before, 
boxes test the time and value on the cable before using the value. 

This implementation of cables, which we call overwrite, allows multiple 
boxes to receive a single cable as input, but assumes that boxes always take 
values they will need, even if they are not yet ready to use them. For example, 
think of a Fourier analysis box that collects an entire buffer of signal values 
before calculating an entire spectrum. This box must be activated each time 
an input value appears, just in order to store away this value into its state. 
This wastes context switches, potentially slowing the system down. There 
are several alternative strategies that can be used. 

An alternative, called bufered write, would be for the cable to collect 
past values into an ordered list, and for the Fourier analysis box to be called 
only when the desired number of inputs are all ready. In such an alternative 
representation we must consider what is to be done about clearing past 
values that are no longer needed. One possibility is for cables to implement 
a fixed-length buffer, always holding some number of past values. This is 
easy to implement, for example, by a circular buffer, but has two problems. 
First it limits the generality of what a box can do, since no box can use more 
history than what the cable stores. Second many boxes might only require 
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the present value or a few past ones, and we might be wasting memory 
by storing the maximum number. Of course we could configure each cable 
differently, choosing the number of values to store according to the maximum 
needed by boxes to which the cable is connected. 

Another possibility is to allow only one box to be fed by a given cable 
and to make it that box’s responsibility to clear unneeded values from the 
cable. In such an implementation the precable box writes to the cable, and 
the post-cable box reads from it deleting the value; thus we call this method 
‘write-read’. This is similar to the mechanisms of ‘pipes’ and ‘sockets’ that 
are provided by many operating systems, and these mechanisms can be 
exploited in implementing such cables. In a system with cables that are 
written and read we could allow several boxes to write to a single cable, 
but only one box can read a cable since once a value has been read it is no 
longer available for other boxes to use. This is not really an insurmountable 
limitation since we could easily create a tee connector equipment type, which 
takes in a value from one input and makes it available on two or more 
outputs. 

We have still not completely specified what happens in systems with 
cables of the latter type. One possibility is for the read attempt to fail if 
the desired values are not ready, or equivalently, to give the reading box the 
ability to test for readiness before attempting to read from a cable. Such 
‘write-test-read’ systems can seem to act nondeterministically, even without 
explicit randomness built in. For example, consider a piece of equipment 
built to merge two inputs into a single output. This equipment checks its 
inputs until it finds one which is ready and writes its value to the output. 
It then reads and discards all other inputs that might be simultaneously 
available. Even if it always sweeps through its inputs in the same order, its 
output depends on the detailed operation of the scheduler, and thus seems 
unpredictable. A second possibility is for the reading box to become blocked 
until the desired input value is ready. Indeed the blocking mechanism can be 
used as the heart of the system instead of an explicitly encoded scheduler. All 
boxes in a ‘blocked-read’ system simply run in parallel, with the unblocked 
boxes preparing outputs that in time unblock other processes. Finally, the 
writing process may become blocked until the cable is ready to receive the 
value to be sent. Although this ‘blocked-write’ method seems strange at first, 
it shares with blocked-read the advantage of automatically synchronizing 
truly parallel processes. 

Since RAX was an ‘overwrite’ system, DSP processors could only be em- 
ployed for their relative speed as compared with the host processor available 
at that time. The potential for parallel processing could not be exploited 
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since the scheduler was responsible for sending data to each processor, wait- 
ing for it to complete its computation, and then collecting its output. In 
order to allow the processors to truly run in parallel some method of syn- 
chronization, either that inherent in blocked-read and blocked-write or an 
explicit interprocess communications method, must be employed. One model 
that has been exploited for the parallelization of DSP tasks is Hoare’s com- 
municating sequential processes. In this model a collection of computational 
processes, each of which separately runs sequentially, run truly in parallel 
and communicate via unidirectional blocked-write channels. 

This completes our description of RAX internals. While some of the 
details are specific to this system, many of the concepts are applicable to 
any visual programming system. When using such a system for simple tasks 
the analogy with analog equipment is enough to get you started, but for 
more complex problems a basic understanding of the internals may mean 
the difference between success and frustration. 

EXERCISES 

12.5.1 Write a package to implement graphics display lists as singly linked lists 
of commands. At minimum there must be MOVE (x ,y> and DRAW (x, y) 
commands, while more elaborate implementations will have other opcodes 
such as SETCOLOR c, DRAWRECTANGLE (left, right, bottom, top), and 
CIRCLE (x, y ,r> . Remember to include routines to construct a new display 
list, clear the display list (as, for example, when a scope retriggers), add a 
command to the display list (take into account that the display may or not be 
currently showing), show the display on screen, translate between real world 
coordinates and integer screen coordinates, and free the list. 

12.5.2 Write a package to handle netlist files. You will need at least one routine to 
read a netlist file and translate it into an internal representation of boxes and 
parameters and one routine to write a netlist file. 

12.5.3 Write a RAX-like GUI. 

12.5.4 Write a RAX-like scheduler. 

12.5.5 Implement a basic RAX system for functions that all run on the host. You 
should supply at least a sine wave generator, a filter, and a scope. 
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Bibliographical Notes 

A good general reference on graph theory is [91], which is a newer version of a 
classic text. 

The present author has not found any mention of the use of flow graphs for 
signal processing before the 1953 article of Mason [160, 1611. 

One of the earliest uses of visual programming in DSP was BLODI (the BLOck 
Diagram compiler), which was developed Bell Labs in late 1960. Although without 
a true graphic interface, it was said to be easier to learn than FORTRAN, and at 
times easier to use even for the experienced programmer. BLODI had blocks for IO, 
signal and noise generation, arithmetic operations between signals, delay and FIR 
filtering, sampling and quantization, and even a flip-flop. Other documented flow 
languages for signal processing include SIGNAL [88] and LUSTRE [89]. Probably 
the most popular visual programming environment for signal processing is what 
was once called BOSS (Block-Oriented System Simulator) but was later renamed 
SPW (Signal Processing WorkSystem). 

Hoare’s communicating sequential processes, presented in 11031, also motivated 
several DSP systems. For a good discussion of implementational issues for data- 
flow-oriented languages consult [2]. 
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Spectral Analysis 

It is easy enough to measure the frequency of a clean sinusoid, assuming 
that we have seen enough of the signal for its frequency to be determinable. 
For more complex signals the whole concept of frequency becomes more 
complex. We previously saw two distinct meanings, the spectrum and the 
instantaneous frequency. The concept of spectrum extends the single fre- 
quency of the sinusoid to a simultaneous combination of many frequencies 
for a general signal; as we saw in Section 4.5 the power spectral density 
(PSD) defines how much each frequency contributes to the overall signal. 
Instantaneous frequency takes the alternative approach of assuming only one 
frequency at any one time, but allowing this frequency to vary rapidly. The 
tools that enable us to numerically determine the instantaneous frequency 
are the Hilbert transform and the differentiation filter. 

There is yet a third definition about which we have not spoken until now. 
Model based spectral estimation methods assume a particular mathematical 
expression for the signal and estimate the parameters of this expression. This 
technique extends the idea of estimating the frequency of a signal assumed 
to be a perfect sinusoid. The difference here is that the assumed functional 
form is more complex. One popular model is to assume the signal to be one 
or more sinusoids in additive noise, while another takes it to be the output 
of a filter. This approach is truly novel, and the uncertainty theorem does 
not directly apply to its frequency measurements. 

This chapter deals with the practical problem of numerically estimating 
the frequency domain description of a signal. We begin with simple methods 
and cover the popular FFT-based methods. We describe various window 
functions and how these affect the spectral estimation. We then present 
Pisarenko’s Harmonic Decomposition and several related super-resolution 
methods. We comment on how it is possible to break the uncertainty barrier. 
We then briefly discuss ARMA (maximum entropy) models and how they 
are fundamentally different from periodogram methods. We finish off with 
a brief introduction to wavelets. 

495 
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13.1 Zero Crossings 

Sophisticated methods of spectral estimation are not always necessary. Per- 
haps the signal to noise ratio is high, or we don’t need very high accuracy. 
Perhaps we know that the signal consists of a single sinusoid, or are only in- 
terested in the most important frequency component. Even more frequently 
we don’t have the real-time to spare for computationally intensive algo- 
rithms. In such cases we can sometimes get away with very simple methods. 

The quintessence of simplicity is the zero crossing detector. The fre- 
quency of a clean analog sinusoid can be measured by looking for times 
when it crosses the t axis (zero signal value). The interval between two suc- 
cessive zero crossings represents a half cycle, and hence the frequency is half 
the reciprocal of this interval. Alternatively, we can look for zero crossings 
of the same type (i.e., both ‘rising’ or both ‘falling’). The reciprocal of the 
time interval between two rising (or falling) zero crossings is precisely the 
frequency. Zero crossings can be employed to determine the basic frequency 
even if the signal’s amplitude varies. 

In practice there are two distinct problems with the simple implementa- 
tion of zero crossing detection. First, observing the signal at discrete times 
reduces the precision of the observed zero crossing times; second, any amount 
of noise makes it hard to accurately pin down the exact moment of zero 
crossing. Let’s deal with the precision problem first. Using only the sign of 
the signal (we assume any DC has been removed), the best we can do is 
to say the zero is somewhere between time n and time n + 1. However, by 
exploiting the signal values we can obtain a more precise estimate. The sim- 
plest approach assumes that the signal traces a straight line between the two 
values straddling the zero. Although in general sinusoids do not look very 
much like straight lines, the approximation is not unreasonable near the zero 
crossings for a sufficiently high sampling rate (see Figure 13.1). It is easy 
to derive an expression for the fractional correction under this assumption, 
and expressions based on polynomial interpolation can be derived as well. 

Returning to the noise problem, were the signal more ‘observable’ the 
Robins-Munro algorithm would be helpful. For the more usual case we need 
to rely on stationarity and ergodicity and remove the noise through a suitable 
averaging process. The simplest approach is to average interpolated time 
intervals between zero crossings. 

The time duration between zero crossings predicts the basic frequency, 
only assuming this basic frequency is constant. If it does vary, but sufficiently 
slowly, it makes sense to monitor the so-called ‘zero crossing derivative’, 
the sequence of time differences between successive zero crossing intervals. 



13.1. ZERO CROSSINGS 497 

Figure 13.1: Zero crossing detector for clean sinusoid with no DC offset. The sampling 
rate is about double Nyquist (four samples per period). Note that the linear approximation 
is reasonable but not perfect. 

Given the signal we first compute the sequence of interpolated zero cross- 
ing instants to, tl, tf~, t3 . . . and then compute the zero crossing intervals by 
subtraction of successive times (the finite difference sequence) A, =tl - to, 
A2 = t2 - tl, A3 = t3 - t2 and so on. Next we find the zero crossing derivative 
as the second finite difference A2 [21=A2-Al,A~1=A3-A2,A~=A4-A3 
etc. If the underlying frequency is truly constant the A sequence averages 
to the true frequency reciprocal and the A['] sequence is close to zero. FYe- 
quency variations show up in the derivative sequence. 

This is about as far as it is worth going in this direction. If the zero 
crossing derivatives are not sufficient then we probably have to do some- 
thing completely different. Actually zero crossings and their derivatives are 
frequently used to derive features for pattern recognition purposes but al- 
most never used as frequency estimators. As feature extractors they are 
relatively robust, fast to calculate, and contain a lot of information about 
the signal. As frequency estimators they are not reliable in noise, not par- 
ticularly computationally efficient, and cannot compete with the optimal 
methods we will present later on in this chapter. 

EXERCISES 

13.1.1 What is the condition for two signal values sn and sn+i to straddle a rising 
zero crossing? A falling zero crossing? Any zero crossing? 

13.1.2 Assume that we have located a rising zero crossing between times n and n+ 1. 
Derive an expression for St, the fractional correction to be added to t = n, 
assuming that the signal traces a straight line between sn and sn+r. Extend 
to an arbitrary (rising or falling) zero crossing. 
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13.2 Bank of Filters 

The zero crossing approach is based on the premise of well-defined instan- 
taneous frequency, what we once called the ‘other meaning’ of frequency. 
Shifting tactics we return to the idea of a well-defined spectrum and seek an 
algorithm that measures the distribution of energy as a function of frequency. 
The simplest approach here is the ‘bank of filters’, inspired by the analog 
spectrum analyzer of that name. Think of the frequency band of interest, 
let’s say from 0 to F Hz, as being composed of N equal-size nonoverlapping 
frequency subbands. Employing iV band-pass filters we extract the signal 
components in these subbands, which we denote s”’ through gN-? We have 
thus reduced a single signal of bandwidth F into N signals each of bandwidth 
$; see Figure 13.2. 

ii0 5’ s’N- 1 

A- -- . . . - 
= BPF -s”’ 

s = 
. . . . . . 

BPF -+--iN-’ 

Figure 13.2: A bank of filters dividing the frequency band from 0 to F into N subbands, 
each containing a band-pass signal. On the left the spectrum is depicted, while the right 
shows the bank of filters that accomplishes this division. 

At this point we could simply add the filter outputs s” together and 
reconstruct the original signal s; thus the set of signals 5’ contains all the 
information contained in the original signal. Such an equivalent way of en- 
coding the information in a signal is called a representation. The original 
signal s is the time domain representation, the spectrum is the frequency 
domain representation, and this new set of signals is the subband represen- 
tation. Subband representations are useful in many contexts, but for now we 
will only compute the energies of all the subband signals 9”, obtaining an 
estimate of the power spectrum. The precision of this estimate is improved 
when using a larger number of subbands, but the computational burden goes 
up as well. 

The bank of filters approach to the PSD does not differentiate between 
a clean sinusoid and narrow-band noise, as long as both are contained in the 
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same subband. Even if the signal is a clean sinusoid this approach cannot 
provide an estimate of its frequency more precise than the bandwidth of the 
subband. 

We have taken the subbands to be equal in size (i.e., we have divided 
the total spectral domain into N equal parts), but this need not be the case. 
For instance, speech spectra are often divided equally on a logarithmic scale, 
such that lower frequencies are determined more precisely than higher ones. 
This is no more difficult to do, since it only requires proper design of the 
filters. In fact it is computationally lighter if we build up the representation 
recursively. First we divide the entire domain in two using one low-pass 
and one high-pass filter. The energy at the output of the high-pass filter is 
measured, while the signal at the output of the low-pass filter is decimated 
by two and then input to a low-pass and a high-pass filter. This process is 
repeated until the desired precision of the lowest-frequency bin is attained. 

Returning to the case of equal size subbands, we note that although all 
the signals go through S N-1 have equal bandwidth, there is nonetheless a 
striking lack of equality. The lowest subband so is a low-pass signal, exist- 
ing in the range from 0 to 5. It can be easily sampled and stored using 
the low-pass sampling theorem. All the other S’c are band-pass signals and 
hence require special treatment. For example, were we required to store the 
signal in the subband representation rather than merely compute its power 
spectrum, it would be worthwhile to downmix all the band-pass signals to 
the frequency range of 0 to $. Doing this we obtain a new set of signals we 
now call simply Sk; so is exactly go, while all the other sk are obtained from 
the respective s”’ by mixing down by F. This new set of signals also con- 
tains all the information of the original signal, and is thus a representation 
as well. We cm call it the low-pass subband representation to be contrasted 
with the previous band-pass subband representation. The original signal s is 
reconstructed by mixing up each subband to its proper position and then 
summing as before. The power spectrum is computed exactly as before since 
the operation of mixing does not affect the energy of the subband signals. 

The low-pass subband representation of a signal can be found without 
designing and running N different band-pass filters. Rather than filtering 
with band-pass filters and then downmixing, one can downmix first and then 
low-pass filter the resulting signals (see Figure 13.3). In sequential computa- 
tion this reduces to a single mixer-filter routine called N times on the same 
input with different downmix frequencies. This is the digital counterpart of 
the swept-frequency spectral analyzer that continuously sweeps in sawtooth 
fashion the local oscillator of a mixer, plotting the energy at the output of 
a low-pass filter as a function of this frequency. 
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4 BPF H*wnmi+’ 
I - I 
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Figure 13.3: Two equivalent implementations of a bank of filters dividing the frequency 
range into N low-pass signals. In (A) the band-pass signals are band-pass filtered and then 
downmixed using a real mixer, while in (B) the input signal is downmixed by a complex 
mixer and then low-pass filtered. 

Although the two methods of computing the band-pass representation 
provide exactly the same signals sk, there is an implementational differ- 
ence between them. While the former method employed band-pass filters 
with real-valued multiplications and a real mixer (multiplication by a sine 
function), the latter requires a complex mixer (multiplication by a complex 
exponential) and then complex multiplications. The complex mixer is re- 
quired in order to shift the entire frequency range without spectral aliasing 
(see Section 8.5). Once such a complex mixer is employed the signal be- 
comes complex-valued, and thus even if the filter coefficients are real two 
real multiplications are needed. 

Since all our computation is complex, we can just as easily input complex- 
valued signals, as long as we cover the frequency range up to the sampling 
frequency, rather than half fs. For N subbands, the analog downmix fre- 
quencies for such a complex input are 0, k, p, . . . I-, and therefore 
the digital complex downmixed signals are 

s ,-ijfkn 
n = s,wgk for k = 0. . . N - 1 

where WN is the Nth root of unity (see equation (4.30)). These products 
need to be low-pass filtered in order to build the sk. If we choose to imple- 
ment the low-pass filter as a causal FIR filter, what should its length be? 
From an information theoretic point of view it is most satisfying to choose 
length N, since then N input samples are used to determine N subband 
representation values. Thus we find that the kth low-pass signal is given by 

N-l N-l 
k s, = c 

h s 
nn 

,-i$kn = 
c hnsn WEk (13.1) 

n=O n=O 
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which looks somewhat familiar. In fact we can decide to use as our low- 
pass filter a simple moving average with all coefficients equal to one (see 
Section 6.6). Recall that this is a low-pass filter; perhaps not a very good 
one (its frequency response is a sine), but a low-pass filter all the same. Now 
we can write 

N-l N-l 

(13.2) 
n=O n=O 

which is, of course, precisely the DFT. However, instead of thinking of the 
DFT as providing the frequency domain representation of a signal, here 
we consider it as calculating the low-pass subband representation. In this 
fashion the DFT becomes a tool for efficiently simultaneously downmixing 
and filtering the signal. The mixers are easily seen in the definition of the 
DFT; the filtering is implicit in the sum over N input values. 

We have to acclimate ourselves to this new interpretation of the DFT. 
Rather than understanding Sk to be a frequency component, we interpret sk 
as a time domain sample of a subband signal. For instance, an input signal 
consisting of a few sinusoids corresponds to a spectrum with a few discrete 
lines. All subband signals corresponding to empty DFT bins are correctly 
zero, while sinusoids at bin centers lead to constant (DC) subband signals. 
So the interpretation is consistent for this case, and we may readily convince 
ourselves that it is consistent in general. 

We have seen that in our bank of filters approach to computing the power 
spectrum we actually indirectly compute the DFT. In the next section we 
take up using the DFT to directly estimate the power spectrum. 

EXERCISES 

13.2.1 The low-pass subband representation can be useful in other contexts as well. 
Can you think of any? (Hint: FDM.) 

13.2.2 Why does the bank of filters approach become unattractive when a large 
number of filters must be used? 

13.2.3 Compare the following three similar spectral analysis systems: (1) a bank of 
N + 1 very steep skirted analog band-pass filters spaced at Af from 0 to 
F = NAf; (2) a similar bank of N + 1 digital filters; (3) a single DFT with 
bin size Af. We inject a single sinusoid of arbitrary frequency into each of 
the three systems and observe the output signal (note that we do not observe 
only the energy). Do the three give identical results? If not, why not? 

13.2.4 Compare the computational complexity of the recursive method of finding 
the logarithmic spectrum with the straightforward method. 
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13.2.5 Prove that the energy of a band-pass signal is unchanged when it is mixed 
to a new frequency range. 

13.2.6 We saw that the DFT downmixes the subbands before filtering, and we know 
that a mixer is not a filter. In what sense is the DFT equivalent to a bank 
of filters? How can we empirically measure the frequency response of these 
filters? 

13.2.7 Build a bank of filters spectrum analyzer using available filter design or FFT 
software. Inject static combinations of a small number of sinusoids. Can you 
always determine the correct number of signals? Plot the outputs of the filters 
(before taking the energy). Do you get what you expect? Experiment with 
different numbers of bins. Inject a sinusoid of slowly varying frequency. Can 
you reconstruct the frequency response of the filters? What happens when 
the frequency is close to the border between two subbands? 

13.3 The Periodogram 

In 1898, Sir Arthur Schuster published his investigations regarding the ex- 
istence of a particular periodic meteorological phenomenon. It is of little 
interest today whether the phenomenon in question was found to be of con- 
sequence; what is significant is the technique used to make that decision. 
Schuster introduced the use of an empirical STFT in order to discover hidden 
periodicities, and hence called this tool the periodogram. Simply put, given 
N equally spaced data points $0.. . sNal, Schuster recommended computing 
(using our notation) 

1 N-l 
P(w) = N C sneeiwn 

I I 

2 

n=O 
(13.3) 

for a range of frequencies w and looking for peaks-peaks that represent hid- 
den periodicities. We recognize this as the DFT power spectrum evaluated 
for the available data. 

Many of today’s DSP practitioners consider the FFT-based periodogram 
to be the most natural power spectral estimator. Commercially available 
hardware and software digital spectrum analyzers are almost exclusively 
based on the FFT. Indeed DFT-based spectral estimation is a powerful 
and well-developed technique that should probably be the first you explore 
when a new problem presents itself; but as we shall see in later sections it 
is certainly not the only, and often not even the best technique. 
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What is the precise meaning of the periodogram’s P(w)? We would like 
for it to be an estimate of the true power spectral density, the PSD that 
would be calculated were an infinite amount of data (and computer time) 
to be available. Of course we realize that the fact that our data only covers 
a finite time duration implies that the measurement cannot refer to an in- 
finitesimal frequency resolution. So the periodogram must be some sort of 
average PSD, where the power is averaged over the bandwidth allowed by 
the uncertainty theorem. 

What is the weighting of this average? The signal we are analyzing is 
the true signal, which exists from the beginning of time until its end, multi- 
plied by a rectangular window that is unity over the observed time interval. 
Accordingly, the FT in the periodogram is the convolution of the true FT 
with the FT of this window. The FT of a rectangular window is given by 
equation (4.22), and is sine shaped. This is a major disappointment! Not 
only do frequencies far from the minimum uncertainty bandwidth ‘leak’ into 
the periodogram PSD estimate, the strength of these distant components 
does not even monotonically decrease. 

Is the situation really as bad as it seems? To find out let’s take 64 
samples of a sinusoid with digital frequency 15/64, compute the FFT, take 
the absolute square for the positive frequencies, and convert to dB. The 
analog signal, the samples, and the PSD are shown in Figure 13.4.A. All 
looks fine; there is only a single spectral line and no leakage is observed. 
However, if we look carefully at the sine function weighting we will see that 
it has a zero at the center of all bins other than the one upon which it is 
centered. Hence there is never leakage from a sinusoid that is exactly centered 
in some neighboring bin (i.e., when its frequency is an integer divided by 
the number of samples). So let’s observe what happens when the digital 
frequency is slightly higher (e.g., fd = 15.04/64) as depicted in Figure 13.4.B. 
Although this frequency deviation is barely noticeable in the time domain, 
there is quite significant leakage into neighboring bins. Finally, the worst- 
case is when the frequency is exactly on the border between two bins, for 
example, fd = 15.5/64 as in Figure 13.4.C. Here the leakage is already 
intolerable. 

Why is the periodogram so bad? The uncertainty theorem tells us that 
short time implies limited frequency resolution but DSP experience tells us 
that small buffers imply bothersome edge effects. A moment’s reflection is 
enough to convince you that only when the sinusoid is precisely centered in 
the bin are there an integer number of cycles in the DFT buffer. Now recall 
that the DFT forces the signal to be periodic outside the duration of the 
buffer that it sees; so when there are a noninteger number of cycles the signal 
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Figure 13.4: Leakage in the spectrum of a single sinusoid. In (A) precisely 15 cycles of 
the sinusoid fit into the buffer of length 64 samples and thus its periodogram contains a 
single line. In (B) 15.04 cycles fit into the buffer and thus there is a small discontinuity 
at the edge. The periodogram displays leakage into neighboring bins. In (C) 14; cycles fit 
and thus the discontinuity and leakage are maximal. Note also that the two equal bins are 
almost 4 dB lower than the single maximal bin in the first case, since the Parseval energy 
is distributed among many bins. 

Figure 13.5: The effect of windowing with a noninteger number of cycles in the DFT 
buffer. Here we see a signal with 43 cycles in the buffer. After replication to the left and 
right the signal has the maximum possible discontinuity. 
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effectively becomes discontinuous. For example, a signal that has 4i cycles in 
the DFT buffer really looks like Figure 13.5 as far as the DFT is concerned. 
The discontinuities evident in the signal, like all discontinuities, require a 
wide range of frequencies to create; and the more marked the discontinuity 
the more frequencies required. Alternatively, we can explain the effect in 
terms of the Gibbs phenomenon of Section 3.5; the discontinuity generated 
by the forced periodicity causes ripples in the spectrum that don’t go away. 

Many ways have been found to fix this problem, but none of them are 
perfect. The most popular approaches compel continuity of the replicated 
signal by multiplying the signal in the buffer by some window function wn. 
A plethora of different functions 20~ have been proposed, but all are basi- 
cally positive valued functions defined over the buffer interval 0. . . N - 1 
that are zero (or close to zero) near the edges we M 0, WN x 0, but unity (or 
close to unity) near the middle wN/2 x 1. Most window functions (as will 
be discussed in more detail in Section 13.4) smoothly increase from zero to 
unity and then decrease back in a symmetric fashion. The exception to this 
smoothness criterion is the rectangular window (i.e., the default practice of 
not using a window at all, multiplying all signal values outside the buffer by 
zero, and all those inside by unity). For nondefault window functions, the 
new product signal sk = wnsn for which we compute the DFT is essentially 
zero at both ends of the buffer, and thus its replication contains no discon- 
tinuities. Of course it is no longer the same as the original signal s,, but for 
good window functions the effect on the power spectrum is tolerable. 

Why does multiplication by a good window function not completely dis- 
tort the power spectrum? The effect can be best understood by considering 
the half-sine window wn = sin( 7r j$ ) (which, incidentally, is the one window 
function that no one actually uses). Multiplying the signal by this window is 
tantamount to convolving the signal spectrum with the window’s spectrum. 
Since the latter is highly concentrated about zero frequency, the total effect 
is only a slight blurring. Sharp spectral lines are widened, sharp spectral 
changes are smoothed, but the overall picture is relatively undamaged. 

Now that we know how to correctly calculate the periodogram we can 
use it as a mowing power spectrum estimator for signals that vary over time. 
We simply compute the DFT of a windowed buffer, shift the buffer forward 
in time, and compute again. In this way we can display a sonogram (Sec- 
tion 4.6) or average the periodograms in order to reduce the variance of the 
spectral estimate (Section 5.7). The larger the buffer the better the frequency 
resolution, and when computing the DFT using the FFT we almost always 
want the buffer length to be a power of two. When the convenient buffer 
length doesn’t match the natural data buffer, we can zero-pad the buffer. 
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Although this zero-padding seems to increase the frequency resolution it 
obviously doesn’t really add new information. We often allow the buffers to 
overlap (half-buffer overlap being the most prevalent choice). The reason is 
that the windowing reduces the signal amplitude over a significant fraction 
of the time, and we may thus miss important phenomena. In addition, the 
spectral estimate variance is reduced even by averaging overlapped buffers. 

EXERCISES 

13.3.1 Show directly, by expressing the sample s~N+~ outside the buffer in terms 
of the complex DFT coefficients sk, that computing the N-point DFT corre- 
sponds to replicating the signal in the time domain. 

13.3.2 Plot the energy in a far bin as a function of the size of the discontinuity. (It’s 
enough to use a cosine of digital frequency a and observe the DC.) Why isn’t 
it practical to use a variable-length rectangular window to reduce leakage? 

13.3.3 Is signal discontinuity really a necessary condition for leakage? If not, what 
is the exact requirement? (Hint: Try the sinusoid sin(27r(lc + i)/N).) 

13.3.4 As the length of the buffer grows the number of discontinuities per time 
decreases, and thus we expect the spectral SNR to improve. Is this the case? 

13.3.5 In the text we discussed the half-sine window function. Trying it for a fre- 
quency right on a bin boundary (i.e., maximal discontinuity) we find that it 
works like a charm, but not for other frequencies. Can you explain why? 

13.4 Windows 

In Sections 4.6 and 13.3 we saw the general requirements for window func- 
tions, but the only explicit examples given were the rectangular window and 
the somewhat unusual half-sine window. In this section we will become ac- 
quainted with many more window functions and learn how to ‘window shop’, 
that is, to choose the window function appropriate to the task at hand. 

Windows are needed for periodograms, but not only for periodograms. 
Windows are needed any time we chop up a signal into buffers and the signal 
is taken to be periodic (rather than zero) outside the observation buffer. This 
is a very frequent occurrence in DSP! When calculating autocorrelations (see 
Chapter 9) the use of windows is almost universal; a popular technique of 
designing FIR filters is based on truncating the desired impulse response 
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by a window (see Section 7.8); sample buffers are windowed before LPC 
analysis (see Section 9.9); and the list goes on and on. Yet windowing as 
a preprocessing stage for the periodogram is probably the best known use, 
and we will concentrate on it here. Recalling the interpretation of the FT 
as a bank of FIR band-pass filters, we will see that the frequency response 
of these filters is directly determined by the window function used. 

We must, once again, return to the issue of buffer indexing. The com- 
puter programming convention that the buffer index runs from 0 to N - 1 
is usually used with a window that obeys w. = 0 and 20~ = 0. In this fash- 
ion the first point in the output buffer is set to zero but the last point is 
not (the N th point, which is zero, belongs to the next buffer). Some people 
cannot tolerate such asymmetry and make either both w. = 0, wNwl = 0 or 
w-1 = 0,WN = 0. These conventions should be avoided! The former implies 
two zeroed samples in the replicated signal, the latter none. In theoretical 
treatments the symmetric buffer indexation 44. . . M with M E g is com- 
mon, and here only one of the endpoints is to be considered as belonging to 
the present buffer. To make things worse the buffer length may be even or 
odd, although FFT buffers will usually be of even length. As a consequence 
you should always check your window carefully before looking through it. 
We will present expressions in two formats, the practical 0. . . N - 1 with 
even N and w. = 0, WN = 0 and the symmetric odd length -M . . . M with 
w&m = 0 and thus N = 2M + 1. To differentiate we will use an index n for 
the former case and m for the latter. 

The rectangular window is really not a window function at all, but we 
consider it first for reference. Measuring analog time in units of our sampling 
interval, we can define an analog window function w(t) that is one between 
t = -M and t = +M and zero elsewhere. We know that its FT is 

W(w) = M sinc(Mw) 

and its main lobe (defined between the first zeros) is of width g. As M 
increases the main lobe becomes narrower and taller, but if we increase the 
frequency resolution, as allowed by the uncertainty theorem, we find that the 
number of frequency bins remains the same. In fact in the digital domain 
the N = 2M point FFT has a frequency resolution of J$ (the sampling 
frequency is one), and thus the main lobe is two frequency bins in width for 
all M. It isn’t hard to do all the mathematics in the digital domain either. 
The digital window is 20~ = 1 for -M 5 m 5 +M and 20~ = 0 elsewhere. 
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The DFT is given by 

M 
wk = c e -ikm = ,-ikA4 

1 _ e-ike-2ikM sin( +Nk) 

m=- M 
1 - e-ik = sin($) 

where we have used formula (A.46) for the sum of a finite geometric series, 
and substituted N = 2M + 1. 

Prom this expression we can derive everything there is to know about the 
rectangular window. Its main lobe is two bins in width, and it has an infinite 
number of sidelobes, each one bin in width. Its highest sidelobe is attenuated 
13.3 dB with respect to the main lobe, and the sidelobes decay by 6 dB per 
octave, as expected of a window with a discontinuity (see Section 4.2). 

Before we continue we need some consistent quantities with which to 
compare windows. One commonly used measure is the noise bandwidth de- 
fined as the bandwidth of an ideal filter with the same maximum gain that 
would pass the same amount of power from a white noise source. The noise 
bandwidth of the rectangular window is precisely one, but is larger than 
one for all other windows. Larger main lobes imply larger noise bandwidths. 
Another important parameter is the ripple of the frequency response in the 
pass-band. The rectangular window has almost 4 dB pass-band ripple, while 
many other windows have much smaller ripple. We are now ready to see some 
nontrivial windows. 

Perhaps the simplest function that is zero at the buffer ends and rises 
smoothly to one in the middle is the triangular window 

wn = Wm = 1-2L I I 
M+l 

(13.4) 

which is also variously known as the Bartlett window, the Fejer window, the 
Parzen window, and probably a few dozen more names. This window rises 
linearly from zero to unity and then falls linearly back to zero. If the buffer 
is of odd length there is a point in the middle for which the window function 
is precisely unity, for even length buffers all values are less than one. The 
highest sidelobe of the triangular window is 26 dB below the main lobe, and 
the sidelobes decay by 12 dB per octave, as expected of a window with a 
first derivative discontinuity. However, the noise bandwidth is 1.33, because 
the main lobe has increased in width. 

The Harming window is named after the meteorologist Julius von Hann. 

for n =O...N- 1 (13.5) 
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Apparently the verb form ‘to Hann the data’ was used first; afterward people 
started to speak of ‘Hanning the signal’, and in the end the analogy with the 
Hamming window (see below) caused the adoption of the misnomer ‘Hanning 
window’. The Hanning window is also sometimes called the ‘cosine squared’, 
or ‘raised cosine’ window (use the ‘m’ index to see why). The Hanning 
window’s main lobe is twice as wide as that of the rectangular window, and 
at least three spectral lines will always be excited, even for the best case. 
The noise bandwidth is 1.5, the highest sidelobe is 32 dB down, and the 
sidelobes drop off by 18 dB per octave. 

The Hamming window is named in honor of the applied mathematician 
Richard Wesley Hamming, inventor of the Hamming error-correcting codes, 
creator of one of the first programming languages, and author of texts on 
numerical analysis and digital filter design. 

w,=0.54-0.46(1-cos(2+)) for n=O...iV-1 (13.6) 

The Hamming window is obtained by modifying the coefficients of the Han- 
ning window in order to precisely cancel the first sidelobe, but suffers from 
not becoming precisely zero at the edges. For these reasons the Hamming 
window has its highest sidelobe 42 dB below the main lobe, but asymptot- 
ically the sidelobes only decay by 6 dB per octave. The noise bandwidth is 
1.36, close to that of the triangular window. 

Continuing along similar lines one can define the Blackman-Harris family 
of windows 

Wn =,-~,cos(2~~)+.,cos(2++z~cos(2*~)... (13.7) 

and optimize the parameters in order to minimize sidelobes. More complex 
window families include the Kaiser and Dolph-Chebyshev windows, which 
have a free parameter that can be adjusted for the desired trade-off between 
sidelobe height and main-lone width. We superpose several commonly used 
windows in Figure 13.6. 

Let’s see how these windows perform. In Figure 13.7 we see the pe- 
riodogram spectral estimate of a single worst-case sinusoid using several 
different windows. We see that the rectangular window is by far the worst, 
and that the triangular and then the Hanning windows improve upon it. 
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Figure 13.6: Various window functions. Depicted are 64-point rectangular, triangular, 
Hanning, Hamming, Blackman, and Kaiser wkdows. - 
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Figure 13.7: Periodogram of worst-case single sinusoids using various window functions, 
namely (A) rectangular, (B) triangular, (C) Harming, (D) Hamming, (E) Blackman-Harris, 
and (F) Kaiser, Each periodogram is normalized such that its maximum height corresponds 
to 0 dB. 
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Afterward the choice is not clear cut. The Blackman and Kaiser windows 
reduce the sidelobe height, but cannot simultaneously further reduce the 
main lobe width. The Hamming window attempts to narrow the main lobe, 
but ends up with higher distant sidelobes. Not shown is a representative of 
the Dolph-Chebyshev family, which as can be assumed for anything bearing 
the name Chebyshev, has constant-height sidelobes. 

Which window function is best? It all depends on what you are trying to 
do. Rectangular weighting could be used for sinusoids of precisely the right 
frequencies, but don’t expect that to ever happen accidentally. If you are 
reasonably sure that you have a single clean sinusoid, this may be verified 
and its frequency accurately determined by using a mixer and a rectangular 
window STFT; just remember that the signal’s frequency is the combination 
of the bin’s frequency and the mixer frequency. An even trickier use of the 
rectangular window is for the probing of linear systems using synthetically 
generated pseudorandom noise inputs (see Section 5.4). By using a buffer 
length precisely equal to the periodicity of the pseudorandom signal we 
can ensure that all frequencies are just right and the rectangular weighted 
STFT spectra are beautiful. Finally, rectangular windows should be used 
when studying transients (signals that are nonxero only for a short time). 
We can then safely place the entire signal inside the buffer and guarantee 
zero signal values at the buffer edges. In such cases the rectangular window 
causes the least distortion and requires the least computation. 

For general-purpose frequency displays the Hanning and Hamming win- 
dows are often employed. They have lower sidebands and lower pass-band 
ripple than the rectangular window. The coefficients of the Hanning window 
needn’t be stored, since they are derivable from the FFT’s twiddle factor 
tables. Another trick is to overlap and average adjacent buffers in such a 
way that the time weighting becomes constant. 

A problem we haven’t mentioned so far is twc>-tone separability. We 
sometimes need to separate two closely spaced tones, with one much stronger 
than the other. Because of main lobe width and sidelobe height, the weaker 
tone will be covered up and not noticeable unless we choose our window 
carefully. For such cases the Blackman, Dolph-Chebyshev, or Kaiser windows 
should be used, but we will see stronger methods in the following sections. 
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EXERCISES 

13.4.1 Convert the Hanning and Hamming windows to symmetric ‘m’ notation and 
explain the names ‘cosine squared’ and ‘raised cosine’ often applied to the for- 
mer. Express the Hanning window as a convolution in the frequency domain. 
What are the advantages of this approach? 

13.4.2 Plot the periodograms for the same window functions as in Figure 13.7, but 
for a best-case sinusoid (e.g., for N = 64, a sinusoid of frequency 15/64). 

13.4.3 Plot periodograms of the logistics signal for various 1 5 X < 3.57, as was 
done in Section 5.5. Which window is best? Now use X that give for 3, 5, and 
6 cycles. Which window should be used now? 

13.4.4 Try to separate two close sinusoids, both placed in worst-case positions, and 
one much stronger than the other. Experiment with different windows. 

13.5 Finding a Sinusoid in Noise 

As we mentioned above, frequency estimation is simplest when we are given 
samples of a single clean sinusoid. Perhaps the next simplest case is when 
we are told that the samples provided are of a single sinusoid with additive 
uncorrelated white noise; but if the SNR is low this ‘simple’ case is not 
so simple after all. To use averaging techniques as discussed in Section 5.3 
one would have to know a priori how to perform the registration in time 
before averaging. Unfortunately, this would require accurate knowledge of 
the frequency, which is exactly what we are trying to measure in the first 
place! We could perform an FFT, but that would only supply us with the 
frequency of the nearest bin; high precision would require using a large 
number of signal points (assuming the frequency were constant over this 
time interval), and most of the computation would go toward finding bins of 
no interest. We could calculate autocorrelations for a great number of lags 
and look for peaks, but the same objections hold here as well. 

There are more efficient ways of using the autocorrelations. Pisarenko 
discovered one method of estimating the frequencies of p sinusoids in additive 
white noise using a relatively small number of autocorrelation lags. This 
method, called the Pisarenko Harmonic Decomposition (PHD), seems to 
provide an infinitely precise estimate of these frequencies, and thus belongs 
to the class of ‘super-resolution’ methods. Before discussing how the PHD 
circumvents the basic limitations of the uncertainty theorem, let’s derive it 

for the simple case of a single sinusoid (p = 1). 
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We assume that our signal is exactly of the form 

sn = Asin(wn + 4) -I- vn (13.8) 

where u is the uncorrelated white noise. Its autocorrelations are easily de- 
rived 

Cs(m) = (SnSn+m) 
A2 

= 2 cos(wm) + 0$5~,0 

and the first few lags are given by the following. 

(13.9) 

A2 
G(O) = T+o; 

G(l) = 
A2 
-yj- cos(w) 

G(2) = 
A2 A2 
2 cos(2w) = 2 (2co4w) - 1) 

The noise only influences the lag zero term (energy) due to the assumption 
of white noise. Any deviation from whiteness causes the other lags to acquire 
noise-related terms as well. 

Were the noise to be zero, we could simply calculate 

W 
cm = cos-l - ( > cs (0) 

but this fails miserably when noise is present. Can we find an expression that 
uses only nonzero lags, and is thus uninfluenced by the noise? Pisarenko’s 
method uses only the two lags m = 1 and m = 2. Using the trigonometric 
identity cos(2w) = 2cos2(w) - 1 it is easy to show that 

2Cs(l)c2 - Cs(2)c - Cs(1) = 0 

where we have denoted c = cos(w). This is a simple quadratic, with solutions 

W) & L cm + 2 
“=EJi) 24c,2(1) \i (13.10) 

only one of which leads to the correct solution (see exercise 13.5.2). We thus 
find 

w = cos-l cs (2) 
- 
4c, (1) 

+ &gn (G(l)) (13.11) 
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which is the PHD estimate for the digital angular frequency (the analog 
frequency is obtained by dividing by 27r and multiplying by the sampling 
frequency). 

The PHD expression we have just found is not a frequency estimate at 
all. Assuming the noise is perfectly white, it is an infinitely precise mea- 
surement of the frequency. Of course there is no problem with this infinite 
precision since we assumed that we have exact values for the two autocorre- 
lation lags C9(1) and Cs (2). Obtaining these exact values requires knowing 
the signal over all time, and therefore the uncertainty theorem does allow 
infinitely precise predictions. However, even when we use empirical autocor- 
relations (equation (9.11)) calculated using only N samples the prediction 
still seems to be perfectly precise. Unlike periodogram methods there is no 
obvious precision reduction with decreasing N; but the accuracy of the pre- 
diction decreases. It is straightforward, but somewhat messy, to show that 
the variance of the PHD estimator is inversely proportional to the size of 
the buffer and the square of the SNR (SNR = $). Y 

co424 + cos2(w) 1 
&UI = sin2(w)(cos(2ti) + 2)2 N SNR2 

The somewhat complex frequency-dependent prefactor means that the esti- 
mate is more accurate near DC (w = 0) and Nyquist (w = 7r), and there is 
a small dip near the middle of the range. More interesting is the N depen- 
dence; the proper Af is the standard deviation, and so we have a strange 
(Af)2At uncertainty product. Even more disturbing is the SNR dependence; 
as the SNR increases the error decreases even for small AL It is obvious that 
this error only reflects better noise cancellation with more data points, and 
not true uncertainty theorem constraints. 

So it seems that the PHD really does beat the uncertainty theorem. The 
explanation is, however, deceptively simple. We made the basic assumption 
that the signal was exactly given by equation (13.8). Once the parameters of 
the sinusoid are known, the signal (without the noise) is known for all times. 
The uncertainty product effectively has At = co and can attain infinitesimal 
frequency precision. This is the idea behind all model-based super-resolution 
methods. The data is used to find the parameters of the model, and the 
model is assumed to hold for all time. Thus, assuming that the assumption 
holds, the uncertainty theorem is robbed of its constraining influence. 
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EXERCISES 

13.5.1 Derive the expression (13.9) for the autocorrelation (use exercise 9.2.12). 

13.5.2 Exploiting the fact that we want 0 5 w < x show that the proper solution of 
the quadratic has the sign of C8 (1). 

13.5.3 In the text we quoted the variance of the error of the PHD estimation. What 
about its bias? Find this numerically for various buffer sizes. 

13.5.4 The PHD is a second-order frequency estimator in the sense that the highest 
autocorrelation lag it utilizes is m = 2. Using the trigonometric identity 
cos(w) + cos(3w) = 2 cos(clr) cos(2w) prove that Cs(l) - 2C,(2)c + C8(3) = 0. 
Show that this leads to the following third-order estimator. 

w = cos-l ( G(l) + G(3) 
2G (2) > 

13.5.5 Compare the third-order estimator of the previous exercise with the PHD by 
generating sinusoids in various amonnts of white noise and estimating their 
frequencies. Which is better for low SNR? High SNR? Small buffer size? 
Large buffer size? 

13.6 Finding Sinusoids in Noise 

The previous section dealt with the special case of a single sinusoid in noise. 
Here we extend the PHD to multiple sinusoids. The needed formalism is a 
bit more mathematically demanding (involving the roots of functions that 
are derived from the eigenvector of the signal covariance matrix belonging 
to the smallest eigenvalue), so we approach it cautiously. 

In order to derive the PHD for the sum of p sinusoids in uncorrelated 
white noise, 

sn = 2 Ai sin(tiin) + V, 
i=l 

we first rederive the p = 1 case in a different way. Recall that exponentials 
and sinusoids obey difference equations; those of real exponentials involve a 
single previous value, while sinusoids obey recursions involving two previous 
values. From equation (6.52) we know that a clean sinusoid X~ = A sin(wn) 
obeys the following recursion 

Xn = al%--1 + C12Xn-2 where 
Ul = 2cos(w) 
u2 = -1 

(13.12) 
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(we have simply defined al = -cl and a2 = -0~). We will call al and 
a2 recursion coeficients. Given the recursion coefficients we can write the 
equation 

1 - a& - a22 -2=0 or 22-2cos(w)z+1=o (13.13) 

which has the following solutions. 

x = i 
( 

2cos(w) ZIZ JZ$$Z 
> 

= cos(w) & isin = efiw 

Thus those z that solve equation (13.13) (i.e., the roots of the polynomial 
therein specified) are on the unit circle, and their angles are the frequencies 
(both positive and negative) of the original signal. This is a link between 
the recursion coefficients and the frequencies of the signal that obeys the 
recursion. 

The connection between this and the PHD is easiest to understand in 
vector notation. We define the vectors 

2 = ( %,%--1,%-2 > - 

a = (1 9 -al, -a2) 

so that equation (13.12) is written 

x-a=0 (13.14) - - 

i.e., the clean signal vector and the recursion coefficient vector are orthog- 
onal. Now the noisy signal is s = z + u. This signal has mean zero (since 
we assume the noise to be zer,me&) &d its covariance matrix is thus the 
signal autocorrelation matrix 

J& = (E”) = ( _ _ _ 2 2 (x + u)(d + Y )) = v +& W15) = 
where Vs is a 3-by-3 square matrix with elements V&j = C& - j). The 

first ter; Vz = ( xxt) is a symmetric Toeplitz matrix, the matrix I is the -- 
3-by-3 identity matrix, and a; is the variance of the noise. It is now%sy to 
see that 

Ku= ((&) ++= (c&g) ++=+ (13.16) 
- 

which shows that a is an eigenvector of the covariance matrix, Since eigen- 
values of Vz are n&negative, 0: must be the smallest eigenvalue of Vs. We 

E = 
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thus see that the frequency of a sinusoid in additive noise can be deter- 
mined by diagonalizing its autocorrelation matrix. This is a specific case of 
the desired formulation of the PHD. 

Theorem: The Pisarenko Harmonic Decomposition 
Given a signal s that is the sum of p sinusoids and uncorrelated white noise, 

P 

sn = 
U 

Aie 
i=l 

iw + Afe-iWn) + vn 

denote by VS the (2p + 1)-dimensional covariance matrix of this signal, and 

by a the e&vector of VS that belongs to the minimal eigenvalue. Then the - 
roots of 1 - x:=1 a&\re of the form xi = efiwi. n 

We can now understand the term decomposition that appears in the name 
PHD. The decomposition is that of the covariance matrix into signal-related 
and noise-related parts (see equation (13.15)) which implies the splitting 
of the (2p + 1)-dimensional space of signal vectors into orthogonal signal 
(equation (13.14)) and noise subspaces. 

The proof of the general p case is similar to that of the p = 1 case. The 
key idea is that signals consisting of p real exponentials or sinusoids obey 
difference equations; those of real exponentials involve p previous values, 
while p sinusoids obey recursions involving 2p previous values. It’s easier to 
understand this by first considering the exponential case. 

P 

xn = c 
Ai eQin 

i=l 

This can be expressed as the combination of p previous values. 

P 

Xn = c akxn-k (13.17) 
k=l 

Substituting the definition 

and thus 
P 

c ake-qik = 1 
k=l 
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we see that 

1 - 5 akzvk 
k=l 

has roots z = eqi. Similarly for the sum of sinusoids p . 
Xn = a Aielwn + Are -iwn 

i=l 
> 

we leave it as an exercise to show that 
2P 

Xn = c akxn-k 
k=l 

where 
2P 

1 - c a&z-’ 

(13.18) 

(13.19) 
k=l 

has roots zi = efiwi. 
In practice we do not have the real covariance matrix, and Pisarenko’s 

method uses the usual empirical estimates for Cs (0)) Cs (I), Cs (2), . . . Cs (2~). 
Once the covariance matrix has been estimated, we diagonalize it or use 
any available method for finding the eigenvector belonging to the minimal 
eigenvalue. This produces the recursion coefficients with which we can build 
the polynomial in (13.19) and find its roots numerically. Finally we obtain 
the desired frequencies from the angles of the roots. 

The PHD is only one of several frequency estimation methods that use 
eigenvector decomposition of the signal covariance matrix. Another pop- 
ular eigenvector method, called MUSIC (Multiple SIgnal Classification), 
provides a full spectral distribution, rather than the p discrete lines of the 
PHD. 

Alternative approaches are based on inverting the covariance matrix 
rather than diagonalizing it. Baron de Prony worked out such an algorithm 
for a similar problem back in 1795! Prony wanted to approximate N equally- 
spaced data points by the sum of p real exponentials (as in equation (13.17)). 
There are precisely 2p free parameters in the parametric form, so he needed 
N = 2p data points. Were the e qit factors known, finding the Ai would be 
reduced to the solution of p simultaneous linear equations; but the pi appear 
in an exponent, creating a very nonlinear situation. Prony’s idea was to find 
the qs first, using the recursion relating the data values. For exponentials the 
recursion is equation (13.17) for all n. Given N signal values, x0, xl, . . . XIV-l, 

we consider only the N - p equations for which all the required signal values 
are in the buffer. 
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xp = alxp-l + a2xp-2 + - + apx?;o 

Xp+l = a1xp + a2xp-l + - l + 
apx1 

XN-1 = a1xN-2 + a2xIG3 + l * . + apxNmpDl 

This can be written in matrix form 

/ xp-1 xp-2 xp-3 . . . x0 

ZP xp-1 xp-2 . . . Xl 
xp+I xp xp-I “0 Xl 

. . . . . . . . . l 

. . . . . 

\ XN-2 XN-3 xq+4 . . . XN-p-1 
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and for N = 2p the matrix is square Toeplitz and the equations can be 
readily solved for the ak. Once we have the al, we can find the roots of the 
polynomial, and retrieve the qi . Thereafter the Ai can be found as explained 
above. Thus Prony’s method reduces the solution of a very nonlinear prob- 
lem to the solution of two linear problems and the (nonlinear) operation of 
finding the roots of a polynomial. 

EXERCISES 

13.6.1 Why are the eigenvalues of CZ nonnegative? 

13.6.2 Complete the proof of the PHT for general p. To do this prove equation (13.18) 
and the claim about the roots. 

13.6.3 Specialize the PHD back to p = 1 and show that we obtain our previous 
PHD equation (13.11). 

13.6.4 What is the computational complexity of the PHD for general p? 

13.6.5 Prony’s method as described works only for noiseless signals. How can it be 
extended to the noisy case? 

13.6.6 Extend Prony’s method to p sinusoids. 
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13.7 IIR Methods 

Armed with the ideas acquired in the previous sections, we return to the 
problem of estimating the entire power spectral distribution from samples 
in the time domain. In Section 4.6 we saw that the DFT periodogram can 
be a powerful spectral estimator, but does not produce the exact spectrum 
due to the signal only being observed for short times. In Section 13.2 we saw 
that the STFT is essentially a bank of FIR filters. Can we improve on the 
periodograrn by using a bank of IIR filters? 

Recall that the DFT is simply the zT 

44 = zT(s,) = 5 s,z-~ 
n=--00 

calculated on the unit circle. Thus corresponding to the moving STFT there 
is a STzT 

Sm(Z) = 2 SnZBn (13.20) 
n=m-N+l 

where we have not explicitly shown a window function and have chosen the 
causal indexing convention. At time n = 0 this reduces to 

0 N-l 

SO(%) = C Sn%-n = C S-nZn (13.21) 
n=-N+l n=O 

an (N- 1) th degree polynomial in z. By comparison, the full zT is an infinite 
Laurent series, 

S(z) = E SnZwn = g S,Zmn + 2 S_,Zn 
TX=-00 n=l n=O 

and the STzT can be considered to be a polynomial approximation to these 
infinite sums. 

What kind of approximation to the infinite Laurent series is the polyno- 
mial? It is obviously an d-zero approximation since no poles in the z-plane 
can be produced, only zeros. Spectra with no discrete lines (delta functions) 
are well approximated by such polynomials, but spectra with sharp reso- 
nances are not. Sharp features such as delta functions are better captured 
by an approximation such as 

(13.22) 
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which is obviously an all-pole approximation to the full zT. All-pole ap- 
proximations may efficiently describe resonances that would take dozens of 
coefficients in the all-zero model; and like the Pisarenko estimate the fre- 
quencies of the poles may be measured to higher resolutions than the STFT 
allows. To capture both zeros and poles in the true spectrum we had best 
consider an ARMA model. 

c 
N 
n=Q %Z 

‘(‘) !a C,M,Q bmxm 
(13.23) 

In order to use the all-pole model of equation (13.22) we need a method 
of finding the coefficients b, , but these are precisely the LPC coefficients of 
Section 9.9. We saw there how to set up the Yule-Walker equations and solve 
them using the Levinson-Durbin recursion. Once we have them, what is the 
explicit connection between the LPC coefficients and the AR spectrum of 
the signal? From 

H(z) = 
G G 

1 + C:=, bmZ-m = C!fzQ b,+-m 

it is straightforward to obtain the power spectrum by restricting to the unit 
circle. 

lwJ)12 = G2 G2 

I1 + c;=, alce -iwkl2 = I & ake-iwk12 
(13.24) 

Which type of approximation is best, all-zero, all-pole, ARMA? The an- 
swer depends on the problem at hand. Speech signals tend to have spectra 
with resonant peaks called formants caused by the geometry of the vocal 
tract (see Section 19.1). Such spectra are most naturally approximated by 
all-pole models. All-zero DFT based methods are better for spectra contain- 
ing narrow valleys but no peaks, such as noise that passed through notch 
filters. In any case arbitrary spectra can be approximated by either all-pole 
or all-zero models by using high enough orders. Prom this point of view, the 
incentive behind choosing a model is one of efficiency. 

Yet there is another reason for choosing an all-pole model. The Wiener- 
Khintchine theorem relates the power spectrum to the infinite set of auto- 
correlations C&n) for all lags m. In practice we can compute only a limited 
number of autocorrelations, and would like to estimate the power spectrum 
based on these. We might assume that all unknown autocorrelations are 
exactly zero, 

S(w) = 2 C,(n-~)e-~~” + 5 Cs(m)e-imw (13.25) 
m=-co m=- M 
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which is not a bad assumption if the autocorrelations die off rapidly enough. 
This is easily seen to be an all-zero approximation, and leads to the blur- 
ring of sharp spectral lines. In 1967, John Burg introduced an alternative 
assumption, that the spectral estimate should be the most random spectrum 
consistent with the lags we do have. By ‘most random’ we mean the spec- 
trum with the highest ‘entropy’, and thus this technique is called maximum 
entropy spectral analysis. 

The reasoning behind the maximum entropy principle is easy to under- 
stand. DFT methods assume that all data that has not been observed either 
consist of periodic repetition of the data we have seen or are identically zero. 
There is usually little physical evidence for such assumptions! Maximum en- 
tropy means that we should remain as open minded as possible regarding 
unseen data. Indeed Burg’s method actually tells us to use the most unpre- 
dictable extrapolation of the data possible. There are many possible spectra 
that are consistent with the data we have collected, each corresponding to a 
different extrapolation of the data; maximum entropy insists that the most 
likely spectrum is that corresponding to the least constraints on the un- 
known data. In other words we should assume that the uncollected data is 
as random as possible. 

What type of approximation corresponds to the maximum entropy as- 
sumption? In Section 18.6 we will see, and if you have studied thermody- 
namics you already know, that maximum randomness means maximization 
of the ‘entropy’. We assume that the entropy 

HE 
J 

In S(w) dcj (13.26) 

is maximized under the constraint that the observed autocorrelation lags 
(those with lags Irn 1 2 M) do indeed obey Wiener-Khintchine. 

Cs(m) = J$ /f+)eimw (13.27) 

The integral in equation (13.26) depends on all the autocorrelations, not 
just the known ones, and the maximum we seek is for all possible values 
of the unknown autocorrelations, We differentiate with respect to all the 
autocorrelations with Irnl > M and set equal to zero. 

0 
OH J dlnS as(w) dw J 1 

= X,(m) = dS XYJm) = qqe 
-imw h 
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We see that the Fourier coefficients of the reciprocal of S(w) are zero for 
Im( > M (i.e., the inverse spectrum is a finite Fourier series). Accordingly, 
the maximum entropy power spectrum can be written as the reciprocal of a 
finite Fourier series, that is, is all-pole. 

EXERCISES 

13.7.1 Generate a signal that is the sum of a small number of sinusoids and noise. 
Find the PSD via the periodogram. Solve the LPC equations and derive the 
spectrum using equation (13.24). Compare the results. Experiment by placing 
weak spectral lines close to strong ones (recall exercise 13.4.4). 

13.7.2 Record some speech and compute its all-pole spectrum. What features do 
you observe? Can you recognize different sounds from the PSD? 

13.8 Walsh Functions 

As we saw in Section 3.4, the Fourier transform is easily computable because 
of the orthogonality of the sinusoids. The sinusoids are in some senses the 
simplest orthogonal family of functions, but there are other families that 
are simple in other ways. The Walsh functions, the first few of which are 
depicted in Figure 13.8, are an interesting alternative to the sinusoids. They 
are reminiscent of square waves, but comprise a complete orthogonal family. 
Like square waves all of the signal values are fl; due to this characteristic 
the Walsh transform can be computed without any true multiplications at 
all. 

It is conventional to define the Walsh functions recursively. For the unit 
interval 0 5 t 5 1 we define 

wall01 (t) = 1 (13.28) 

callkl (t) = wa1L2”l (t) = waP1 2t + (-1)” ( > 
wall’1 (2(t - a)) 

sal[“+ll(t) = wal[2k+11(t) = wall”] (2t) - (-1)” wal[“l (2(t - i)) 

and assume all of the functions to be zero to t < 0 and t < 1. After thus 
defining the functions on the unit interval we extend the definitions periodi- 
cally to the entire t axis. Note that the ‘wal’ functions are a single family like 
the complex exponentials, while the ‘Sal and ‘Cal’ functions are analogous 
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waP 3 NTqb 
salr31 

waP1 q 
sa1141 

Figure 13.8: The first eight Walsh functions in order of increasing sequency. The cal 
functions are on the left and the sal functions on the right. 

to sine and cosine. The label k equals the number of transitions in the unit 
interval and is called the sequency. 

The value-by-value product of two Walsh functions is always a Walsh 
function 

wal[‘l (t ) wal bl (t ) = walIkl (t ) 

where k is obtained by bit-by-bit xor of i and j. From this and the fact that 
all Walsh functions except wal[‘l are DC-free it is easy to prove the required 
orthonormality property. 

s 

1 
walIil (t) walli] (t) dt = 6. . 

0 
213 

There is also a discrete version of this property. 

z walIil (g) walk1 (i) = NSi,j 
= 

Analogously to the Fourier transform we can expand arbitrary signals as 
combinations of Walsh functions, thus defining the Walsh transform. Hence 
signals can be interpreted as functions in the time domain or sequency do- 
main. In DSP we are more interested in the discrete Walsh transform (DWT) 
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N-l 

& = 
c 
n=O 

Xn = j+ “c’ & w&l[k] (13.29) 
k=O 

where the normalization was chosen according to our usual convention. This 
looks very similar to the DFT. The two-point transform is identical to that 
of the DFT 

x0 = x0 + Xl 

Xl = x()-x1 

but the four-point transform is simpler. 

x0 = x0 + Xl + 52 + x3 

x1 = x0 + Xl - x2 - x3 

x2 = x0-21 -x2+x3 

x3 = x()-x1 +x2 -23 

Note that Walsh transforms are computed without nontrivial multiplica- 
tions, requiring only IV2 additions. Analogously to the FFT, a fast Walsh 
transform (FWT) can be defined, reducing this to O(N log N) additions. 

EXERCISES 

13.8.1 Plot Sal(t) and overlay it with sin(2?rt); similarly plot Cal(t) and overlay 
cos(2nt). What is the relationship? 

13.8.2 What is the connection between the Walsh functions and the Hadamard 
matrices defined in exercise 14.5.3? 

13.8.3 Find a nonrecursive formula for wallkl(t). 

13.8.4 Write a program that computes the decimation in sequency fast Walsh trans- 
form (see Section 14.3). 

13.8.5 Since the DWT can be computed without multiplications and using only real 
arithmetic, it would be useful to be able to obtain the DFT from the DWT. 
How can this be done? 

13.8.6 In the Fourier case multiplication is related to convolution. What is the 
analogous result for Walsh transforms? 
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13.8.7 Another purely real transform is the Hartley transform 

X(f) = &JW x(t) cas(wt) tit 
-W 

x(t) = 
J 

O” X(f) 44 df 
-00 

where we defined cas(t) = cos(t) + sin(t). Note that the Hartley transform is 
its own inverse (to within normalization). Similarly we can define the discrete 
Hartley transform. 

1 
N-l 

& = - 
N c 

n=O 

N-l 

2, = 
c 
k=O 

How do you retrieve the power spectrum from the Hartley transform? Ob- 
tain the DFT from the discrete Hartley transform. Develop a fast Hartley 
transform (see Section 14.3). 

13.9 Wavelets 

No modern treatment of spectral analysis could be complete without men- 
tioning wavelets. Although there were early precursors, wavelet theory orig- 
inated in the 1980s when several researchers realized that spectral analysis 
based on basis functions that are localized in both frequency and time could 
be useful and efficient in image and signal processing. 

What exactly is a wavelet? A basic wavelet is a signal $(t) of finite time 
duration. For example, a commonly used basic wavelet is the sinusoidal pulse 

Nt) = w(t) eiwot (13.30) 

where w(t) is any windowing function such as a rectangular window, a sine 
window or a raised cosine window. Such a pulse is only nonzero in the 
time domain in the vicinity of to and only nonzero in the frequency domain 
near wg. The STFT is based on just such functions with w(t) being the 
window chosen (see Section 13.4) and CJO the center of a bin. Ram the basic 
wavelet we can make scaled and translated wavelets using the following 
transformation 

(13.31) 
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where the prefactor normalizes the energy. The time translation to is simple 
to understand, it simply moves the wavelet along the time axis. The time 
duration of the wavelet is proportional to r; conversely, you can think of the 
scaling transformation compressing the time scale for r > 1 and stretching 
it for r < 1. The center frequency is inversely proportional to r (i.e., the 
frequency axis scales in the opposite way to the time axis). 

What about the wavelet’s bandwidth? Since the nonzero bandwidth re- 
sults from the finite time duration via the uncertainty theorem, the band- 
width must scale inversely to r. This last statement can be made more 
explicit by borrowing the filter design concept of the Q. 

Af Q=x (13.32) 

Since the center frequency f = 27rwo and the bandwidth both scale inversely 
with r, all the wavelets $(7(t), to, t) have the same Q. 

We can now build a transform based on these wavelets by replacing the 
infinite-duration sinusoids of the FT by finite-duration wavelets. 

(13.33) 

The essential difference between the constant Q wavelet transform and 
Fourier transform is depicted in Figure 13.9. The DFT divides the frequency 
axis into equal bandwidth bins, while the wavelet transform bins have con- 
stant Q and thus increase in bandwidth with increasing frequency. The cen- 
ter frequencies of the wavelet transform are equally spaced on a logarithmic 
frequency axis, compressive behavior much like that of our senses (see Sec- 
tion 11.2). While the STFT is matched to artificial signals engineered to 
equally partition the spectrum, the wavelet transform may be more suited 
to ‘natural’ signals such as speech. 

Are there cases where the wavelet transform is obviously more appropri- 
ate than the STFT? Assume we need to analyze a signal composed of short 
pulses superposed on sinusoids of long duration. We need to measure both 
the frequencies of the sinusoids as well as the time durations of the pulses. 
The uncertainty theorem restricts our accurately measuring the frequency 
of the pulses, but not that of the steady sinusoids; but to use the STFT we 
are forced into making a choice. If we use long windows we can accurately 
measure the frequencies, but blur the pulse time information; if we use short 
windows we can note the appearances and disappearances of the pulses, but 
our frequency resolution has been degraded. Using the wavelet transform the 
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Figure 13.9: Comparison of Fourier and wavelet transforms. The top figure depicts a 
four bin DFT while the bottom is a four-bin wavelet transform. Note that the FT bins 
have constant bandwidth while those of the wavelet transform have constant Q. For the 
purposes of illustration we have taken the basic wavelet to be rectangular in the frequency 
domain. 

time resolution gets better with higher frequency, while the frequency reso- 
lution becomes better at low frequencies (longer time durations). So using 
a single wavelet transform we can perform both measurements. 

Digital wavelet transforms can be computed efficiently (a fast wavelet 
transform) using the pyramid algorithm, which extends the recursive com- 
putation of the logarithmic spectrum discussed in Section 13.2. We employ 
a pair of filters called Quadrature Mirror Filters (QMFs). The QMF pair 
consists of a low-pass FIR filter that passes the lower half of the spectrum 
and a high-pass FIR filter that passes the upper half. The two filters are 
required to be mirror images of each other in the spectral domain, and in 
addition they must guarantee that the original signal may be recovered. 
The simplest QMF pair is (a, 4) and (3, -&, the first being low-pass, the 
second high-pass, and their sum obviously the original signal. The pyramid 
algorithm works as follows. First we apply the QMF filters to the incoming 
signal, creating two new signals of half the original bandwidth. Since these 
signals are half bandwidth, we can decimate them by a factor of two with- 
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out loss of information. The decimated output of the high-pass is retained 
as the signal of the highest bin, and the QMF filters applied to lower band 
signal. Once again both signals are decimated and the higher one retained. 
The process is repeated, halving the bandwidth at each iteration, until all 
the desired outputs are obtained. The name ‘pyramid’ refers to the graph 
depicting the hierarchical relationship between the signals. 

What is the computational complexity of the pyramid algorithm? If the 
QMF filters have M coefficients, the first iteration requires 2MN multipli- 
cations to produce N outputs. The second iteration operates on decimated 
signals and so requires only MN multiplications to produce outputs corre- 
sponding to the same time duration. Each iteration requires half the com- 
putations of the preceding, so even were we to compute an infinite number 
of iterations the number of multiplications would be 2 + 1 + i + a + . . . = 4 
times MN. So the wavelet transform is O(N) (better than the FFT), and 
no complex operations are required! 

EXERCISES 

13.9.1 Use a raised cosine times a sine as a basic wavelet and draw the scaled 
wavelets for various r. Compare these with the basis functions for the STFT. 

139.2 A digital QMF pair obeys IIOpl(f)l = II-W(~ - f)l, where H[~P]I(~) and 
I#131 (f) are the frequency responses of the low-pass and high-pass filters. 

Show that /$“I = (-l)nhpl or &?I = (-1) n [IPI h,, for odd length filters 
and similar statements for even length ones. Show that the latter form is 
consistent with the wavelets being an orthogonal basis for even length filters. 

13.9.3 Can the original signal really be recovered after QMF filtering and decimation 
have been applied? 

139.4 Derive an efficient procedure for computing the inverse digital wavelet trans- 
form. 

13.9.5 Build a signal consisting of two close sinusoids that pulse on and off. Similarly 
build a signal that consists of a single sinusoid that appears as two close 
pulses. Try to simultaneously measure frequency and time phenomena using 
the STFT and the wavelet transform. 

13.9.6 Compare the wavelet transform with the time-frequency distributions dis- 
cussed in Section 4.6. 
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Bibliographical Notes 

Kay and Marple have written a good tutorial of modern approaches to spectral 
analysis [128], and each has written a book as well [127, 1231. 

The periodogram waa first introduced by Schuster [233] and became an even 
more indispensable tool after the introduction of the FFT. Blackman and Tukey 
wrote early book on the practical calculation of power spectra [19]. The bible of 
windows was written by Harris [93]. 

As noted in the bibliographical notes to Chapter 6, Yule [289] formulated the 
Yule-Walker equations for signals containing one or two sinusoidal components in 
the late 192Os, in an attempt to explain the 11-year periodicity of sunspot num- 
bers. Walker, calling Yule’s earlier work ‘an important extension of our ideas re- 
garding periodicity’, expanded on this work, discovering that the autocorrelations 
were much smoother than the noisy signal itself, and suggesting using the ‘corre- 
lation periodogram’ as a substitute for the Schuster periodogram. He applied this 
technique to the analysis of air pressure data and could rule out as spurious various 
claimed periodicities. 

Wiener was instrumental in explaining why the Schuster periodogram did not 
work well for noisy signals [276, 2771, but this was not widely appreciated at the 
time. A highly interesting historical account is given by Robinson [223]. 

Pisarenko’s original article is [196]. Various authors have analyzed the perfor- 
mance of the PHD [227, 255, 2851. 

Officer of the U.S. Navy and Harvard mathematician Joseph Leonard Walsh 
presented his functions in 1923 [268]. The standard text is [12] and a short introduc- 
tion can be found in [13]. The conversion between DWT and DFT was expounded 
in [256, 2571. Hartley, who was in charge of telephone research at Bell Labs and 
responsible for an early analog oscillator, presented his transform in 1942 [94]. The 
DHT and FHT were published in [24, 251. The standard text is [27]. 

Wavelets already have a rich literature. For DSP purposes we recommend the 
review article by Rioul and Vetterli [221]. 
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The Fast Fourier Transform 

It is difficult to overstate the importance of the FFT algorithm for DSP. We 
have often seen the essential duality of signals in our studies so far; we know 
that exploiting both the time and the frequency aspects is critical for signal 
processing. We may safely say that were there not a fast algorithm for going 
back and forth between time and frequency domains, the field of DSP as we 
know it would never have developed. 

The discovery of the first FFT algorithm predated the availability of 
hardware capable of actually exploiting it. The discovery dates from a pe- 
riod when the terms calculator and computer referred to people, particularly 
adept at arithmetic, who would perform long and involved rote calculations 
for scientists, engineers, and accountants. These computers would often ex- 
ploit symmetries in order to save time and effort, much as a contempo- 
rary programmer exploits them to reduce electronic computer run-time and 
memory. The basic principle of the FFT ensues from the search for such 
time-saving mechanisms, but its discovery also encouraged the development 
of DSP hardware. Today’s DSP chips and special-purpose FFT processors 
are children of both the microprocessor age and of the DSP revolution that 
the FFT instigated. 

In this chapter we will discuss various algorithms for calculating the 
DFT, all of which are known as the FFT. Without a doubt the most popular 
algorithms are radix-2 DIT and DIF, and we will cover these in depth. These 
algorithms are directly applicable only for signals of length N = 2m, but with 
a little ingenuity other lengths can be accommodated. Radix-4, split radix, 
and FFT842 are even faster than basic radix-2, while mixed-radix and prime 
factor algorithms directly apply to N that are not powers of two. There are 
special cases where the fast Fourier transform can be made even faster. 
Finally we present alternative algorithms that in specific circumstances may 
be faster than the FFT. 

531 
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14.1 Complexity of the DFT 

Let us recall the previously derived formula (4.32) for the N-point DFI’ 

N-l 

n=O 

where the Nth root of unity is defined as 

-i2” 
WNze N =cos($) - isin 

How many calculations must we perform to find one XI, from a set of N 
time domain values x *? Assume that the complex constant WN and its pow- 
ers W$ have all been precalculated and stored for our use. Looking closely 
at (4.32) we see N complex multiplications and N - 1 complex additions are 
performed in the loop on n. Now to find the entire spectrum we need to do 
N such calculations, one for each value of k. So we expect to have to carry 
out N2 complex multiplications, and N(N - 1) complex additions. 

This is actually a slight overestimate. By somewhat trickier programming 
we can take advantage of the fact that Wk = 1, so that each of the Xk>O 
takes N - 1 multiplications and additions, while X0 doesn’t require any 
multiplications. We thus really need only (N - 1) 2 complex multiplications. 

A complex addition requires the addition of real and imaginary parts, 
and is thus equivalent to two real additions. A complex multiplication can 
be performed as four real multiplications and two additions (a + ib)(c + 
id) = (ac - bd) + i(bc + ad) or as three multiplications and five additions 

(a+ib)(c+id) = u(c+d)-d(u+b)+i (u(c+d) +c(b-a)). Thelatter form 

may be preferred when multiplication takes much more time than addition, 
but can be less stable numerically. Other combinations are possible, but it 
can be shown that there is no general formula for the complex product with 
less than three multiplications. Using the former, more common form, we 
find that the computation of the entire spectrum requires 4(N - 1)2 real 
multiplications and 2(N - 1)(2N - 1) real additions. 

Actually, the calculation of a single XI, can be performed more efficiently 
than we have presented so far. For example, Goertzel discovered a method of 
transforming the iteration in equation (4.32) into a recursion. This has the 
effect of somewhat reducing the computational complexity and also saves 
the precomputation and storage of the W table. Goertzel’s algorithm, to be 
presented in Section 14.8, still has asymptotic complexity of order O(N) per 

calculated XI,, although with a somewhat smaller constant than the direct 
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method. It thus leaves the complexity of calculation of the entire spectrum at 
O(N2), while the FFT algorithms to be derived presently are less complex. 
Goertzel’s algorithm thus turns out to be attractive when a single, or only 
a small number of XI, values are needed, but is not the algorithm of choice 
for calculating the entire spectrum. 

Returning to the calculation of the entire spectrum, we observe that both 
the additions and multiplications increase as O(N2) with increasing N. Were 
this direct calculation the only way to find the DFT, real-time calculation 
of large DFTs would be impractical. It is general rule in DSP programming 
that only algorithms with linear asymptotic complexity can be performed 
in real-time for large N. Let us now see why this is the case. 

The criterion for real-time calculation is simple for algorithms that pro- 
cess a single input sample at a time. Such an algorithm must finish all its 
computation for each sample before the next one arrives. This restricts the 
number of operations one may perform in such computations to the number 
performable in a sample interval t,. This argument does not directly apply 
to the DFT since it is inherently a block-oriented calculation. One cannot 
perform a DFT on a single sample, since frequency is only defined for signals 
that occupy some nonzero interval of time; and we often desire to process 
large blocks of data since the longer we observe the signal the more accurate 
frequency estimates will be. 

For block calculations one accumulates samples in an array, known as a 
buffer, and then processes this buffer as a single entity. A technique known 
as double-buflering is often employed in real-time implementations of block 
calculations. With double-buffering two buffers are employed. While the 
samples in the processing bu$er are being processed, the acquisition buffer 
is acquiring samples from the input source. Once processing of the first buffer 
is finished and the output saved, the buffers are quickly switched, the former 
now acquiring samples and the latter being processed. 

How can we tell if block calculations can be performed in real-time? 
As for the single sample case, one must be able to finish all the processing 
needed in time. Now ‘in time’ means completing the processing of one entire 
buffer, before the second buffer becomes full. Otherwise a condition known 
as data-overrun occurs, and new samples overwrite previously stored, but as 
yet unprocessed, ones. It takes NAt seconds for N new samples to arrive. 
In order to keep up we must process all N old samples in the processing 
buffer before the acquisition buffer is completely filled. If the complexity is 
linear (i.e., the processing time for N samples is proportional to N), then 
C = qN for some Q. This q is the efective time per sample since each sample 
effectively takes q time to process, independent of N. Thus, the selection of 
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buffer size is purely a memory issue, and does not impact the ability to keep 
up with real-time. However, if the complexity is superlinear (for example, 
T processing = qNp with p > 1) , then as N increases we have less and less 
time to process each sample, until eventually some N is reached where we 
can no longer keep up, and data-overrun is inevitable. 

Let’s clarify this by plugging in some numbers. Assume we are acquiring 
input at a sample rate of 1000 samples per second (i.e., we obtain a new 
sample every millisecond) and are attempting to process blocks of length 
250. We start our processor, and for one-quarter of a second, we cannot do 
any processing, until the first acquisition buffer fills. When the buffer is full 
we quickly switch buffers, start processing the 250 samples collected, while 
the second buffer of length 250 fills. We must finish the processing within 
a quarter of second, in order to be able to switch buffers back when the 
acquisition buffer is full. When the dependence of the processing time on 
buffer length is strictly linear, Tpro,-essing = qN, then if we can process a 
buffer of N = 250 samples in 250 milliseconds or less, we can equally well 
process a buffer of 500 samples in 500 milliseconds, or a buffer of N = 1000 
samples in a second. Effectively we can say that when the single sample 
processing time is no more than q = 1 millisecond per sample, we can 
maintain real-t ime processing. 

What would happen if the buffer processing time depended quadratically 
on the buffer siz~Tproce+n~ = qN2? Let’s take q to be 0.1 millisecond per 
sample squared. Then for a small lo-millisecond buffer (length N = lo), 
we will finish processing in Tprocessing = 0.1 l lo2 = 10 milliseconds, just 
in time! However, a lOO-millisecond buffer of size N = 100 will require 
T processing = 0.1 l 1002 milliseconds, or one second, to process. Only by 
increasing our computational power by a factor of ten would we be able to 
maintain real-time! However, even were we to increase the CPU power to 
accommodate this buffer-size, our 250-point buffer would still be out of our 
reach. 

As we have mentioned before, the FFT is an algorithm for calculating 
the DFT more efficiently than quadratically, at least for certain values of N. 
For example, for powers of two, N = 2’, its complexity is 0( N log2 N). This 
is only very slightly superlinear, and thus while technically the FFT is not 
suitable for real-time calculation in the asymptotic N --) 00 limit, in practice 
it is computable in real-time even for relatively large N. To grasp the speed- 
up provided by the FFT over direct calculation of (4.29)) consider that the 
ratio between the complexities is proportional to ,*N. For N = 24 = 16 the 

FFT is already four times faster than the direct DFT, for N = 21° = 1024 
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it is over one hundred times faster, and for N = 216 the ratio is 4096! It 
is common practice to compute lK- or 64.Kpoint FFTs in real-time, and 
even much larger sizes are not unusual. 

The basic idea behind the FFT is the very exploitation of the N2 com- 
plexity of the direct DFT calculation. Due to this second-order complexity, 
it is faster to calculate a lot of small DFTs than one big one. For example, to 
calculate a DFT of length N will take N2 multiplications, while the calcula- 
tion of two DFTs of length $ will take 2($)2 = $, or half that time. Thus 
if we can somehow piece the two partial results together to one spectrum in 
less than T time then we have found a way to save time. In Sections 14.3 
and 14.4 we will see several ways to do just that. 

EXERCISES 

14.1.1 Finding the maximum of an N-by-N array of numbers can be accomplished in 
O(N2) time. Can this be improved by partitioning the matrix and exploiting 
the quadratic complexity as above? 

14.1.2 In exercise 4.7.4 you found explicit equations for the N = 4 DFT for N = 4. 
Count up the number of complex multiplications and additions needed to 
compute X0, Xi, X2, and Xs. How many real multiplications and additions 
are required? 

14,1.3 Define temporary variables that are used more than once in the above equa- 
tions. How much can you save? How much memory do you need to set aside? 
(Hint: Compare the equations for X0 and X2.) 

14.1.4 Up to now we have not taken into account the task of finding the trigonomet- 
ric W factors themselves, which can be computationally intensive. Suggest at 
least two solutions, one that requires a large amount of auxiliary memory but 
practically no CPU, and one that requires little memory but is more CPU 
intensive. 

.4.1.5 A computational system is said to be ‘real-time-oriented’ when the time 
it takes to perform a task can be guaranteed. Often systems rely on the 
weaker criterion of statistical real-time, which simply means that on-the- 
average enough computational resources are available. In such cases double 
buffering can be used in the acquisition hardware, in order to compensate 
for peak MIPS demands. Can hardware buffering truly make an arbitrary 
system as reliable as a real-time-oriented one? 

14.1.6 Explain how double-buffering can be implemented using a single circular 
buffer. 
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14.2 Two Preliminary Examples 

Before deriving the FFT we will prepare ourselves by considering two some- 
what more familiar examples. The ideas behind the FFT are very general 
and not restricted to the computation of equation (14.1). Indeed the two 
examples we use to introduce the basic ideas involve no DSP at all. 

How many comparisons are required to find the maximum or minimum 
element in a sequence of N elements? It is obvious that N-l comparisons are 
absolutely needed if all elements are to be considered. But what if we wish 
to simultaneously find the maximum and minimum? Are twice this number 
really needed? We will now show that we can get away with only 1; times 
the number of comparisons needed for the first problem. Before starting we 
will agree to simplify the above number of comparisons to N, neglecting the 
1 under the asymptotic assumption N >> 1. 

A fundamental tool employed in the reduction of complexity is that 
of splitting long sequences into smaller subsequences. How can we split a 
sequence with N elements 

x0, Xl, x2, x3, . . . 2N-2, XN-1 

into two subsequences of half the original size (assume for simplicity’s sake 
that N is even)? One way is to consider pairs of adjacent elements, such as 
xi, x2 or x3, x4, and place the smaller of each pair into the first subsequence 
and the larger into the second. For example, assuming x0 < x1, 22 > x3 and 
XN-2 < x&r, we obtain 

x0 x3 . . . min(xzz, x21+1) l l ’ XN-2 

Xl x2 . . . m=(x2Z, x21+1) - - - XN-1 

This splitting of the sequence requires % comparisons. Students of sorting 
and searching will recognize this procedure as the first step of the Shell sort. 

Now, the method of splitting the sequence into subsequences guarantees 
that the minimum of the entire sequence must be one of the elements of the 
first subsequence, while the maximum must be in the second. Thus to com- 
plete our search for the minimum and maximum of the original sequence, we 
must find the minimum of the first subsequence and the maximum of the sec- 
ond. By our previous result, each of these searches requires $ comparisons. 
Thus the entire process of splitting and two searches requires 9 + 29 = y 
comparisons, or li times that required for the minimum or maximum alone. 

Can we further reduce this factor? What if we divide the original se- 

quence into adjacent quartets, choosing the minimum and maximum of the 
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four? The splitting would then cost four comparisons per quartet, or N 
comparison altogether, and then two $ searches must be carried out. Thus 
we require N + 2: and a factor of l$ is still needed. Indeed, after a little 
reflection, the reader will reach the conclusion that no further improvement 
is possible. This is because the new problems of finding only the minimum 
or maximum of a subsequence are simpler than the original problem. 

When a problem can be reduced recursively to subproblems similar to the 
original, the process may be repeated to attain yet further improvement. We 
now discuss an example where such recursive repetition is possible. Consider 
multiplying two (N+ 1)-digit numbers A and B to get a product C using long 
multiplication (which from Section 6.8 we already know to be a convolution). 

AN AN-~ *a* Al A0 

BN BN-~ *** B1 Bo 
BOAN BoAN-~ -0 * BoAl BoAo 

&AN &AN-I . . . &Ao 

BNAN a*- BN& BNAO 

c5’N -** cN+l CN CN-1 *” cl CO 

Since we must multiply every digit in the top number by every digit in 
the bottom number, the number of one-digit multiplications is N2. You are 
probably used to doing this for decimal digits, but the same multiplication 
algorithm can be utilized for N-bit binary numbers. The hardware-level 
complexity of straightforward multiplication of two N-bit numbers is pro- 
portional to N2. 

Now assume N is even and consider the left $ digits and the right G 
digits of A and B separately. It does not require much algebraic prowess to 
convince oneself that 

A = AL2+ +AR 

B = BL2+ +BR (14.1) 

C = ALBUMS + (ALBR + ARBL)2+ + ARBR 

= ALB~(~~ + 23) + (AL - AR)(B~ - BL)2+ + ARBR(2+ + 1) 

involving only three multiplications of T-length numbers. Thus we have 
reduced the complexity from N2 to 3( 9)” = iN2 (plus some shifting and 
adding operations). This is a savings of 25%, but does not reduce the asymp- 
totic form of the complexity from O(N2). However, in this case we have only 
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just begun! Unlike for the previous example, we have reduced the original 
multiplication problem to three similar but simpler multiplication problems! 

We can now carry out the three 
similarly (assuming that $ 

$-bit multiplications in equation (14.1) 
is still even) and continue recursively. Assum- 

ing N to have been a power of two, we can continue until we multiply 
individual bits. This leads to an algorithm for multiplication of two N-bit 
numbers, whose asymptotic complexity is O(N’O~Z(~)) M 0( N1*585). The 
slightly more sophisticated Toom-Cook algorithm divides the N-bit num- 
bers into more than two groups, and its complexity can be shown to be 

O(N log(N)2-). Th’ is is still not the most efficient way to multiply 
numbers. Realizing that each column sum of the long multiplication in equa- 
tion (14.1) can be cast into the form of a convolution, it turns out that the 
best way to multiply large numbers is to exploit the FFT! 

EXERCISES 

14.2.1 The reader who has implemented the Shell sort may have used a different 
method of choosing the pairs of elements to be compared. Rather than com- 
paring adjacent elements x21 and x21+1, it is more conventional to consider 
elements in the same position in the first and second halves the sequence, 
21, and x++k Write down a general form for the new sequence. How do we 
find the minimum and maximum elements now? These two ways of dividing 
a sequence into two subsequences are called decimation and partition. 

14.2.2 Devise an algorithm for finding the median of N numbers in O(N log N). 

14.2.3 The product of two two-digit numbers, ab and cd, can be written ab * cd = 
(10 * a + b) * (10 * c + d) = 1OOac + lO(ad + bc) + bd. Practice multiplying 
two-digit numbers in your head using this rule. Try multiplying a three-digit 
number by a two-digit one in similar fashion. 

14.2.4 We often deal with complex-valued 
as vectors in two ways, interleaved 

signals. Such signals can be represented 

qxl)s(xl), 9(x2), 3(x2), * ’ * qxIv>, ww) 

or separated 

Devise an efficient in-place algorithm changing between interleaved and sep- 
arated representations. Efficient implies that each element accessed is moved 
immediately to its final location. In-place means here that if extra memory is 
used it must be of constant size (independent of N). What is the algorithm’s 
complexity? 
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14.3 Derivation of the DIT FFT 

Without further ado, we turn to the derivation of the our first FFT algo- 
rithm. As mentioned in the previous section, we want to exploit the fact 
that it is better to compute many small DFTs than a single large one; as a 
first step let’s divide the sequence of signal values into two equal parts. 

There are two natural ways of methodically dividing a sequence into two 
subsequences, partition and decimation. By partition we mean separating 
the sequence at the half-way point 

{x0,21, ’ * ’ > XN-2, XN-1) 

J \ 

(x0, Xl, * * * x+-1 1 { XN ,*..xN-1) 

Low PARTITION HIGH PARTITION 

while decimation 
elements . 

is the separation of the even-indexed from odd-indexed 

(x0, Xl, * * * 9 XN-2, XN-1) 

J \ 

(20, x2, * - - XN-2) {xl, x3, l l l XN-1) 
EVEN DECIMATION ODD DECIMATION 

Put another way, partition divides the sequence into two groups according 
to the MSB of the index, while decimation checks the LSB. 

Either partition and decimation may be employed to separate the orig- 
inal signal into half-sized signals for the purpose of computation reduction. 
Decimation in time implies partition in frequency (e.g., doubling the time 
duration doubles the frequency resohtion), while partition in time signifies 
decimation in frequency. These two methods of division lead to somewhat 
different FFT algorithms, known conventionally as the Decimation In Time 
(DIT) and Decimation In Frequency (DIF) FFT algorithms. We will here 
consider radix-2 partition and decimation, that is, division into two equal- 
length subsequences. Other partition and decimation radixes are possible, 
leading to yet further FFT algorithms. 

We will now algebraically derive the radix-2 DIT algorithm. We will need 
the following trigonometric identities. 

w,N = 1 

w; = -1 (14.2) 

W2 N = WN 
v 
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The FFT’s efficiency results from the fact that in the complete DFT 
many identical multiplications are performed multiple times. As a matter of 
fact, in XI, and Xk+T N all the multiplications are the same, although every 

other addition has to be changed to a subtraction. 

N-l 

n=O 
N-l 

N-l 

= C Xn WEk (-l)n 
n=O 

The straightforward computation of the entire spectrum ignores this fact 
and hence entails wasteful recalculation. 

In order to derive the DIT algorithm we separate the sum in (4.32) into 
sums over even- and odd-indexed elements, utilizing the identities (14.2) 

N-l -- 
Y l 

XI, = c XnWEk = 
c( 

+ x2*+1 w?+ljk) 
n=O n=O -- ; l -- T l = c x,E wr + w; c x; wtk (14.3) 
n=O n=O 

where we have defined even and odd subsequences. 

xE = 
N 

n 32n for n = 0, 1, . . . 2 - 1 

0 x, = XZn+l 

After a moment of contemplation it is apparent that the first term is the 
DFT of the even subsequence, while the second is W& times the DFT of 
the odd subsequence; therefore we have discovered a recursive procedure for 
computing the DFT given the DFTs of the even and odd decimations. 

Recalling the relationship between XI, and Xk+$ we can immediately 
write 

-- Y l -- T l 
x,++ = c xf wgk - w; c x; wgk 

n=O 
2 n=O 2 

this being the connection between parallel elements in different partitions of 
the frequency domain. 
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Now let us employ the natural notation 

-- T l -- T l x,E= c x,0 = c 
n=O 

x,E wik 
n=O 

x,0 wik 
and write our results in the succinct recursive form 

XI, = x,E + w;x,o 
xk++ = xf-w$x,o 

(14.4) 

which is a computational topology known as a butterfly (for reasons soon to 
be apparent). In this context the W$ factor is commonly called a twiddle 
factor (for reasons that we won’t adequately explain). We note that the 
butterfly is basically an in-place computation, replacing two values with 
two new ones. Using our standard graphical notation we can depict equation 
(14.4) in the following way: 

which, not accidentally, is very similar to the two-point DFT diagram pre- 
sented in Section 12.2 (actually, remembering the second identity of (14.2) 
we recognize the two-point FFT as a special case of the DIT butterfly). Ro- 
tating the diagram by 90” and using some imagination clarifies the source 
of the name ‘butterfly’. We will soon see that the butterfly is the only oper- 
ation needed in order to perform the FFT, other than calculation (or table 
lookups) of the twiddle factors. 

Now, is this method of computation more efficient than the straightfor- 
ward one? Instead of (N - 1)2 multiplications and N(N - 1) additions for 
the simultaneous computation of XI, for all k, we now have to compute two 
g-point DFTs, one additional multiplication (by the twiddle factor), and 

two new additions, for a grand total of 2(+ - 1)2 + 1 = g - 2N + 3 multi- 

plications and 2 (6 ($ - 1)) + 2 = y - N + 2 additions. The savings may 

already be significant for large enough N! 
But why stop here? We are assuming that XF and Xf were computed 

by the straightforward DFT formula! We can certainly save on their compu- 
tation by using the recursion as well! For example, we can find Xf by the 
following butterfly. 

xp--y+&-xf 
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As in any recursive definition, we must stop somewhere. Here the obvious 
final step is the reduction to a two-point DFT, computed by the simplest 
butterfly. Thus the entire DFT calculation has been recursively reduced to 
computation of butterflies. 

We graphically demonstrate the entire decomposition for the special case 
of N = 8 in the series of Figures 14.1-14.4. The first figure depicts the needed 
transform as a black box, with ~0 through x7 as inputs, and X0 through X7 
as outputs. The purpose of the graphical derivation is to fill in this box. 

In Figure 14.2 we slightly rearrange the order of the inputs, and decom- 
pose the eight-point transform into two four-point transforms, using equa- 
tion (14.3). We then continue by decomposing each four-point transform 
into two two-point transforms in Figure 14.3, and finally substitute our dia- 
gram for the two-point butterfly in order to get Figure 14.4. The final figure 
simply rearranges the inputs to be in the same order as in the first figure. 
The required permutation is carried out in a black box labeled Bit Reversal; 
the explanation for this name will be given later. 

For a given N, how many butterflies must we perform to compute an 
N-point DFT? Assuming that N = 2m is a power of 2, we have 772 = log2 N 
layers of butterflies, with 9 butterflies to be computed in each layer. Since 
each butterfly involves one multiplication and two additions (we are slightly 
overestimating, since some of the multiplications are trivial), we require 
about $ log, N complex multiplications and N log:! N complex additions. 
We have thus arrived at the desired conclusion, that the complexity of the 
DIT FFT is 0 (N log N) (the basis of the logarithm is irrelevant since all 
logarithms are related to each other by a multiplicative constant). 

Similarly for radix-R DIT FFT, we would find logR N layers of g but- 
terflies, each requiring R - 1 multiplications. The improvement for radixes 
greater than two is often not worth the additional coding effort, but will be 
discussed in Section 14.4. 

The DIT FFT we have derived and depicted here is an in-place algorithm. 
At each of its m layers we replace the existing array with a new one of 
identical size, with no additional array allocation needed. There is one last 
technical problem related to this in-place computation we need to solve. 
After all the butterflies are computed in-place we obtain all the desired XI,, 
but they are not in the right order. In order to obtain the spectrum in 
the correct order we need one final in-place stage to unshuffle them (see 
Figure 14.5). 

To understand how the XI, are ordered at the end of the DIT FFT, 
note that the butterflies themselves do not destroy ordering. It is only the 
successive in-place decimations that change the order. We know that dec- 
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x0- -X0 

x1- -x1 

x2- -x2 

x3- 8-point -x3 

x4- DFT ---x4 

x5- --x5 

a- -X3 

x7- -x7 

Figure 14.1: An eight-point DFT. 

53 f ’ 

55 b 

4-point 
DFT 

Figure 14.2: An eight-point DFT, divided into two four-point FFTs. 
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a-point 
DFT 

2-point 
DFT 

t -’ w- 

Figure 14.3: An eight-point DFT, divided into four two-point FFTs. 

Figure 14.4: The full eight-point radix-2 DIT DFT. 
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x0 - 

x3 = 

x4 : 

Bit 
Reversal 

26 = 

Figure 14.5: The full eight-point radix-2 DIT DFT, with bit reversal on inputs. 

imation uses the LSB of the indices to decide how to divide the sequence 
into subsequences, so it is only natural to investigate the effect of in-place 
decimation on the binary representation of the indices. For example, for 24 
element sequences, there are four stages, the indices of which are permuted 
as follows. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 

0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15 
0000 0010 0100 0110 1000 1010 1100 1110 0001 0011 0101 0111 1001 1011 1101 1111 

0 4 8 12 2 6 10 14 1 5 9 13 3 7 11 15 
0000 0100 1000 1100 0010 0110 1010 1110 0001 0101 1001 1101 0011 0111 1011 1111 

0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15 
0000 1000 0100 1100 0010 1010 0110 1110 0001 1001 0101 1101 0011 1011 0111 1111 

Looking carefully we observe that the elements of the second row can be 
obtained from the matching ones of the first by a circular left shift. Why is 
that? The first half of the second row, 0246. . ., is obtained by an arithmetic 
left shift of the first row elements, while the second half is identical except 
for having the LSB set. Since the second half of the first row has the MSB 
set the net effect is the observed circular left shift. 

The transition from second to third row is a bit more complex. Elements 
from the first half and second half of the second row are not intermingled, 
rather are separately decimated. This corresponds to clamping the LSB and 
circularly left shifting the more significant bits, as can be readily verified 
in the example above. Similarly to go from the third row to the fourth we 
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clamp the two least significant bits and circularly shift the rest. The net 
effect of the m stages of in-place decimation of a sequence of length 2m is 
bit reversal of the indices. 

In order to unshuffle the output of the DIT FFT we just need to perform 
an initial stage of bit reversal on the xn, as depicted in Figure 14.5. Although 
this stage contains no computations, it may paradoxically consume a lot of 
computation time because of its strange indexing. For this reason many 
DSP processors contain special addressing modes that facilitate efficient 
bit-reversed access to vectors. 

EXERCISES 

14.3.1 Draw the flow diagram for the 16-point DIT FFT including bit reversal. 
(Hint: Prepare a large piece of paper.) 

14.3.2 Write an explicitly recursive program for computation of the FFT. The main 
routine FFT(N ,X> should first check if N equals 2, in which case it replaces 
the two elements of X with their DFT. If not, it should call FFT(N/2, Y) as 
needed. 

14.3.3 Write a nonrecursive DIT FFT routine. The main loop should run m = 
log, N times, each time computing 2 J!L butterflies. Test the routine on sums 
of sinusoids. Compare the run time of this routine with that of N straight- 
forward DFT computations. 

14.3.4 Rather than performing bit reversal as the first stage, we may leave the inputs 
and shuffle the outputs into the proper order. Show how to do this for an 
eight-point signal. Are there any advantages to this method? 

14.3.5 Write an efficient high-level-language routine that performs bit reversal on 
a sequence of length N = 2m. The routine should perform no more than N 
element interchanges, and use only integer addition, subtraction, comparison, 
and single bit shifts. 

14.4 Other Common FFT Algorithms 

In the previous section we saw the radix-2 DIT algorithm, also known as 
the Cooley-Tukey algorithm. Here we present a few more FFT algorithms, 
radix-2 DIF, the prime factor algorithm (PFA), non-power-of-two radixes, 
split-radix, etc. Although different in details, there is a strong family re- 
semblance between all these algorithms. All reduce the N2 complexity of 
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the straightforward DFT to N log N by restructuring the computation, all 
exploit symmetries of the kVkk, and all rely on the length of the signal N 
being highly composite. 

First let us consider the decimation in frequency (DIF) FFT algorithm. 
The algebraic derivation follows the same philosophy as that of the DIT. 

We start by partitioning the time sequence, into left and right subsequences 

x; = xn 

XR n = X n+$ 

and splitting the DFT sum into two sums. 

N-l 

XI, = c XnWEk = 
n=O 

-- Y l N-l 

c 

kE 
XnWEk + C XnWzkWN2 

n=O N n=- 2 

-- : l 

N 
for 72 = 0, 1, . . . y - 1 

-- 
T  l = c x; wgk + c x,R WEk 

n=O n=O 

(14.5) 

1 Now let’s compare the even and odd XI, (decimation in the frequency ao- 
main). Using the fact that Wi = W+ 

-- i l 
x2k = CC 

n=O 

x,L wtk + x,R w;k W,““) 

-- 
T l 

x2k+l = C( 
n=O 

x,L W$k + xf wtk Wjyk) WE 

and then substituting WkN = 1 and Wj = -1 we find 

-- Y l 
x2k = c (x,” + x,“) qk 

n=O 

-- 
: l 

X2k+l = C( 
L 

xn - 
n=O 

x,“) wtk w;;: 

which by linearity of the DFT gives the desired expression. 

X2k = (XL + m 

X2k+l = (x: - x,R>w; 

(14.6) 
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Just as for the DIT we found similarity between Fourier components in 
different frequency partitions, for DIF we find similarity between frequency 
components that are related by decimation. 

It is thus evident that the DIF butterfly can be drawn 

which is different from the DIT butterfly, mainly in the position of the 
twiddle factor. 

x0 x0 = . ‘, x0 

x4 = = Xl 

- x2 

t- 
x6 

I-- x7 
I I 

Figure 14.6: Full eight-point radix-2 DIF DFT, with bit reversal on outputs. 

We leave as an exercise to complete the decomposition, mentioning that 
once again bit reversal is required, only this time it is the outputs that need 
to be bit reversed. The final eight-point DIF DFT is depicted in Figure 14.6. 

Next let’s consider FFT algorithms for radixes other than radix-2 in more 
detail, the most important of which is radix-4. The radix-4 DIT FFT can 
only be used when N is a power of 4, in which case, of course, a radix-2 al- 
gorithm is also applicable; but using a higher radix can reduce the computa- 
tional complexity at the expense of more complex programming. The deriva- 
tion of the radix-4 DIT FFT is similar to that of the radix-2 algorithm. The 
original sequence is decimated into four subsequences z4j, z4j+r, ~4j+2, z4j+3 

(for j = 0.. .4 - l), each of which is further decimated into four subsubse- 
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quences, etc. The basic ‘butterfly’ is based on the four-point DFT 

x(-j = x0 + Xl + x2 + 23 

X1 = 20 - izr - x2 + ix3 
x2 = x0 - Xl + x2 - 23 

(14.7) 

x3 = X0 + izl - x2 - ix3 

which graphically is 

X0 

Xl 

x2 

x3 

where we have employed two ad-hoc short-hand notations, namely that a 
line above an arrow means multiplication by - 1, while a line before an 
arrow means multiplication by i. We see that the four-point DFT requires 
12 complex additions but no true multiplications. In fact only the radix- 
2 and radix-4 butterflies are completely multiplication free, and hence the 
popularity of these radixes. 

Now if we compare this butterfly with computation of the four-point 
DFT via a radix-2 DIT 

X0 

Xl 

x2 

x3 

we are surprised to see that only eight complex additions and no multipli- 
cations are needed. Thus it is more efficient to compute a four-point DFT 
using radix-2 butterflies than radix-4! However, this does not mean that for 
large N the radix-2 FFT is really better. Recall that when connecting stages 
of DIT butterflies we need to multiply half the lines with twiddle factors, 
leading to 0( g log2 N) multiplications. Using radix-4 before every stage we 
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multiply three-quarters of the lines by nontrivial twiddle factors, but there 
are only log4 N = i log2 N stages, leading to g log, N multiplications. So a 
full radix-4 decomposition algorithm needs somewhat fewer multiplications 
than the radix-2 algorithm, and in any case we could compute the basic 
four-point DFT using radix-2 butterflies, reducing the number of additions 
to that of the radix-2 algorithm. 

Of course a radix-4 decomposition is only half as applicable as a radix-2 
one, since only half of the powers of two are powers of four as well. However, 
every power of two that is not a power of four is twice a power of four, so 
two radix-4 algorithms can be used and then combined with a final radix-2 
stage. This is the called the FFT42 routine. Similarly, the popular FFT842 
routine performs as many efficiently coded radix-8 (equation (4.52)) stages 
as it can, finishing off with a radix-4 or radix-2 stage as needed. 

Another trick that combines radix-2 and radix-4 butterflies is called the 
split-radix algorithm. The starting point is the radix-2 DIF butterfly. Recall 
that only the odd-indexed Xsk+r required a twiddle factor, while the even- 
indexed Xzk did not. Similarly all even-indexed outputs of a full-length 2m 
DIF FFT are derivable from those of the two length 2m-1 FFTs without 
multiplication by twiddle factors (see Figure 14.6), while the odd-indexed 
outputs require a twiddle factor each. So split-radix algorithms compute 
the even-indexed outputs using a radix-2 algorithm, but the odd-indexed 
outputs using a more efficient radix-4 algorithm. This results in an unusual 
‘L-shaped’ butterfly, but fewer multiplications and additions than any of the 
standard algorithms. 

For lengths that are not powers of two the most common tactic is to use 
the next larger power of two, zero-padding all the additional signal points. 
This has the definite advantage of minimizing the number of FFT routines 
we need to have on hand, and is reasonably efficient if the zero padding is 
not excessive and a good power-of-two routine (e.g., split-radix or FFT842) 
is used. The main disadvantage is that we don’t get the same number of 
spectral points as there were time samples. For general spectral analysis this 
may be taken as an advantage since we get higher spectral resolution, but 
some applications may require conservation of the number of data points. 

Moreover, the same principles that lead us to the power-of-two FFT 
algorithms are applicable to any N that is not prime. If N = Rm then radix- 
R algorithms are appropriate, but complexity reduction is possible even for 
lengths that are not simple powers. For example, assuming N = Nl N2 we 
can decompose the original sequence of length N into N2 subsequences of 
length Nr. One can then compute the DFT of length N by first computing 
N2 DFTs of length Nr, multiplying by appropriate twiddle factors, and 
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finally computing Nl DFTs of length NQ. Luckily these computations can 
be performed in-place as well. Such algorithms are called mixed-radix FFT 
algorithms. When Nr and N2 are prime numbers (or at least have no common 
factors) it is possible to eliminate the intermediate step of multiplication by 
twiddle factors, resulting in the prime factor FFT algorithm. 

An extremely multiplication-efficient prime factor algorithm was devel- 
oped by Winograd that requires only O(N) multiplications rather than 
0( N log N), at the expense of many more additions. However, it cannot 
be computed in-place and the indexing is complex. On DSPs with pipelined 
multiplication and special indexing modes (see Chapter 17) Winograd’s FFT 
runs slower than good implementations of power-of-two algorithms. 

EXERCISES 

14.4.1 Complete the derivation of the radix-2 DIF FFT both algebraically and 
graphically. Explain the origin of the bit reversal. 

14.4.2 Redraw the diagram of the eight-point radix-2 DIT so that its inputs are 
in standard order and its outputs bit reversed. This is Cooley and Tukey’s 
original FFT! How is this diagram different from the DIF? 

14.4.3 Can a radix-2 algorithm with both input and output in standard order be 
performed in-place? 

14.4.4 In addition to checking the LSB (decimation) and checking the MSB (par- 
tition) we can divide sequences in two by checking other bits of the binary 
representation of the indices. Why are only DIT and DIF FFT algorithms 
popular? Design an eight-point FFT based on checking the middle bit. 

14.4.5 A radix-2 DIT FFT requires a final stage of bit reversal. What is required 
for a radix-4 DIT FFT? Demonstrate this operation on the sequence 0. . .63. 

14.4.6 Write the equations for the radix-8 DFT butterfly. Explain how the FFT842 
algorithm works. 

14.4.7 Filtering can be performed in the frequency domain by an FFT, followed by 
multiplying the spectrum by the desired frequency response, and finally an 
IFFT. Do we need the bit-reversal stage in this application? 

14.4.8 Show how to compute a 15-point FFT by decimating the sequence into five 
subsequences of length three. First express the time index n = 0. . .14 as 
n = 3ni + n2 with n1 = 0, 1,2,3,4 and n2 = 0, 1,2 and the frequency index 
in the opposite manner k = ICI + 5k2 with ICI = 0, 1,2 and Cc2 = 0, 1,2 (these 
are called inclez maps). Next rewrite the FFT substituting these expressions 
for the indices. Finally rearrange in order to obtain the desired form. What is 
the computational complexity? Compare with the straightforward DFT and 
with the 16-point radix-2 FFT. 
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14.4.9 Research the prime factor FFT. How can the 15-point FFT be computed 
now? How much complexity reduction is obtained? 

14.4.10 Show that if N = IIni then the number of operations required to perform 
the DFT is about (Eni)(IIn,). 

14.5 The Matrix Interpretation of the FFT 

In Section 4.9 we saw how to represent the DFT as a matrix product. For 
example, we can express the four-point FFT of equation (14.7) in the matrix 
form 

(g)=(/; -j -j(;z) 

by using the explicit matrix given in (4.51). 
Looking closely at this matrix we observe that rows 0 and 2 are similar, 

as are rows 1 and 3, reminding us of even/odd decimation! Pursuing this 
similarity it is not hard to find that 

which is a factoring of the DFT matrix into the product of two sparser 
matrices. So far we have not gained anything since the original matrix mul- 
tiplication X = W4x took 42 = 16 multiplications, while the rightmost - -- 
matrix times x takes eight and then the left matrix times the resulting vec- 
tor requires a-further eight. However, in reality there were in the original 
only six nontrivial multiplications and only four in the new representation. 

Now for the trick. Reversing the middle two columns of the rightmost 
matrix we find that we can factor the matrix in a more sophisticated way 
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that can be written symbolically as 

(14.8) 

where I2 is the two-by-two identity matrix, T2 is a two-by-two diagonal 

matrix yith twiddle factors as elements (@ z and IV; = -i), W2 is the 

two-point DFT matrix (butterfly), 02 is the two-by-two null matrix,nd C4 

is a four-by-four column permutatiz matrix. 
S 

This factorization has essentially reduced the four-dimensional DFT com- 
putation (matrix product) into two two-dimensional ones, with some rear- 
ranging and a bit reversal. This decomposition is quite general 

(14.9) 

where Tm is the diagonal m-by-m matrix with elements IVim, the twiddle 
factors for the 2m-dimensional DFT. 

Looking carefully at the matrices we recognize the first step in the de- 
composition of the DFT that leads to the radix-2 DIT algorithm. Reading 
from right to left (the way the multiplications are carried out) the column 
permutation Cm is the in-place decimation that moves the even-numbered 
elements up front; the two Wm are the half size DFTs, and the leftmost 
matrix contains the twiddle factors. Of course, we can repeat the process for 
the blocks of the middle matrix in order to recurse down to W2. - 

EXERCISES 

14.5.1 Show that by normalizing WN by -& we obtain a unitary matrix. What are 
Z 

its eigenvalues? 

14.5.2 Define pi to be the DFT matrix after bit-reversal permutation of its rows. 

Write d= mz and m.. Show that md can be written as follows. 
C C C 

To which FFT algorithm does this factorization correspond? 
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14.5.3 The Hadamard matrix of order 2 is defined to be 

1 1 
H2= 1 -1 C ( > 

and for all other powers of two we define by recursion. 

) 

Build the Hadamard matrices for m = 2 and 3. Show that they are symmetric 
and orthogonal. What is the inverse of Hsm ? 

14.5.4 Use the Hadamard matrix instead of W to define a transform. How many 
additions and multiplications are needed0 compute the transform? What are 
the twiddle factors? What about bit reversal? Can we compute the Hadamard 
transform faster by using higher radix algorithms? 

14.6 Practical Matters 

A few more details must be worked out before you are ready to properly com- 
pute FFTs in practice. For concreteness we discuss the radix-2 FFT (either 
DIT or DIF) although similar results hold for other algorithms. First, we 
have been counting the multiplications and additions but neglecting compu- 
tation of the twiddle factors. Repeatedly calling library routines to compute 
sine and cosine functions would take significantly more time than all the 
butterfly multiplications and additions we have been discussing. There are 
two commonly used tactics: storing the I4’II in a table, and generating them 
in real-time using trigonometric identities. 

By far the most commonly used method in real-time implementations is 
the use of twiddle factor tables. For a 16-point FFT we will need to store 
IV& = 1, W,l, = cos(g) - isin( . . . W,7, = cos(T) - isin( requir- 
ing 16 real memory locations. When these tables reside in fast (preferably 
‘on-chip’) memory and the code is properly designed, the table lookup time 
should be small (but not negligible) compared with the rest of the compu- 
tation. So the only drawback is the need for setting aside memory for this 
purpose. When the tables must be ‘off-chip’ the toll is higher, and the au- 
thor has even seen poorly written code where the table lookup completely 
dominated the run-time. 
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Where do the tables come from? For most applications the size N of the 
FFT is decided early on in the code design, and the twiddle factor tables can 
be precomputed and stored as constants. Many DSP processors have special 
‘table memory’ that is ideal for this purpose. For general-purpose (library) 
routines the twiddle factor tables are usually initialized upon the call to the 
FFT routine. On general-purpose computers one can usually get away with 
calling the library trigonometric functions to fill up the tables; but on DSPs 
one either stores only entire table in program code memory, or stores only 
WN itself and derives the rest of the required twiddle factors using 

or the equivalent trigonometric identities (A.23). When N is large numeric 
errors may accumulate while recuying, and it is preferable to periodically 

reseed the recursion (e.g., with W$ = -i). 
For those applications where the twiddle factors cannot be stored, they 

must be generated in real-time as required. Once again the idea is to know 
only WN and to generate WEk as required. In each stage we can arrange 
the butterfly computation so that the required twiddle factor exponents 
form increasing sequences of the form Wk, W$, WE, . . . . Then the obvious 
identity 

wgk = WN b-l>k w$ 

or its trigonometric equivalent can be used. This is the reason that general- 
purpose FFT routines, rather than having two loops (an outside loop on 
stages and a nested loop on butterflies), often have three loops. Inside the 
loop on stages is a loop on butterfEy groups (these groups are evident in 
Figures 14.5 and 14.6), each of which has an increasing sequence of twiddle 
factors, and nested inside this loop is the loop on the butterflies in the group. 

Another concern is the numeric accuracy of the FFT computation. Ev- 
ery butterfly potentially contributes round-off error to the calculation, and 
since each final result depends on log2 N butterflies in series, we expect 
this numeric error to increase linearly with log, N. So larger FFTs will be 
less accurate than smaller ones, but the degradation is slow. However, this 
prediction is usually only relevant for floating point computation. For fixed 
point processors there is a much more serious problem to consider, that of 
overflow. Overflow is always a potential problem with fixed point process- 
ing, but the situation is particularly unfavorable for FFT computation. The 
reason for this is not hard to understand. For simplicity, think of a single 
sinusoid of frequency $ so that an integer number of cycles fits into the 
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FFT input buffer. The FFT output will be nonzero only in the lath bin, and 
so all the energy of the input signal will be concentrated into a single large 
number. For example, if the signal was pure DC zn = 1, the only nonzero 
bin is Xe = C xn = N, and similarly for all other single-bin cases. It is thus 
clear that if the input signal almost filled the dynamic range of the fixed 
point word, then the single output bin will most certainly overflow it. 

The above argument may lead you to believe that overflow is only of 
concern in special cases, such as when only a single bin or a small number of 
bins are nonzero. We will now show that it happens even for the opposite case 
of white noise, when all the output bins are equal in size. Prom Parseval’s 
relation for the DFT (4.42) we know that (using our usual normalization), if 
the sum of the input squared is E2, then the sum of the output squared will 
be NE2. Hence the rms value of the output is greater by a factor fl than 
the input rms. For white noise this implies that the typical output value is 
greater than a typical input value by this factor! 

Summarizing, narrow-band FFT components scale like N while wide- 
band, noise-like components scale like fl. For large N both types of out- 
put bins are considerably larger than typical input bins, and hence there is 
a serious danger of overflow. The simplest way to combat this threat is to 
restrict the size of the inputs in order to ensure that no overflows can occur. 
In order to guarantee that the output be smaller than the largest allowed 
number, the input must be limited to k of this maximum. Were the input 
originally approximately full scale, we would need to divide it by N; result- 
ing in a scaling of the output spectrum by k as well. The problem with this 
prescaling is that crudely dividing the input signal by a factor of N increases 
the numeric error-to-signal ratio. The relative error, which for floating point 
processing was proportional to log2 N, becomes approximately proportional 
to N. This is unacceptably high. 

In order to confine the numeric error we must find a more sophisticated 
way to avoid overflows; this necessitates intervening with the individual com- 
putations that may overflow, namely the butterflies. Assume that we store 
complex numbers in two memory locations, one containing the real part and 
the other the imaginary part, and that each of these memories can only store 
real numbers between -1 and +l. Consider butterflies in the first stage of 
a radix-2 DIT. These involve only addition and subtraction of pairs of such 
complex numbers. The worst case is when adding complex numbers both of 
which are equal to +l, -1, +i or -i, where the absolute value is doubled. 
Were this worst case to transpire at every stage, the overall gain after log2 N 
stages would be 2@’ = N, corresponding to the case of a single spectral 
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line. For white noise xn we see from the DIT butterfly of equation (14.4) 

XI, = x,E + w;x,o 
xk++ = x,E - w;x,o 

that I&l2 + Ixk+q12 = 2 ( IX,E12 + IXF12) and if the expected values of 
1 

all Xk are the same (as for white random inputs) then each must be larger 
than the corresponding butterfly input by a factor of a. In such a case the 
overall gain is alog JV = fl as predicted above. 

It is obvious that the worst-case butterfly outputs can only be guaran- 
teed to fit in our memory locations if the input real and imaginary parts are 
limited in absolute value to i. However, the butterfly outputs, now them- 
selves between -1 and +l, become inputs to the next stage and so may 
cause overflow there. In order to eliminate this possibility, we must limit the 
original inputs to + in absolute value. Since the same analysis holds for the 
other butterflies, we reach the previous conclusion that the input absolute 
values must be prescaled by alog N ’ . =- 

Even with this prescaling we are &t completely safe. The worst case 
we discussed above was only valid for the first stage, where only additions 
and subtractions take place. For stages with nontrivial twiddle factors the 
increase can exceed even a factor of two. For example, consider a butterfly 
containing a rotation by 45”, Xf = 1, Xf = 1 + i. After rotation 1 + i 
becomes a, which is added to 1 to become 1 + 4 M 2.414. Hence, the 
precise requirement for the complex inputs is for their length not to exceed 
$. With this restriction, there will be no overflows. 

There is an alternative way of avoiding overflow at the second stage of 
butterflies. Rather than reducing the input to the first stage of butterflies 
to $ to + we can directly divide the input to the second butterfly by 2. For 
the radix-2 DIT case thiy translates to replacing our standard DIT by 

a failsafe butterfly computation that inherently avoids fixed point overflow. 
We can now replace all butterflies in the FFT with this failsafe one, resulting 
in an output spectrum divided by N, just as when we divided the input by N. 
The advantage of this method over input prescaling is that the inputs to each 
stage are always the maximum size they can be without being susceptible to 
overflow. With input prescaling only the last butterflies have such maximal 
inputs; all the previous ones receiving smaller inputs. 
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Due to the butterflies working with maximal inputs the round-off error is 
significantly reduced as compared with that of the input prescaling method. 
Some numeric error is introduced by each butterfly, but this noise is itself 
reduced by a factor of two by the failsafe butterfly; the overall error-to-signal 
ratio is proportional to fi. A further trick can reduce the numeric error 
still more. Rather than using the failsafe butterfly throughout the FFT, we 
can (at the expense of further computation) first check if any overflows will 
occur in the present stage. If yes, we use the failsafe butterfly (and save the 
appropriate scaling factor), but if not, we can use the regular butterfly. We 
leave as an exercise to show that this data-dependent prescaling, does not 
require double computation of the overflowing stages. 

EXERCISES 

14.6.1 We can reduce the storage requirements of twiddle factor tables by using 
trigonometric symmetries (A.22). What is the minimum size table needed 
for N = 8? In general? Why are such economies of space rarely used? 

14.6.2 What is the numeric error-to-signal ratio for the straightforward computation 
of the DFT, for floating and fixed point processors? 

14.6.3 In the text we discussed the failsafe prescaling butterfly. An alternative is 
the failsafe postscaling butterfly, which divides by two after the butterfly is 
computed. What special computational feature is required of the processor 
for postscaling to work? Explain data-dependent postscaling. How does it 
solve the problem of double computation? 

14.6.4 In the text we ignored the problem of the finite resolution of the twiddle 
factors. What do you expect the effect of this quantization to be? 

14.7 Special Cases 

The FFT is fast, but for certain special cases it can be made it even faster. 
The special cases include signals with many zeros in either the time or 
frequency domain representations, or with many values about which we do 
not care. We can save computation time by avoiding needless operations 
such as multiplications by zero, or by not performing operations that lead 
to unwanted results. You may think that such cases are unusual and not wish 
to expend the effort to develop special code for them, but certain special 
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signals often arise in practice. These most common applications cases are 
zero-padding, interpolation, zoom-FFT and real-valued signals. 

We have mentioned the use of zero-padding (adding zeros at the end of 
the signal) to force a signal to some useful length (e.g., a power of two) or 
to increase spectral resolution. It is obvious that some savings are obtain- 
able in the first FFT stage, since we can avoid multiplications with zero 
inputs. Unfortunately, the savings do not carry over to the second stage 
of either standard DIT or DIF, since the first-stage butterflies mix signal 
values from widely differing places. Only were the zero elements to be close 
in bit-reversed order would the task of pruning unnecessary operations be 
simple. 

However, recalling the time partitioning of equation (14.5) we can per- 
form the FFT of the fully populated left half and that of the sparse right half 
separately, and then combine them with a single stage of DIF butterflies. Of 
course the right half is probably not all zeros, and hence we can’t realize all 
the savings we would wish; however, its right half may be all-zero and thus 
trivial, and the combining of its two halves can also be accomplished in a 
single stage. 

Another application that may benefit from this same ploy is interpo- 
lation. Zero-padding in the time domain increased spectral resolution; the 
dual to this is that zero-padding in the frequency domain can increase time 
resolution (i.e., perform interpolation). To see how the technique works, as- 
sume we want to double the sampling rate, adding a new signal value in 
between every two values. Assume further that the signal has no DC com- 
ponent. We take the FFT of the signal to be interpolated (with no savings), 
double the number of points in the spectrum by zero-padding, and finally 
take the IFFT. This final IFFT can benefit from heeding of zeros; and were 
we to desire a quadrupling of the sampling rate, the IFFT’s argument would 
have fully three-quarters of its elements zero. 

Using a similar ploy, but basing ourselves in the time decimation of 
equation (14.3), we can save time if a large fraction of either the even- 
or odd-indexed signal values are zero. This would seem to be an unusual 
situation, but once again it has its applications. 

Probably the most common special case is that of real-valued signals. 
The straightforward way of finding their FFT is to simply use a complex 
FFT routine, but then many complex multiplications and additions are per- 
formed with one component real. In addition the output has to be Hermi- 
tian symmetric (in the usual indexation this means XN-~ = Xz) and so 
computation of half of the outputs is redundant. We could try pruning the 
computations, both from the input side (eliminating all operations involv- 
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ing zeros) and from the output side (eliminating all operations leading to 
unneeded results), but once again the standard algorithms don’t lend them- 
selves to simplification of the intermediate stages. Suppose we were to make 
the mistake of inputting the vector of 2N real signal values Ri into a com- 
plex N-point FFT routine that expects interleaved input (Rc, la, RI, 11, . . . 
where xi = Ri + i&). Is there any way we could recover? The FFT thinks 
that the signal is x0 = & + iRr, x1 = RQ + iR3, etc. and computes a single 
spectrum XI,. If the FFT routine is a radix-2 DIT the even and odd halves 
are not mixed until the last stage, but for any FFT we can unmix the FFTs 
of the even and odd subsequences by the inverse of that last stage of DIT 
butterflies. 

x,E = ;(xk + x;;-k> 

x,0 = ;(xk - x&-k) 

The desired FFT is now given (see equation (14.4)) by 

&=X,E + w,lE,xf k=O...N-1 

RI, = x,fi, - w&x,0_, k=N...2N-1 

and is clearly Hermitian symmetric. 
The final special case we mention is the zoom FFT used to zoom in on 

a small area of the spectrum. Obviously for a very high spectral resolution 
the uncertainty theorem requires an input with very large N, yet we are 
only interested in a small number of spectral values. Pruning can be very 
efficient here, but hard to implement since the size and position of the zoom 
window are usually variable. When only a very small number of spectral 
lines are required, it may be advantageous to compute the straight DFT, or 
use Goertzel’s algorithm. Another attractive method is mix the signal down 
so that the area of interest is at DC, low-pass filter and reduce the sampling 
rate, and only then perform the FFT. 

EXERCISES 

14.7.1 How can pruning be used to reduce the complexity of zero-padded signals? 
Start from the diagram of the eight-point DIF FFT and assume that only 
the first two points are nonzero. Draw the resulting diagram. Repeat with 
the first four points nonzero, and again with the first six points. 

14.7.2 How can the FFT of two real signals of length N be calculated using a single 
complex FFT of length N? 
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14.7.3 How can the FFT of four real symmetric (2~~~ = s,) signals of length N 
be calculated using a single complex FFT of length N? 

14.7.4 We are interested only in the first two spectral values of an eight-point FFT. 
Show how pruning can reduce the complexity. Repeat with the first four and 
six spectral values. 

14.8 Goertzel’s Algorithm 

The fast Fourier transform we have been studying is often the most efficient 
algorithm to use; however, it is not a panacea. The prudent signal processing 
professional should be familiar with alternative algorithms that may be more 
efficient in other circumst antes. 

In the derivation of the FFT algorithm our emphasis was on finding 
computations that were superfluous due to their having been previously 
calculated. This leads to significant economy when the entire spectrum is 
required, due to symmetries between various frequency components. How- 
ever, the calculation of each single Xh is not improved, and so the FFT is not 
the best choice when only a single frequency component, or a small number 
of components are needed. It is true that the complexity of the computation 
of any component must be at least 0(N), since every xn must be taken into 
account! However, the coefficient of the N in the complexity may be reduced, 
as compared with the straightforward calculation of equation (14.1). This is 
the idea behind Goertzel’s algorithm. 

There are many applications when only a single frequency component, or 
a small number of components are required. For example, telephony signal- 
ing is typically accomplished by the use of tones. The familiar push-button 
dialing employs a system known as Dual Tone Multiple Frequency (DTMF) 
tones, where each row and each column determine a frequency (see figure 
14.7). For example, the digit 5 is transmitted by simultaneously emitting 
the two tones L2 and H2. To decode DTMF digits one must monitor only 
eight frequencies. Similarly telephone exchanges use a different multifre- 
quency tone system to communicate between themselves, and modems and 
fax machines also use specific tones during initial stages of their operation. 

One obvious method of decoding DTMF tones is to apply eight band- 
pass filters, calculate the energy of their outputs, pick the maximum from 
both the low group and the high group, and decode the meaning of this 
pair of maxima as a digit. That’s precisely what we suggest, but we propose 
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Hl H2 H3 H4 

Ll- 

L2- 

L3- 

L4- 

Tone 1 Frequency (Hz) 

‘;I 

1 H4 1 1633 1 

Figure 14.7: The DTMF telephony signaling method. (Note: The A, B, C, and D tones 
are not available on the standard telephone, being reserved for special uses.) 

using Goertzel’s DFT instead of a band-pass filter. Of course we could use a 
regular FFT as a bank of band-pass filters, but an FFT with enough bins for 
the required frequency resolution would be much higher in computational 
complexity. 

When we are interested only in a single frequency component, or a small 
number of them that are not simply related, the economies of the FFT are 
to no avail, and the storage of the entire table of trigonometric constants 
wasteful. Assuming all the required WN nk to be precomputed, the basic DFT 
formula for a single XI, requires N complex multiplications and N - 1 com- 
plex additions to be calculated. In this section we shall assume that the xn 
are real, so that this translates to 2N real multiplications and 2(N - 1) real 
additions. 

Recalling the result of exercise 4.7.2, we need only know Wh and calcu- 
late the other twiddle factors as powers. In particular, when we are interested 

in only the kth spectral component, we saw in equation (4.55) that the DFT 

becomes a polynomial in W E Wk E e-‘F. 

N-l 

& = 
c 

XnWEk = x0 + Xlw + X2w2 + . . s XN-lWN-l 
n=O 

This polynomial is best calculated using Horner’s rule 

& = ’ ’ ’ (XN-1w + 2N4)w + . . . +x2) w+x1) w+xo 

which can be written as a recursion. 
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Given: xn for n t O...N-1 

PN-1 + XN-1 

for 72 t N - 1 down to 0 

8-h + Pn+lW + Xn 

Xk c PO 

We usually prefer recursion indices to run in ascending order, and to do 
this we define V = W-l = W$ - e+iq. Since VN = 1 we can write 

N-l 

xk = 
c 

xnvN-n = x()vN + xlvN-l + . . . + xN-2v2 + XN-lv 

n=O 

which looks like a convolution. Unfortunately the corresponding recursion 
isn’t of the right form; by multiplying & by a phase factor (which won’t 
effect the squared value) we get 

xi = xOvN-l + xlvN-2 + . . . + 32N4V + LEN-1 
which translates to the following recursion. 

Given: xn for n t O...N-1 

PO + x0 
for n t 1 to N- 1 

pn + P,-1v + xn 
XL + P&l 

This recursion has an interesting geometric interpretation. The complex 
frequency component & can be calculated by a sequence of basic N - 1 
moves, each of which consists of rotating the previous result by the angle 
y and adding the new real xn. 

Each rotation is a complex multiply, contributing either 4(N - 1) real 
multiplications and 2( N - 1) real additions or 3(N - 1) and 5(N - 1) re- 
spectively. The addition of a real xn contributes a further (N - 1) additions, 
We see that the use of the recursion rather than expanding the polynomial 
has not yet saved any computation time. This is due to the use of complex 
state variables P. Were the state variables to be real rather than complex< 
we would save about half the multiplies. We will now show that the com- 
plex state variables can indeed be replaced by real ones, at the expense oj 
introducing another time lag (i.e., recursion two steps back). 

Since we are assuming that x, are real, we see from our basic recursior 
step Pn + P,-IV + xn that Pn - P,-IV must be real at every step. 
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We can implicitly define a sequence Qn as follows 

pn = Qn - WQn--l (14.10) 

and will now show that the Q are indeed real-valued. Substituting into the 
recursion step 

pn + Xn + Pn-1V 

Qn - W&n-l + xn + (Qn-1 - W&n-2) V 

Qn + xn + (V + W)Qn-1 + (WV)Qn-2 
Qn + xn + A&n-l - Qn-2 

where A s v + w  = 2cos(9 ). Since the inputs xn are real and A is real, 
assuming the Qs start off real (and we can start with zero) they remain real. 

The new algorithm is: 

Given: xn for n=O...N-1 

Q-2 + 0, Q -1 + 0 

Qo + x0 
for n t 1 to N- 1 

Qn + xn + A&n-l - Qn-2 

xf, + QN-I - WQN-=! 

and the desired energy 

l&cl2 = 9%~1 + Q&4 - AQN-&N-S 

must be computed at the end. This recursion requires only a single frequency- 
dependent coefficient A and requires keeping two lags of Q. Computationally 
there is only a single real multiplication and two real additions per iteration, 
for a total of N - 1 multiplications and 2(N - 1) additions. 

There is basically only one design parameter to be determined before 
using Goertzel’s algorithm, namely the number of points N. Goertzel’s al- 
gorithm can only be set up to detect frequencies of the form f = fifs where 
fs is the sampling frequency; thus selecting larger N allows finer resolution 
in center frequencies. In addition, as we shall see in the exercises, larger N 
implies narrower bandwidth as well. However, larger N also entails longer 
computation time and delay. 
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EXERCISES 

14.8.1 Since Goertzel’s algorithm is equivalent to the DFT, the power spectrum 

response (for w  = 2&/N) is P(k) = Show that the half 
power point is at 0.44, i.e., the half power‘ bandwidth is 0.88 bin, where each 
bin is simply $. What is the trade-off between time accuracy and frequency 
accuracy when using Goertzel’s algorithm as a tone detector? 

14.8.2 DTMF tones are allowed to be inaccurate in frequency by 1.5%. What would 
be the size of an FFT that has bins of about this size? How much computation 
is saved by using Goertzel’s algorithm? 

14.8.3 DTMF tones are used mainly by customers, while telephone companies use 
different multitone systems for their own communications. In North America, 
telephone central offices communicate using MF trunk tones 700, 900, 1100, 
1300, 1500, 1700, 2600 and 3700 Hz, according to the following table. 

14.8.4 

Tone 1 2 3 I 4 5 6 
Frequencies 700+900 700+1100 900+1100 700+1300 900+1300 1100+1300 

Tone 7 8 9 0 KP ST 
Frequencies 700+ 1500 900+ 1500 1100+1500 1300+1500 1 1100+1700 1500+1700 

All messages start with KP and end with ST. Assuming a sampling rate of 8 
KHz, what is the minimum N that exactly matches these frequencies? What 
will the accuracy (bandwidth) be for this N? Assuming N is required to be 
a power of two, what error will be introduced? 

Repeat the previous question for DTMF tones, which are purposely chosen to 
be nonharmonically related. The standard requires detection if the frequen- 
cies are accurate to within 51.5% and nonoperation for deviation of 53.5% 
or more. Also the minimal on-time is 40 milliseconds, but tones can be trans- 
mitted at a rate of 10 per second. What are the factors to be considered when 
choosing N? 

14.9 FIFO Fourier Transform 

The FFT studied above calculates the spectrum once; when the spectrum 
is required to be updated a~ a function of time the FFT must be reapplied 
for each time shift. The worst case is when we wish to slide through the 
data one sample at a time, calculating DFT(Q . . . z&, DFT(zl . . . z~), 
etc. When this must be done M times, the complexity using the FFT is 
0 (MN log IV). For this case there is a more efficient algorithm, the FIFO 
Fourier transform, which instead of completely recalculating XI, for each 
shift, updates the previous one. 
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There is a well-known trick for updating a moving simple average 
N-l 

A, = c Xm+n 
n=O 

that takes computation time that is independent of N. The trick employs a 
FIFO of length N, holding the samples to be summed. First we wait until 
the FIFO is full, and then sum it up once to obtain Ao. Thereafter, rather 
than summing N elements, we update the sum using 

A m+l = Am + xm+N - xrn 

recursively. For example, the second sum Al is derived from A0 by removing 
the unnecessary x0 and adding the new term XN. 

Unfortunately, this trick doesn’t generalize to moving averages with co- 
efficients, such as general FIR filters. However, a slightly modified version 
of it can be used for the recursive updating of the components of a DFT 

m-i-N-1 

Xkm = c Xn WKk (14.11) 
n=m 

where in this case we do not ‘reset the clock’ as would be the case were we 
to call a canned FFT routine for each m. After a single initial DFT or FFT 
has been computed, to compute the next we need only update via the FIFO 
Fourier Transform (FIFOFT) 

Xkm+l = Xkm + (xm+N - xrn)wFk (14.12) 

requiring only two complex additions and one complex multiplication per 
desired frequency component. 

Let’s prove equation (14.12). Rewriting equation (14.11) for m and m + 1 

Xkm = 

Xkm+l = 

N-l 

c Xm+n Wkm+n)” 
n=O 

N-l 
(m+l+n)k 

C Xm+l+nWN 
n=O 

N 
(m+n)k 

C Xm+nWN 
n=l 

N-l 
(m+n)k 

c xm+nwN 
(m+N)k 

- xrnwEk + xm+NwN 
n=O 

and since Wlk = 1 we obtain equation (14.12). 
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When all N frequency components are required, the FIFOFT requires N 
complex multiplications and 2N complex additions per shift. For N > 4 this 
is less than the 6 log, N multiplications and N log2 N additions required by 
the FFT. Of course after N shifts we have performed O(N2) multiplications 
compared with 0( N log N) for a single additional FFT, but we have received 
a lot more information as well. 

Another, perhaps even more significant advantage of the FIFOFT is the 
fact that it does not introduce notable delay. The FFT can only be used 
in real-time processing when the delay between the input buffer being filled 
and FFT result becoming available is small enough. The FIFOFT is truly 
real-time, similar to direct computation of a convolution. Of course the first 
computation must somehow be performed (perhaps not in real-time), but 
in many applications we can just start with zeros in the FIFO and wait for 
the answers to become correct. The other problem with the FIFOFT is that 
numeric errors may accumulate, especially if the input is of large dynamic 
range. In such cases the DFT should be periodically reinitialized by a more 
accurate computation. 

EXERCISES 

14.9.1 For what types of MA filter coefficients are there FIFO algorithms with 
complexity independent of N? 

14.9.2 Sometimes we don’t actually need the recomputation for every input sample, 
but only for every T samples. For what r does it become more efficient to use 
the FFT rather than the FIFOFT? 

14.9.3 Derive a FIFOFT that uses N complex additions and multiplications per 
desired frequency component, for the case of resetting the clock. 

N-l 

xk, = c 
xm + nWEk 

n=O 

(14.13) 

14.9.4 The FIFOFT as derived above does not allow for windowing of the input 
signal before transforming. For what types of windows can we define a moving 
average FT with complexity independent of N? 
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Bibliographical Notes 

More detail on the use of FFT like algorithms for multiplication can be found in 
Chapter 4 of the second volume of Knuth (1361. 

An early reference to computation of Fourier transforms is the 1958 paper by 
Blackman and Tukey that was later reprinted as a book [19]. 

The radix-2 DIT FFT was popularized in 1965 by James Cooley of IBM and 
John Tukey of Princeton [45]. Cooley recounts in [43] that the complexity reduction 
idea was due to Tukey, and that the compelling applications were military, including 
seismic verification of Russian compliance with a nuclear test ban and long-range 
acoustic detection of submarines. Once Cooley finished his implementation, IBM 
was interested in publishing the paper in order to ensure that such algorithms did 
not become patented. The first known full application of the newly published FFT 
was by an IBM geophysicist named Lee Alsop who was studying seismographic 
records of an earthquake that had recently taken place in Alaska. Using 2048 data 
points, the FFT reduced the lengthy computation to seconds. 

Gordon Sande, a student of Tukey’s at Princeton, heard about the complexity 
reduction and worked out the DIF algorithm. After Cooley sent his draft paper 
to Tukey and asked the latter to be a co-author, Sande decided not to publish his 
work. 

Actually, radix-2 FFT-like algorithms have a long history. In about 1805 the 
great mathematician Gauss [177] used, but did not publish, an algorithm essentially 
the same as Cooley and Tukey’s two years before Fourier’s presentation of his 
theorem at the Paris Institute! Although eventually published posthumously in 
1866, the idea did not attract a lot of attention. Further historical information is 
available in [44]. 

The classic reference for special real-valued FFT algorithms is [248]. The split- 
radix algorithm is discussed in [57, 247, 561. 

The prime factor FFT was introduced in [137], based on earlier ideas (e.g. 
[240, 291) d an an in-place algorithm given in [30]. The extension to real-valued 
signals is given in [98]. 

Winograd’s prime factor FFT [283, 2841 is based on a reduction of a DFT of 
prime length N into a circular convolution of length N - 1 first published as a 
letter by Rader [214]. A good account is found in the McClellan and Rader book 
on number theory in DSP [166]. 

Goertzel’s original article is [77]. The MAFT is treated in [7, 2491. The zoom 
FFT can be found in [288]. 

A somewhat dated but still relevant review of the FFT and its applications can 
be found in [16] and much useful material including FORTRAN language sources 
came out of the 1968 Arden House workshop on the FFT, reprinted in the June 
1969 edition of the IEEE Transactions on Audio and Electroacoustics (AU-17(2) 
pp. 66-169). Many original papers are reprinted in [209, 1661). Modern books on 
the FFT include [26, 28,31, 2461 and Chapter 8 of [241]. Actual code can be found 
in the last reference, as well as in (311, [30, 247, 171, [41, 1981 etc. 
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Digital Filter Implementation 

In this chapter we will delve more deeply into the practical task of using 
digital filters. We will discuss how to accurately and efficiently implement 
FIR and IIR filters. 

You may be asking yourself why this chapter is important. We already 
know what a digital filter is, and we have (or can find) a program to find the 
coefficients that satisfy design specifications. We can inexpensively acquire 
a DSP processor that is so fast that computational efficiency isn’t a concern, 
and accuracy problems can be eliminated by using floating point processors. 
Aren’t we ready to start programming without this chapter? 

Not quite. You should think of a DSP processor as being similar to a jet 
plane; when flown by a qualified pilot it can transport you very quickly to 
your desired destination, but small navigation errors bring you to unexpected 
places and even the slightest handling mistake may be fatal. This chapter is 
a crash course in digital filter piloting. 

In the first section of this chapter we discuss technicalities relating to 
computing convolutions in the time domain. The second section discusses 
the circular convolution and how it can be used to filter in the frequency 
domain; this is frequently the most efficient way to filter a signal. Hard 
real-time constraints often force us to filter in the time domain, and so we 
devote the rest of the chapter to more advanced time domain techniques. 
We will exploit the graphical techniques developed in Chapter 12 in order 
to manipulate filters. The basic building blocks we will derive are called 
structures, and we will study several FIR and IIR structures. More complex 
filters can be built by combining these basic structures. 

Changing sampling rate is an important application for which special 
filter structures known as polyphuse filters have been developed. Polyphase 
filters are more efficient for this application than general purpose structures. 

We also deal with the effect of finite precision on the accuracy of filter 
computation and on the stability of IIR filters. 

569 
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15.1 Computation of Convolutions 

We have never fully described how to properly compute the convolution sum 
in practice. There are essentially four variations. Two are causal, as required 
for real-time applications; the other two introduce explicit delays. Two of the 
convolution procedures process one input at a time in a real-time-oriented 
fashion (and must store the required past inputs in an internal FIFO), the 
other two operate on arrays of inputs. 

First, there is the causal FIFO way 

L-l 

Yn = c al Xn-1 
l=O 

(15.1) 

which is eminently suitable for real-time implementation. We require two 
buffers of length L-one constant buffer to store the filter coefficients, and a 
FIFO buffer for the input samples. The FIFO is often unfortunately called 
the static bufler; not that it is static---it is changing all the time. The name 
is borrowed from computer languages where static refers to buffers that 
survive and are not zeroed out upon each invocation of the convolution 
procedure. We usually clear the static buffer during program initialization, 
but for continuously running systems this precaution is mostly cosmetic, 
since after L inputs all effects of the initialization are lost. Each time a 
new input arrives we push it into the static buffer of length L, perform 
the convolution on this buffer by multiplying the input values by the filter 
coefficients that overlap them, and accumulating. Each coefficient requires 
one multiply-and-accumulate (MAC) operation. A slight variation supported 
by certain DSP architectures (see Section 17.6), is to combine the push 
and convolve operations. In this case the place shifting of the elements in 
the buffer occurs as part of the overall convolution, in parallel with the 
computation. 

In equation (15.1) the index of summation runs over the filter coefficients. 
We can easily modify this to become the causal array method 

n 

Yn = c an-i Xi 

i=n-(L-l) 

(15.2) 

where the index i runs over the inputs, assuming these exist. This variation 
is still causal in nature, but describes inputs that have already been placed in 
an array by the calling application. Rather than dedicating further memory 
inside our convolution routine for the FIFO buffer, we utilize the existing 
buffering and its indexation. This variation is directly suitable for off-line 
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computation where we compute the entire output vector in one invocation. 
When programming we usually shift the indexes to the range 0 . . . L - 1 or 
1 L. . . . 

In off-line calculation there is no need to insist on explicit causality since 
all the input values are available in a buffer anyway. We know from Chapter 6 
that the causal filter introduces a delay of half the impulse response, a delay 
that can be removed by using a noncausal form. Often the largest filter 
coefficients are near the filter’s center, and then it is even more natural 
to consider the middle as the position of the output. Assuming an odd 
number of taps, it is thus more symmetric to index the L = 2X + 1 taps 
as (2-A.. .a(). . . a~, and the explicitly noncausal FIFO procedure looks like 
this. 

A 

Yn = c Wh-1 (15.3) 
1=-X 

The corresponding noncausal arraybased procedure is obtained, once again, 
by a change of summation variable 

n-l-X 

Yn = c an-i Xi (15.4) 
i=n-X 

assuming that the requisite inputs exist. This symmetry comes at a price; 
when we get the n th input, we can compute only the (n- X) th output. This 
form makes explicit the buffer delay of X between input and output. 

In all the above procedures, we assumed that the input signal existed 
for all times. Infinite extent signals pose no special challenge to real-time 
systems but cannot really be processed off-line since they cannot be placed 
into finite-length vectors. When the input signal is of finite time duration and 
has only a finite number N of nonzero values, some of the filter coefficients 
will overlap zero inputs. Assume that we desire the same number of outputs 
as there are inputs (i.e., if there are N inputs, n = 0,. . . N - 1, we expect N 
outputs). Since the input signal is identically zero for n < 0 and n 2 N, the 
first output, yo, actually requires only X + 1 multiplications, namely uoxo, 
~1x1, through U-XXX, since al through a~ overlap zeros. 

a A ax-1 . . . a2 al ~0 a-1 a-2 . . . a-A+1 a-A 
0 0 . . . 0 0 x0 Xl x2 . . . xx-1 xx Xx+1.. . 

Only after X shifts do we have the filter completely overlapping signal. 

aA aA- aA- . . . al a0 a-1 . . . a-A+1 a-A 

x0 Xl x2 . . . xx-1 xx xx+1 l ** X2X-l x2x 52x+1 **a 
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Likewise the last X outputs have the filter overlapping zeros as well. 

. . . a A ax-1 . . . a2 al a0 a-1 a-2 . . . a-x+1 a-A 

. . . XN-1 XN-2 . . . 2N-2 XN-1 XN 0 0 . . . 0 0 
The programming of such convolutions can take the finite extent into ac- 
count and not perform the multiplications by zero (at the expense of more 
complex code). For example, if the input is nonzero only for N samples 
starting at zero, and the entire input array is available, we can save some 
computation by using the following sums. 

min(N-1,n) min(N-l,n+X) 

Yn = c an-iXi = c an-iXi (15.5) 
i=max(O,n-(l-l)) i=max(O,n-A) 

The improvement is insignificant for N >> L. 
We have seen how to compute convolutions both for real-time-oriented 

cases and for off-line applications. We will see in the next section that these 
straightforward computations are not the most efficient ways to compute 
convolutions. It is almost always more efficient to perform convolution by 
going to the frequency domain, and only harsh real-time constraints should 
prevent one from doing so. 

EXERCISES 

15.1.1 Write two routines for array-based noncausal convolution of an input signal 
x by an odd length filter a that does not perform multiplications by zero. 
The routine convolve (N, L, x, a, y> should return an output vector y of 
the same length N as the input vector. The filter should be indexed from 0 
to L- 1 and stored in reverse order (i.e., a0 is stored in a [L-II ) . The output 
yi should correspond to the middle of the filter being above xi (e.g., the first 
and last outputs have about half the filter overlapping nonzero input signal 
values). The first routine should have the input vector’s index as the running 
index, while the second should use the filter’s index. 

15.1.2 Assume that a noncausal odd-order FIR filter is symmetric and rewrite the 
above routines in order to save multiplications. Is such a procedure useful for 
real-time applications? 

15.1.3 Assume that we only want to compute output values for which all the filter 
coefficients overlap observed inputs. How many output values will there be? 
Write a routine that implements this procedure. Repeat for when we want 
all outputs for which any inputs are overlapped. 



15.2. FIR FILTERING IN THE FREQUENCY DOMAIN 573 

15.2 FIR Filtering in the Frequency Domain 

After our extensive coverage of convolutions, you may have been led to be- 
lieve that FIR filtering and straightforward computation of the convolution 
sum as in the previous section were one and the same. In particular, you 
probably believe that to compute N outputs of an L-tap filter takes NL 
multiplications and N( L - 1) additions. In this section we will show how 
FIR filtering can be accomplished with significantly fewer arithmetic oper- 
ations, resulting both in computation time savings and in round-off error 
reduction. 

If you are unconvinced that it is possible to reduce the number of multi- 
plications needed to compute something equivalent to N convolutions, con- 
sider the simple case of a two-tap filter (a~, al). Straightforward convolution 
of any two consecutive outputs yn and yn+r requires four multiplications 
(and two additions). However, we can rearrange the computation 

Yn = al&a + aox,+ = a1(xn + Xn+l) - (a1 - ao)xn+1 

Yn+l = al&b+1 + aOXn+2 = ao(Xn+l + X,+2) + (al - Q~O)xn+l 

so that only three multiplications are required. Unfortunately, the number of 
additions was increased to four (al - a0 can be precomputed), but nonethe- 
less we have made the point that the number of operations may be decreased 
by identifying redundancies. This is precisely the kind of logic that led us 
to the FFT algorithm, and we can expect that similar gains can be had for 
FIR filtering. In fact we can even more directly exploit our experience with 
the FFT by filtering in the frequency domain. 

We have often stressed the fact that filtering a signal in the time domain 
is equivalent to multiplying by a frequency response in the frequency domain. 
So we should be able to perform an FFT to jump over to the frequency do- 
main, multiply by the desired frequency response, and then iFFT back to 
the time domain. Assuming both signal and filter to be of length N, straight 
convolution takes O(N2) operations, while the FFT (O(N log N)), multipli- 
cation (O(N)), and iFFT (once again 0( N log N)) clock in at 0 (N log N) . 
This idea is almost correct, but there are two caveats. The first problem 
arises when we have to filter an infinite signal, or at least one longer than 
the FFT size we want to use; how do we piece together the individual results 
into a single coherent output? The second difficulty is that property (4.47) 
of the DFT specifies that multiplication in the digital frequency domain cor- 
responds to circular convolution of the signals, and not linear convolution. 

As discussed at length in the previous section, the convolution sum con- 
tains shifts for which the filter coefficients extend outside the signal. There 



574 DIGITAL FILTER IMPLEMENTATION 

XN- 

il 
x2 

a0 

Figure 15.1: Circular convolution for a three-coefficient filter. For shifts where the index 
is outside the range 0.. . N - 1 we assume it wraps around periodically, as if the signal 
were on a circle. 

we assumed that when a nonexistent signal value is required, it should be 
taken to be zero, resulting in what is called linear convolution. Another 
possibility is circular convolution, a quantity mentioned before briefly in 
connection with the aforementioned property of the DFT. Given a signal 
with L values x0, x1 . . . XL-~ and a set of A4 coefficients ao, al . . . aM- 1 we 
defined the circular (also called cyclic) convolution to be 

Yl =a@xf c %-II x(l-m) mod L 

m 

where mod is the integer modulus operation (see appendix A.2) that always 
returns an integer between 0 and L - 1. Basically this means that when the 
filter is outside the signal range rather than overlapping zeros we wrap the 
signal around, as depicted in Figure 15.1. 

Linear and circular convolution agree for all those output values for which 
the filter coefficients overlap true signal values; the discrepancies appear 
only at the edges where some of the coefficients jut out. Assuming we have 
a method for efficiently computing the circular convolution (e.g., based on 

the FFT), can it somehow be used to compute a linear convolution? It’s not 
hard to see that the answer is yes, for example, by zero-padding the signal 
to force the filter to overlap zeros. To see how this is accomplished, let’s take 
a length-l signal x0 . . . XL- 1, a length M filter a0 . . . aM- 1, and assume that 
M < L. We want to compute the L linear convolution outputs ye . . . y~-i. 
The L - M + 1 outputs YM-1 through y~-r are the same for circular and 
linear convolution, since the filter coefficients all overlap true inputs. The 
other M - 1 outputs yo through PM-2 would normally be different, but if we 
artificially extend the signal by x-M+1 = 0, through x-r = 0 they end up 
being the same. The augmented input signal is now of length N = L+ M - 1, 
and to exploit the FFT we may desire this N to be a power of two. 
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It is now easy to state the entire algorithm. First we append M - 1 zeros 
to the beginning of the input signal (and possibly more for the augmented 
signal buffer to be a convenient length for the FFT). We similarly zero-pad 
the filter to the same length. Next we FFT both the signal and the filter. 
These two frequency domain vectors are multiplied resulting in a frequency 
domain representation of the desired result. A final iFFT retrieves N values 
yn, and discarding the first M - 1 we are left with the desired L outputs. 

If N is small enough for a single FFT to be practical we can compute 
the linear convolution as just described. What can be done when the input 
is very large or infinite? We simply break the input signal into blocks of 
length N. The first output block is computed as described above; but from 
then on we needn’t pad with zeros (since the input signal isn’t meant to be 
zero there) rather we use the actual values that are available. Other than 
that everything remains the same. This technique, depicted in Figure 15.2, 
is called the overlap save method, since the FFT buffers contain M - 1 input 
values saved from the previous buffer. In the most common implementations 
the M - 1 last values in the buffer are copied from its end to its beginning, 
and then the buffer is filled with N new values from that point on. An even 
better method uses a circular buffer of length L, with the buffer pointer 
being advanced by N each time. 

You may wonder whether it is really necessary to compute and then dis- 
card the first M - 1 values in each FFT buffer. This discarding is discarded 
in an alternative technique called overlap add. Here the inputs are not over- 
lapped, but rather are zero-padded at their ends. The linear convolution can 
be written as a sum over the convolutions of the individual blocks, but the 
first M - 1 output values of each block are missing the effect of the previ- 
ous inputs that were not saved. To compensate, the corresponding outputs 
are added to the outputs from the previous block that corresponded to the 
zero-padded inputs. This technique is depicted in Figure 15.3. 

If computation of FIR filters by the FFT is so efficient, why is straight- 
forward computation of convolution so prevalent in applications? Why do 
DSP processors have special hardware for convolution, and why do so many 
software filters use it exclusively? There are two answers to these questions. 
The first is that the preference is firmly grounded in ignorance and laziness. 
Straightforward convolution is widely known and relatively simple to code 
compared with overlap save and add. Many designers don’t realize that sav- 
ings in real-time can be realized or don’t want to code FFT, overlap, etc. 
The other reason is more fundamental and more justifiable. In real-time ap- 
plications there is often a limitation on delay, the time between an input 
appearing and the corresponding output being ready. For FFT-based tech- 
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Figure 15.2: Overlap save method of filtering in the frequency domain. The input signal 
zn is divided into blocks of length 15, which are augmented with M - 1 values saved from 
the previous block, to fill a buffer of length N = L + M - 1. Viewed another way, the 
input buffers of length N overlap. The buffer is converted to the frequency domain and 
multiplied there by N frequency domain filter values. The result is converted back into 
the time domain, M - 1 incorrect values discarded, and L values output. 
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Figure 15.3: Overlap add method of filtering in the frequency domain. The input signal 
x,, is divided into blocks of length L, to which are added M - 1 zeros to fill a buffer of 
length N = L + M - 1. This buffer is converted to the frequency domain and multiplied 
there by N frequency domain filter values. The result is converted back into the time 
domain, M - 1 partial values at the beginning of the buffer are overlapped and then added 
to the M - 1 last values from the previous buffer. 
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niques this delay is composed of two parts. First we have to fill up the signal 
buffer (and true gains in efficiency require the use of large buffers), resulting 
in bufer delay, and then we have to perform the entire computation (FFT, 
block multiplication, iFFT), resulting in algorithmic delay. Only after all 
this computation is completed can we start to output the yn. While the 
input sample that corresponds to the last value in a buffer suffers only the 
algorithmic delay, the first sample suffers the sum of both delays. For appli- 
cations with strict limitations on the allowed delay, we must use techniques 
where the computation is spread evenly over time, even if they require more 
computation overall. 

EXERCISES 

15.2.1 Explain why circular convolution requires specification of the buffer size while 
linear convolution doesn’t. Explain why linear convolution can be considered 
circular convolution with an infinite buffer. 

15.2.2 The circular convolution yc = aeze + alzl, yi = aizo + aczl implies four 
multiplications and two additions. Show that it can be computed with two 
multiplications and four additions by precomputing Go = 3 (a0 + ai), G1 = 
$<a0 - al), and for each 20, ~1 computing zo = ~0 + ~1 and ~1 = ~0 - ~1. 

15.2.3 Convince yourself that overlap save and overlap add really work by coding 
routines for straightforward linear convolution, for OA and for OS. Run all 
three and compare the output signals. 

15.2.4 Do you expect OA/OS 
forward convolution in 

numerically to be more or less 
the time domain? 

accurate than straight- 

15.2.5 Compare the number of operations per time required for filtering an infinite 
signal by a filter of length M, using straightforward time domain convolution 
with that using the FFT. What length FFT is best? When is the FFT method 
worthwhile? 

15.2.6 One can compute circular convolution using an algorithm designed for linear 
convolution, by replicating parts of the signal. By copying the L - 2 last 
values before ~0 (the cyclic prefix) and the L - 2 first values after ZN- 1 (the 
cyclic sufix), we obtain a signal that looks like this. 

070, x N-L+l,XN-L+2,*.*XN-2,XN-l, 

x0,x1, *. * XN-2,xN-1, 

x0, Xl, * * * XL-37 XL-29 f 0,o 

Explain how to obtain the desired circular convolution. 

15.2.7 Can IIR filtering be performed in the frequency domain using techniques 
similar to those of this section? What about LMS adaptive filtering? 
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15.3 FIR Structures 

In this section we return to the time domain computation of convolution of 
Section 15.1 and to the utilization of graphic techniques for FIR filtering 
commenced in Section 12.2. In the context of digital filters, graphic imple- 
mentations are often called structures. 

Figure 15.4: Direct form implementation of the FIR filter. This form used to be known 
as the ‘tapped delay line’, as it is a direct implementation of the weighted sum of delayed 
taps of the input signal. 

In Figure 12.5, reproduced here with slight notational updating as Fig- 
ure 15.4, we saw one graphic implementation of the linear convolution. This 
structure used to be called the ‘tapped delay line’. The image to be conjured 
up is that of the input signal being delayed by having to travel with finite 
velocity along a line, and values being tapped off at various points corre- 
sponding to different delays. Today it is more commonly called the direct 
form structure. The direct form implementation of the FIR filter is so preva- 
lent in DSP that it is often considered sufficient for a processor to efficiently 
compute it to be considered a DSP processor. The basic operation in the 
tapped delay line is the multiply-and-accumulate (MAC), and the number 
of MACs per second (i.e., the number of taps per second) that a DSP can 
compute is the universal benchmark for DSP processor strength. 

Figure 15.5: Thnsposed form implementation of the FIR filter. Here the present input 
zn is multiplied simultaneously by all L filter coefficients, and the intermediate products 
are delayed and summed. 
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Figure 15.6: Cascading simple filters. On the left the output y is created by filtering WI, 
itself the output of filtering x. On the right is the equivalent single filter system. 

Another graphic implementation of the FIR filter is the transposed struc- 
ture depicted in Figure 15.5. The most striking difference between this form 
and the direct one is that here the undelayed input xn is multiplied in par- 
allel by all the filter coefficients, and it is these intermediate products that 
are delayed. Although theoretically equivalent to the direct form the fact 
that the computation is arranged differently can lead to slightly different 
numeric results in practice. For example, the round-off noise and overflow 
errors will not be the same in general. 

The transposed structure can be advantageous when we need to partition 
the computation. For example, assume you have at your disposal digital filter 
hardware components that can compute L’ taps, but your filter specification 
can only be satisfied with L > L’ taps. Distributing the computation over 
several components is somewhat easier with the transposed form, since we 
need only provide the new input xn to all filter components in parallel, and 
connect the upper line of Figure 15.5 in series. The first component in the 
series takes no input, and the last component provides the desired output. 
Were we to do the same thing with the direct form, each component would 
need to receive two inputs from the previous one, and provide two outputs 
to the following one. 

However, if we really want to neatly partition the computation, the best 
solution would be to satisfy the filter specifications by cascading several 
filters in series. The question is whether general filter specifications can be 
satisfied by cascaded subfilters, and if so how to find these subfilters. 

In order to answer these questions, let’s experiment with cascading sim- 
ple filters. As the simplest case we’ll take the subfilters to depend on the 
present and previous inputs, and to have unity DC gain (see Figure 15.6). 

wn = axn + bxn-1 a+b=l 

Yn = Cwn + dwn-1 c+d=l (15.6) 

Substituting, we see that the two in series are equivalent to a single filter 
that depends on the present and two past inputs. 
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Yn = C(UXn + bXn--1) + d(UXn-1 + bXn-2) 

= acx, + (ad+b~)x,-.-~ + bdx,.e2 (15.7) 

= Ax, + Bx,-1 + CX~-2 

Due to the unity gain constraints the original subfilters only have one free 
parameter each, and it is easy to verify that the DC gain of the combined 
filter is unity as expected (A + B + C = 1). So we started with two free 
parameters, ended up with two free parameters, and the relationship from 
a, b, c, d to A, B, C is invertible. Given any unity DC gain filter of the form 
in the last line of equation (15.7) we can find parameters a, b, c, d such that 
the series connection of the two filters in equation (15.6) forms an equivalent 
filter. More generally, if the DC gain is nonunity we have four independent 
parameters in the cascade form, and only three in the combined form. This 
is because we have the extra freedom of arbitrarily dividing the gain between 
the two subfilters. 

This is one of the many instances where it is worthwhile to simplify 
the algebra by using the zT formalism. The two filters to be cascaded are 
described by 

Wn = (u+bz-l)x, 

Yn = (c+dz-‘)wn 

and the resultant filter is given by the product. 

Yn = (c + dz-‘)(a + bz-‘) xn 

= 
( 
UC + (ad + bc)z-’ + bdze2) xn 

= 
( 
A + Bz-’ + CzB2 xn > 

We see that the A, B, C parameters derived here by formal multiplication 
of polynomials in z-l are exactly those derived above by substitution of the 
intermediate variable wn. It is suggested that the reader experiment with 
more complex subfilters and become convinced that this is always the case. 

Not only is the multiplication of polynomials simpler than the substitu- 
tion, the zT formalism has further benefits as well. For example, it is hard 
to see from the substitution method that the subfilters commute, that is, 
had we cascaded 

vn = cxn + dxn-1 c+d=l 

Vn = awn + bwn-1 u+b=l 
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Figure 15.7: Cascade form implementation of the FIR filter. Here the input is filtered 
successively by M ‘second-order sections’, that is, simple FIR filters that depend on the 
present input and two past inputs. The term ‘second-order’ refers to the highest power of 
z -’ being two, and ‘section’ is synonymous with what we have been calling ‘subfilter’. If 
C m = 0 the section is first order. 

we would have obtained the same filter. However, this is immediately obvious 
in the zT formalism, from the commutativity of multiplication of polynomi- 
als. 

(c + cEz-l)(a + bz-l) = (a + bz-‘)(c + dz-l) 

Even more importantly, in the zT formalism it is clear that arbitrary filters 
can be decomposed into cascades of simple subfilters, called sections, by 
factoring the polynomial in zT. The fundamental theorem of algebra (see 
Appendix A.6) guarantees that all polynomials can be factored into linear 
factors (or linear and quadratic if we use only real arithmetic); so any filter 
can be decomposed into cascades of ‘first-order’ and ‘second-order’ sections. 

ho + h1z-l h() + h1z-l+ h2z-2 

The corresponding structure is depicted in Figure 15.7. 
The lattice structure depicted in Figure 15.8 is yet another implemen- 

tation that is built up of basic sections placed in series. The diagonal lines 
that give it its name make it look very different from the structures we 
have seen so far, and it becomes even stranger once you notice that the two 
coefficients on the diagonals of each section are equal. This equality makes 
the lattice structure numerically robust, because at each stage the numbers 
being added are of the same order-of-magnitude. 
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. . . 

. . . 

Figure 15.8: Lattice form implementation of the FIR filter. Here the input is filtered 
successively by M lattice stages, every two of which is equivalent to a direct form second- 
order section. 

In order to demonstrate that arbitrary FIR filters can be implemented 
as lattices, it is sufficient to show that a general second-order section can be. 
Then using our previous result that general FIR filters can be decomposed 
into second-order sections the proof is complete. A second-order section has 
three free parameters, but one degree of freedom is simply the DC gain. For 
simplicity we will use the following second-order section. 

Yn = Xn + hlxn-1 + h2xn-2 

A single lattice stage has only a single free parameter, so we’ll need two 
stages to emulate the second-order section. Following the graphic imple- 
mentation for two stages we find 

Yn = xn + hxn-1 + k2(klxn-l+ xn-2) 

= xn + kl(1 + k2)xn-l+ ksxn-2 

and comparing this with the previous expression leads to the connection 
between the two sets of coefficients (assuming h2 # -1). 

h = kl(l+ka) kl = & 
h2 = k2 k2 = h2 

EXERCISES 

15.3.1 Consider the L-tap FIR filter hu = 1, hi = X, h2 = X2,. , . hL-1 = XL-l. 
Graph the direct form implementation. How many delays and how many 
MACS are required? Find an equivalent filter that utilizes feedback. How 
many delays and arithmetic operations are required now? 

15.3.2 Why did we discuss series connection of simple FIR filter sections but not 
parallel connection? 
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15.3.3 We saw in Section 7.2 that FIR filters are linear-phase if they are either 
symmetric h-, = h, or antisymmetric h-, = -h,. Devise a graphic imple- 
mentation that exploits these symmetries. What can be done if there are an 
even number of coefficients (half sample delay)? What are the advantages of 
such a implementation? What are the disadvantages? 

15.3.4 Obtain a routine for factoring polynomials (these are often called polynomial 
root finding routines) and write a program that decomposes a general FIR 
filter specified by its impulse response h, into first- and second-order sections. 
Write a program to filter arbitrary inputs using the direct and cascade forms 
and compare the numeric results. 

15.4 Polyphase Filters 

The structures introduced in the last section were general-purpose (i.e., ap- 
plicable to most FIR filters you may need). In this section we will discuss 
a special purpose structure, one that is applicable only in special cases; 
but these special cases are rather prevalent, and when they do turn up the 
general-purpose implementations are often not good enough. 

Consider the problem of reducing the sampling frequency of a signal 
to a fraction & of its original rate. This can obviously be carried out by 
decimation by M, that is, by keeping only one sample out of each M and 
discarding the rest. For example, if the original signal sampled at fS is 

. . . X-12, X-11, X-10, X-9, X-8, X-7, X-6, X-5, 

X-4, X-3, X-2, X-l, x0, Xl, X2, X3, 

X4, x5, X6, X7, x0, x9, X10, X11, *a’ 

decimating by 4 we obtain a new signal yn with sampling frequency 4. 

Yn = . . . X-12, X-8, X-4, x0, X4, X8, l -- 

Of course 

Yn = . . . x-11, X-7, X-3, Xl, X5, xg, . . . 

Yn = l l l x-10, X-6, X-2, X2, X6, X10, * *. 

yn = l . . 
x-9, X-5, X-l, X3, X7, X11, l ’ * 

corresponding to different phases of the original signal, would be just as 
good. 
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Actually, just as bad since we have been neglecting aliasing. The original 
signal x can have energy up to $‘, while the new signal y must not have 
appreciable energy higher than A. In order to eliminate the illegal compo- 
nents we are required to low-pass filter the original signal before decimating. 
For definiteness assume once again that we wish to decimate by 4, and to 
use a causal FIR antialiasing filter h of length 16. Then 

wo = hoxo + hlxel + h2xv2 + h3xe3 + . . . + h15xs15 
Wl = hoxl + hlxo + f-w-1 + h3x-2 + . . . + h15x-14 
w2 = km + hm + h2xo + hzx-1 + . . . + h15x-13 (15.8) 

w3 = hox3 + hm + h2xl + h3xo + l . l + hisx-12 
w4 = hox4 + hlxs + h2x2 + h3x1 + . . . + h15x-ll 

but since we are going to decimate anyway 

yn = . . . w-12, ‘w-0, ‘w-4, wo, w4, w3, - * l 

we needn’t compute all these convolutions. Why should we compute wr, 
~2, or ws if they won’t affect the output in any way? So we compute only 

wo,w4,w,‘*~, each requiring 16 multiplications and 15 additions. 
More generally, the proper way to reduce the sample frequency by a 

factor of M is to eliminate frequency components over & using a low-pass 
filter of length L. This would usually entail L multiplications and additions 
per input sample, but for this purpose only L per output sample (i.e., only an 
average of h per input sample are really needed). The straightforward real- 
time implementation cannot take advantage of this savings in computational 
complexity. In the above example, at time 72 = 0, when x0 arrives, we need 
to compute the entire 16-element convolution. At time n = 1 we merely 
collect xi but need not perform any computation. Similarly for 72 = 2 and 
YL = 3 no computation is required, but when x4 arrives we have to compute 
another 16-element convolution. Thus the DSP processor must still be able 
to compute the entire convolution in the time between two samples, since 
the peak computational complexity is unchanged. 

The obvious remedy is to distribute the computation over all the times, 
rather than sitting idly by and then having to race through the convolution. 
We already know of two ways to do this; by partitioning the input signal or 
by decimating it. Focusing on we, partitioning the input leads to structuring 
the computation in the following way: 

wo = hoxo + hlx-1 + hp-2 + h3x-3 
+ h4x-4 + h5x-5 + h&L-6 + h7x-7 
t hgz-g t hgz-9 + box-lo + hx-11 
+ hx-12 + hw-. 13 + hx-14 + hw-15 
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Decimation implies the following order: 

wo = hoxo + h4z-4 + h8X-8 + h12x,12 
+ hlx-1 + h5x-5 + h9x-9 + hw-13 
+ hzx-2 + hjx-6 + hlox-lo + h14xv14 
+ hzx-3 + h7x-7 + hllx-ll + h15xw15 

In both cases we should compute only a single row of the above equations 
during each time interval, thus evenly distributing the computation over the 
M ‘time intervals. 

Now we come to a subtle point. In a real-time system the input signal 
x, will be placed into a buffer E. In order to conserve memory this buffer 
will usually be taken to be of length L, the length of the low-pass filter. The 
convolution is performed between two buffers of length L, the input buffer 
and the filter coefficient table; the coefficient table is constant, but a new 
input xn is appended to the input buffer every sampling time. 

In the above equations for computing wa the subscripts of xn are absolute 
time indices; let’s try to rephrase them using input buffer indices instead. 
We immediately run into a problem with the partitioned form. The input 
values in the last row are no longer available by the time we get around to 
wanting them. But this obstacle is easily avoided by reversing the order. 

wo = h12~--12 + hw--13 + h14xD14 + h15xs15 
+ h8X-8 + hgx-g + box-lo + he-11 
+ hx-4 + h5x-5 + hsX-6 + h7Xe7 
+ hoxo + hlx-1 + h2xs2 + h3xe3 

With the understanding that the input buffer updates from row to row, and 
using a rather uncommon indexing notation for the input buffer, we can now 
rewrite the partitioned computation as 

wo = h12E- 12 + hC3 + h&-l4 + h15Z15 
+ h&-g + &E--lo + hlo5s11 + hllE12 
+ h&-6 + h5E7 + h&-8 + h7Zg 
+ hoEe3 + hlZ4 + h2Z5 + h3%6 

and the decimated one as follows. 

wo = ho% 3 + h4L7 + h&l1 + h&-15 
+ hlS-3 + h5ZB7 + hgEmll + h13E15 
+ h2Z-3 + h&-7 + hloS-ll + h14E15 
+ h3Z- 3 + M-7 + hE--ll + h15Z15 
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Figure 15.9: The polyphase decimation filter. We depict the decimation of an input signal 
xn by a factor of four, using a polyphase filter. Each decimator extracts only inputs with 
index divisible by 4, so that the combination of delays and decimators results in all the 
possible decimation phases. hIk] for k = 0, 1,2,3 are the subfilters; h[‘l = (ho, hl , hz, ha), 
h[‘l = (hd, hg, he, h7), etc. 

While the partitioned version is rather inelegant, the decimated structure 
is seen to be quite symmetric. It is easy to understand why this is so. Rather 
than low-pass filtering and then decimating, what we did is to decimate and 
then low-pass filter at the lower rate. Each row corresponds to a different 
decimation phase as discussed at the beginning of the section. The low-pass 
filter coefficients are different for each phase, but the sum of all contributions 
results in precisely the desired full-rate low-pass filter. 

In the general case we can describe the mechanics of this algorithm as 
follows. We design a low-pass filter that limits the spectral components to 
avoid aliasing. We decimate this filter creating M subfilters, one for each 
of the M phases by which we can decimate the input signal. This set of M 
subfilters is called a polyphase filter. We apply the first polyphase subfilter 
to the decimated buffer; we then shift in a new input sample and apply 
the second subfilter in the same way. We repeat this procedure M times to 
compute the first output. Finally, we reset and commence the computation 
of the next output. This entire procedure is depicted in Figure 15.9. 

A polyphase filter implementation arises in the problem of interpolation 
as well. By interpolation we mean increasing the sampling frequency by an 
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integer factor N. A popular interpolation method is xero insertion, insert- 
ing N - 1 zeros between every two samples of the original signal x. If we 
interpret this as a signal of sampling rate Nf,, its spectrum under $ is the 
same as that of the original signal, but new components appear at higher 
frequencies. Low-pass filtering this artificially generated signal removes the 
higher-frequency components, and gives nonzero values to the intermediate 
samples. 

In a straightforward implementation of this idea we first build a new 
signal wn at N times the sampling frequency. For demonstration purposes 
we take N = 4. 

. . . w-16 = z-4, w-15 = 0, w-14 = 0, w-13 = 0, 

w-12 =x-3, w-11 =o, w-10 =o, w-g =o, 

W-8 =x-2, w-7=0, w-6 =o, W-5 =o, 

w-4 =x-1, w-3=0, w-2=0, w-1=0, wo=x(), . . . 

Now the interpolation low-pass filter performs the following convolution. 

Yo = howo + hw-I + hw-2 + h3w-3 + . , , + h15wS15 
Yl = howl + hlwo + &w-l + hw-2 + . . e + h15wv14 
Y2 = how + hlwl + h2wo + hw-1 + . . . + h15ws13 
Y3 = how + hlw2 + h2w + km + . . . + h15ww12 

However, most of the terms in these convolutions are zero, and we can save 
much computation by ignoring them. 

Yo = howo + hw-4 + hgww8 + h12ww12 

= hoxo + M-1 + h8x-2 + h12xs3 

Yl = hwo + bw-4 + hgws8 + h13we12 

= hxo + kz-1 + hgx-.-2 + h13x..m3 

Y2 = hzwo + hciw-4 + hlowqj + h14wD12 

= h2xo + hw-1 + h10x-2 + h14xv3 

Y3 = h3wo + hw-4 + hllw+ + h15wB12 

= h350 + hm-1 + hllxs2 + h15xv3 

Once again this is a polyphase filter, with the input fixed but the subfil- 
ters being changed; but this time the absolute time indices of the signal 
are fixed, not the buffer-relative ones! Moreover, we do not need to add the 
subfilter outputs; rather each contributes a different output phase. In actual 
implementations we simply interleave these outputs to obtain the desired 
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Figure 15.10: The polyphase interpolation filter. We depict the interpolation of an input 
signal xn by a factor of four, using a polyphase filter. Each subfilter operates on the same 
inputs but with different subfilters, and the outputs are interleaved by zero insertion and 
delay. 

interpolated signal. For diagrammatic purposes we can perform the inter- 
leaving by zero insertion and appropriate delay, as depicted in Figure 15.10. 

We present this rather strange diagram for two reasons. First, because its 
meaning is instructive. Rather than zero inserting and filtering at the high 
rate, we filter at the low rate and combine the outputs. Second, comparison 
with Figure 15.9 emphasizes the inverse relationship between decimation 
and interpolation. Transposing the decimation diagram (i.e., reversing all 
the arrows, changing decimators to zero inserters, etc.) converts it into the 
interpolation diagram. 

Polyphase structures are useful in other applications as well. Decima- 
tion and interpolation by large composite factors may be carried out in 
stages, using polyphase filters at every stage. More general sampling fre- 
quency changes by rational factors $$ can be carried out by interpolating 
by N and then decimating by M. Polyphase filters are highly desirable in 
this case as well. Filter banks can be implemented using mixers, narrow- 
band filters, and decimators, and once again polyphase structures reduce 
the computational load. 



590 DIGITAL FILTER IMPLEMENTATION 

EXERCISES 

15.4.1 A commutator is a diagrammatic element that chooses between M inputs 
1 . . . M in order. Draw diagrams of the polyphase decimator and interpolator 
using the commutator. 

15.4.2 Both 32 KHz and 48 KHz are common sampling frequencies for music, while 
CDs uses the unusual sampling frequency of 44.1 KHz. How can we convert 
between all these rates? 

15.4.3 The simple decimator that extracts inputs with index divisible by M is not 
a time-invariant system, but rather periodically time varying. Is the entire 
decimation system of Figure 15.9 time-invariant? 

15.4.4 Can the polyphase technique be used for IIR filters? 

15.4.5 When the decimation or interpolation factor M is large, it may be worthwhile 
to carry out the filtering in stages. For example, assume M = Ml M2, and that 
we decimate by Ml and then by M2. Explain how to specify filter responses. 

15.4.6 A half-band filter is a filter whose frequency response obeys the symmetry 
H(w) = 1 - H(w,id - w) around the middle of the band wrnid = 4. For 
every low-pass half-band filter there is a high-pass half-band filter called its 
‘mirror filter’. Explain how mirror half-band filters can be used to efficiently 
compute a bank of filters with 2m bands. 

15.5 Fixed Point Computation 

Throughout this book we stress the advantages of DSP as contrasted with 
analog processing. In this section we admit that digital processing has a dis- 
advantage as well, one that derives from the fact that only a finite number 
of bits can be made available for storage of signal values and for computa- 
tion. In Section 2.7 we saw how digitizing an analog signal inevitably adds 
quantization noise, due to imprecision in representing a real number by a 
finite number of bits. However, even if the digitizer has a sufficient number 
of bits and we ensure that analog signals are amplified such that the digi- 
tizer’s dynamic range is optimally exploited, we still have problems due to 
the nature of digital computation. 

In general, the sum of two b-bit numbers will have b + 1 bits. When 
floating point representation (see Appendix A.3) is being used, a (b + 1)-bit 
result can be stored with b bits of mantissa and a larger exponent, causing 
a slight round-off error. This round-off error can be viewed as a small ad- 
ditional additive noise that in itself may be of little consequence. However, 
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since hundreds of computations may need to be performed the final result 
may have become hopelessly swamped in round-off noise. Using fixed point 
representation exacerbates the situation, since should b + 1 exceed the fixed 
number of bits the hardware provides, an overflow will occur. To avoid over- 
flow we must ensure that the terms to be added contain fewer bits, reducing 
dynamic range even when overflow would not have occurred. Hence fixed 
point hardware cannot even consistently exploit the bits it potentially has. 

Multiplication is even worse than addition since the product of two num- 
bers with b bits can contain 2b bits. Of course the multiply-and-accumulate 
(MAC) operation, so prevalent in DSP, is the worst offender of all, endlessly 
summing products and increasing the number of required bits at each step! 
This would certainly render all fixed point DSP processors useless, were it 
not for accumulators. An accumulator is a special register with extra bits 
that is used for accumulating intermediate results. The MAC operation is 
performed using an accumulator with sufficient bits to prevent overflow; 
only at the end of the convolution is the result truncated and stored back 
in a normal register or memory. For example, a 16-bit processor may have 
a 48-bit accumulator; since each individual product returns a 32-bit result, 
an FIR filter of length 16 can be performed without prescaling with no fear 
of overflow. 

We can improve our estimate of the required input prescaling if we know 
the filter coefficients al. The absolute value of the convolution output is 

where x,,, is the maximal absolute value the input signal takes. In order 
to ensure that y, never overflows in an accumulator of b bits, we need to 
ensure that the maximal x value does not exceed the following bound. 

2b 

xmax ’ Cl lhll 
(15.9) 

This worst-case analysis of the possibility of overflow is often too ex- 
treme. The input scaling implied for even modest filter lengths would so 
drastically reduce the SNR that we are usually willing to risk possible but 
improbable overflows. Such riskier scaling methods are obtained by replacing 
the sum of absolute values in equation (15.9) with different combinations of 
the hl coefficients. One commonly used criterion is 
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which results from requiring the output energy to be sufficiently low; another 
is 

2b 
Xmax 

’ Hmax 

where Hmax is the maximum value of the filter’s frequency response, re- 
sulting from requiring that the output doesn’t overflow in the frequency 
domain. 

When a result overflow does occur, its effect is hardware dependent. 
Standard computers usually set an overflow flag to announce that the re- 
sult is meaningless, and return the meaningless least significant bits. Thus 
the product of two positive numbers may be negative and the product of 
two large numbers may be small. Many DSP processors have a saturation 
arithmetic mode, where calculations that overflow return the largest avail- 
able number of the appropriate sign. Although noise is still added in such 
cases, its effect is much less drastic. However, saturation introduces clipping 
nonlinearity, which can give rise to harmonic distortion. 

Even when no overflow takes place, digital filters (especially IIR filters) 
may act quite differently from their analog counterparts. As an example, 
take the simple AR filter 

Yn = Xn - 0.9yn-1 (15.10) 

whose true impulse response is h, = (-0.9)‘%,. For simplicity, let’s ex- 
amine the somewhat artificial case of a processor accurate to within one 
decimal digit after the decimal point (i.e., we’ll assume that the multiplica- 
tion 0.9yn-1 is rounded to a single decimal digit to the right of the point). 
Starting with x0 = 1 the true output sequence should oscillate while de- 
caying exponentially. However, it is easy to see that under our quantized 
arithmetic -0.9 . -0.4 = +0.4 and conversely -0.9 . 0.4 = -0.4 so that 
0.4, -0.4 is a cycle, called a limit cycle. In Figure 15.11 we contrast the two 
behaviors. 

The appearance of a limit cycle immediately calls to mind our study of 
chaos in Section 5.5, and the relationship is not coincidental. The fixed point 
arithmetic transforms the initially linear recursive system into a nonlinear 
one, one whose long time behavior displays an attractor that is not a fixed 
point. Of course, as we learned in that section, the behavior could have been 
even worse! 

There is an alternative way of looking at the generation of the spurious 
oscillating output. We know that stable IIR filters have all their poles inside 
the unit circle, and thus cannot give rise to spurious oscillations. However, 
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Figure 15.11: The behavior of a simple AR filter using fixed point arithmetic. The 
decaying plot depicts the desired behavior, while the second plot is the behavior that 
results from rounding to a single digit after the decimal point. 

the quantization of the filter coefficients causes the poles to stray from their 
original positions, and in particular a pole may wander outside the unit 
circle. Once excited, such a pole causes oscillating outputs even when the 
input vanishes. 

This idea leads us to investigate the effect of coefficient quantization on 
the position of the filter’s poles and zeros, and hence on its transfer function. 
Let’s express the transfer function 

H( ) 
z 

AW1> z-z cko a1 2 
-1 

l-g& - Cd 

B(z-l) 1 - CEcl bmrm = nf$,(~ - n,) 
(15.11) 

and consider the effect of quantizing the bm coefficients on the pole positions 
n,. The quantization introduces round-off error, so that the effective coeffi- 
cient is bm+Sbm, and assuming that this round-off error is small, its effect on 
the position of pole k may be approximated by the first-order contributions. 

m 

After a bit of calculation we can find that 

(15.12) 

i.e., the effect of variation of the m th coefficient on the k th pole depends on 
the positions of all the poles. 
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In particular, if the original filter has poles that are close together (i.e., 
for which rrl, - 7~j is small), small coefficient round-off errors can cause signif- 
icant movement of these poles. Since close poles are a common occurrence, 
straightforward implementation of IIR filters as difference equations often 
lead to instability when fixed point arithmetic is employed. The most com- 
mon solution to this problem is to implement IIR filters as cascades of sub- 
filters with poles as far apart as possible. Since each subfilter is separately 
computed, the round-off errors cannot directly interact, and pole movement 
can be minimized. Carrying this idea to the extreme we can implement IIR 
filters as cascades of second-order sections, each with a single pair of conju- 
gate poles and a single pair of conjugate zeros (if there are real poles or zeros 
we use first-order structures). In order to minimize strong gains that may 
cause overflow we strive to group together zeros and poles that are as close 
together as possible. This still leaves considerable freedom in the placement 
order of the sections. Empirically, it seems that the best strategy is to order 
sections monotonically in the radius of their poles, either from smallest to 
largest (those nearest the unit circle) or vice versa. The reasoning is not 
hard to follow. Assume there are poles with very small radius. We wouldn’t 
want to place them first since this would reduce the number of effective 
bits in the signal early on in the processing, leading to enhanced round-off 
error. Ordering the poles in a sequence with progressively decreasing radius 
ameliorates this problem. When there are poles very close to the unit circle 
placing them first would increase the chance of overflow, or require reducing 
the dynamic range in order to avoid overflow. Ordering the poles in a se- 
quence with progressively increasing radius is best in this case. When there 
are both small and large poles it is hard to know which way is better, and 
it is prudent to directly compare the two alternative orders. Filter design 
programs that include fixed point optimization routines take such pairing 
and ordering considerations into account. 

EXERCISES 

15.5.1 A pair of conjugate poles with radius r < 1 and angles 33 contribute a 
second-order section 

(2 - 79)(x - remie) = ~5’ (1 - 2r cos t9z-l + r2zw2) 

with coefficients br = 2r cos 8 and bp = -r2. If we quantize these coefficients 
to b bits each, how many distinct pole locations are possible? To how many 
bits has the radius r been quantized? Plot all the possible poles for 4-8 bits. 
What can you say about the quantization of real poles? 
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15.5.2 As we discussed in Section 14.6, fixed point FFTs are vulnerable to numer- 
ical problems as well. Compare the accuracy and overflow characteristics of 
frequency domain and time domain filtering. 

15.5.3 Develop a strategy to eliminate limit cycles, taking into account that limit 
cycles can be caused by round-off or overflow errors. 

15.5.4 Complete the derivation of the dependence of nk on &,. 

15.5.5 What can you say about the dependence of zero position cl on small changes 
in numerator coefficients al ? Why do you think fixed point FIR filters are so 
often computed in direct form rather than cascade form? 

15.5.6 We saw that it is possible to prescale the input in order to ensure that an 
FIR filter will never overflow. Is it possible to guarantee that an IIR filter 
will not overflow? 

15.5.7 In the text we saw a system whose impulse response should have decayed to 
zero, but due to quantization was a a-cycle. Find a system whose impulse 
response is a nonzero constant. Find a system with a 4-cycle. Find a system 
that goes into oscillation because of overflow. 

15.6 IIR Structures 

We return now to structures for general filters and consider the case of 
IIR filters. We already saw how to diagram the most general IIR filter in 
Figures 12.8.B and 12.11, but know from the previous section that this direct 
form of computation is not optimal from the numerical point of view. In this 
section we will see better approaches. 

The general cascade of second-order IIR sections is depicted in Fig- 
ure 15.12. Each section is an independent first- or second-order ARMA 
filter, with its own coefficients and static memory. The only question left 
is how to best implement this second-order section. There are three differ- 
ent structures in common use: the direct form (also called the direct form r) 
depicted in Figure 15.13, the canonical form (also called direct form II> de- 
picted in Figure 15.14, and the transposed form (also called transposed form 
14 depicted in Figure 15.15. Although all three are valid implementations 
of precisely the same filter, numerically they may give somewhat different 
results. 
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Figure 15.12: General cascade implementation of an IIR filter. Each section implements 
an independent (first- or) second-order section symbolized by the transfer function ap- 
pearing in the rectangle. Note that a zero in any of these subfilters results in a zero of the 
filter as a whole. 

Figure 15.13: Direct form implementation of a second-order IIR section. This structure 
is derived by placing the MA (all-zero) filter before the AR (all-pole) one. 
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Figure 15.14: Canonical form implementation of a second-order IIR section. This struc- 
ture is derived by placing the AR (all-pole) filter before the MA (all-zero) one and com- 
bining common elements. (Why didn’t we draw a filled circle for w!!,?) 

Figure 15.15: Transposed form implementation of a second-order IIR section. Here only 
the intermediate variables are delayed. Although only three adders are shown the center 
one has three inputs, and so there are actually four additions. 
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An IIR filter implemented using direct form 
follows: 

loop over time n 

xl] + x 
loop onnsaction number k + 0 to K - 

sections is computed as 

In real-time applications the loop over time will normally be an infinite loop. 
Each new input sample is first MA filtered to give the intermediate signal 
w!] 

w!l = #xn + a1 x+1+ upxn-~ PI 

and then this signal is AR filtered to give the section’s output 

YF = q&J] - g-1 yF!l - ($1 y;!2 

the subtraction either being performed once, or twice, or negative coefficients 
being stored. This section output now becomes the input to the next section 

Xi] t y!.y 

and the process repeats until all K stages are completed. The output of the 
final stage is the desired result. 

W-11 Yn = Yn 

Each direct form stage requires five multiplications, four additions, and four 
delays. In the diagrams we have emphasized memory locations that have to 
be stored (static memory) by a circle. Note that wn is generated each time 
and does not need to be stored, so that there are only two saved memory 
locations. 

As we saw in Section 12.3 we can reverse the order of the MA and AR 
portions of the second-order section, and then regroup to save memory loca- 
tions. This results in the structure known as canonical (meaning ‘accepted’ 
or ‘simplest’) form, an appellation well deserved because of its use of the least 
number of delay elements. While the direct form requires delayed versions 
of both xn and yn, the canonical form only requires storage of wn. 
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The computation is performed like this 

loop over time n 

$1 +- L-c 
loop onkxtion number k t 0 to K-l 

and once again we can either stored negative b coefficients or perform sub- 
traction(s). Each canonical form stage requires five multiplications, four ad- 
ditions, two delays, and two intermediate memory locations. 

The transposed form is so designated because it can be derived from the 
canonical form using the transposition theorem, which states that reversing 
all the arc directions, changing adders to tee connections and vice-versa, 
and interchanging the input and output does not alter the system’s transfer 
function. It is also canonical in the sense that it also uses only two delays, 
but we need to save a single value of two different signals (which we call 
u, and vn), rather than two lags of a single intermediate signal. The full 
computation is 

loop over time n 

3$ + z 
loop onnsection number k t 0 to K - 1 

?$I + apzi$ _ @&+I 

Un + U~‘Ll$’ - Jpy2”l + p1 1 
n- 

yn t y!f-l 

Don’t be fooled by Figure 15.15 into thinking that there are only three ad- 
ditions in the transposed form. The center adder is a three-input adder, 
which has to be implemented as two separate additions. Hence the trans- 
posed form requires five multiplications, four additions, two delays, and two 
intermediate memory locations, just like the canonical form. 

The cascade forms we have just studied are numerically superior to direct 
implementation of the difference equation, especially when pole-zero pairing 
and ordering are properly carried out. However, the very fact that the signal 
has to travel through section after section in series means that round-off 
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Figure 15.16: Parallel form implementation of the IIR filter. In this form the subfilters 
are placed in parallel, and so round-off errors do not accumulate. Note that a pole in any 
of these subfilters results in a pole of the filter as a whole. 

errors accumulate. Parallel connection of second-order sections, depicted in 
Figure 15.16, is an alternative implementation of the general IIR filter that 
does not suffer from round-off accumulation. The individual sections can be 
implemented in direct, canonical, or transposed form; and since the outputs 
are all simply added together, it is simpler to estimate the required number 
of bits. 

The second-order sections in cascade form are guaranteed to exist by 
the fundamental theorem of algebra, and are found in practice by factoring 
the system function. Why are general system functions expressible as sums 
of second-order filters, and how can we perform this decomposition? The 
secret is the ‘partial fraction expansion’ familiar to all students of indefinite 
integration. Using partial fractions, a general system function can be written 
as the sum of first-order sections 

(15.13) 

with I’k and yk possibly complex, or as the sum of second-order sections 

H(z) = 2 AI, + Bkz-’ 

k=l I+ a& + w2 
(15.14) 
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with all coefficients real. If there are more zeros than poles in the system 
function, we need an additional FIR filter in parallel with the ARMA sec- 
tions. 

The decomposition is performed in practice by factoring the denominator 
of the system function into real first- and second-order factors, writing the 
partial fraction expansion, and comparing. For example, assume that the 
system function is 

H(z) = 
1+ az-l + bz-2 

(1 + cz-l)(l + dz-l + ezv2) 

then we write 

H(z) = 

= 

and compare. This 
and C. 

EXERCISES 

A B + Cz-l 
1 + cz-l 

+ 
1 + dz-l + eze2 

(A + B) + (Ad + Bc + C)z-’ + (Ae + Cc)ze2 

Cl+ cz-l>( 1 + dz-l + ez-2) 

results in three equations for the three variables A, B, 

15.6.1 An arbitrary IIR filter can always be factored into cascaded first-order sec- 
tions, if we allow complex-valued coefficients. Compare real-valued second- 
order sections with complex-valued first-order sections from the points of 
view of computational complexity and numerical stability. 

15.6.2 A second-order all-pass filter section has the following transfer function. 

c + dz-l + z-~ 
1 + dz-l + cz-2 

Diagram it in direct form. How many multiplications are needed? Redraw 
the section emphasizing this. 

15.6.3 Apply the transposition theorem to the direct form to derive a noncanonical 
transposed section. 

15.6.4 The lattice structure presented for the FIR filter in Section 15.3 can be 
used for IIR filters as well. Diagram a two-pole AR filter. How can lattice 
techniques be used for ARMA filters? 
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15.7 FIR vs. IIR 

Now that we have seen how to implement both FIR and IIR filters, the 
question remains as to which to use. Once again we suggest first considering 
whether it is appropriate to filter in the frequency domain. Frequency do- 
main filtering is almost universally applicable, is intrinsically stable, and the 
filter designer has complete control over the phase response. The run-time 
code is often the most computationally efficient technique, and behaves well 
numerically if the FFTs are properly scaled. Phase response is completely 
controllable. Unfortunately, it does introduce considerable buffer and algo- 
rithmic delay; it does require more complex code; and it possibly requires 
more table and scratch memory. Of course we cannot really multiply any 
frequency component by infinity and so true poles on the frequency axis 
are not implementable, but IIR filters with such poles would be unstable 
anyway. 

Assuming you have come to the conclusion that time domain filtering is 
appropriate, the next question has to do with the type of filter that is re- 
quired. Special filters (see Section 7.3) have their own special considerations. 
In general, integrators should be IIR, differentiators even order FIR (unless 
the half sample delay is intolerable), Hilbert transforms odd order FIR with 
half the coefficients zero (although IIR designs are possible), decimators and 
integrators should be polyphase FIR, etc. Time-domain filter specifications 
immediately determine the FIR filter coefficients, but can also be converted 
into an IIR design by Prony’s method (see Section 13.6). When the sole 
specification is one of the standard forms of Section 7.1, such as low-pass, 
IIR filters can be readily designed while optimal FIR designs require more 
preparation. If the filter design must be performed in run-time then this 
will often determine the choice of filter type. Designing a standard IIR filter 
reduces to a few equations, and the suboptimal windowing technique for de- 
signing FIR filters can sometimes be used as well. From now on we’ll assume 
that we have a constant prespecified frequency domain specification. 

It is important to determine whether a true linear-phase filter or only 
a certain degree of phase linearity is required (e.g., communications sig- 
nals that contain information in their phase, or simultaneous processing of 
multiple signals that will later be combined). Recall from Section 7.2 that 
symmetric or antisymmetric FIR filters are precisely linear-phase, while IIR 
filters can only approximate phase linearity. However, IIR filters can have 
their phase flattened to a large degree, and if sufficient delay is allowed 
the pseudo-IIR filter of exercise 7.2.5 may be employed for precise phase 
linearity. 
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Assuming that both FIR and IIR filters are still in the running (e.g., 
only the amplitude of the frequency response is of interest), the issue of 
computational complexity is usually the next to be considered. IIR filters 
with a relatively small number of coefficients can be designed to have very 
sharp frequency response transitions (with the phase being extremely non- 
linear near these transitions) and very strong stop-band attenuation, For a 
given specification elliptical IIR filters will usually have dramatically lower 
computational complexity than FIR filters, with the computational require- 
ments ratio sometimes in the thousands. Only if the filters are relatively 
mild and when a large amount of pass-band ripple can be tolerated will the 
computational requirements be similar or even in favor of the FIR. Cheby- 
shev IIR filters are less efficient than elliptical designs but still usually better 
performers than FIR filters. Butterworth designs are the least flexible and 
hence require the highest order and the highest computational effort. If phase 
linearity compensation is attempted for a Butterworth IIR filter the total 
computational effort may be comparable to that of an FIR filter. 

The next consideration is often numerical accuracy. It is relatively simple 
to determine the worst-case number of bits required for overflow-free FIR 
computation, and if sufficient bits are available in the accumulator and the 
quantized coefficients optimized, the round-off error will be small. Of course 
long filters and small registers will force us to prescale down filter coefficients 
or input signals causing 6 dB of SNR degradation for each lost bit. For IIR 
filters determining the required number of bits is much more complex, de- 
pending on the filter characteristics and input signal frequency components. 
FIR filters are inherently stable, while IIR filters may be unstable or may 
become unstable due to numerical problems. This is of overriding impor- 
tance for filters that must be varied as time goes on; an IIR filter must be 
continuously monitored for stability (possibly a computationally intensive 
task in itself) while FIR filters may be used with impunity. 

Finally, all things being equal, personal taste and experience comes into 
play. Each DSP professional accumulates over time a bag of fully honed and 
well-oiled tools. It is perfectly legitimate that the particular tool that ‘feels 
right’ to one practitioner may not even be considered by another. The main 
problem is that when you have only a hammer every problem looks like a 
nail. We thus advise that you work on as many different applications as 
possible, collecting a tool or two from each. 
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Function Evaluation Algorithms 

Commercially available DSP processors are designed to efficiently implement 
FIR, IIR, and FFT computations, but most neglect to provide facilities for 
other desirable functions, such as square roots and trigonometric functions. 
The software libraries that come with such chips do include such functions, 
but one often finds these general-purpose functions to be unsuitable for the 
application at hand. Thus the DSP programmer is compelled to enter the 
field of numerical approximation of elementary functions. This field boasts 
a vast literature, but only relatively little of it is directly applicable to DSP 
applications. 

As a simple but important example, consider a complex mixer of the type 
used to shift a signal in frequency (see Section 8.5). For every sample time 
t, we must generate both sin@,) and cos(wt,), which is difficult using 
the rather limited instruction set of a DSP processor. Lack of accuracy 
in the calculations will cause phase instabilities in the mixed signal, while 
loss of precision will cause its frequency to drift. Accurate values can be 
quickly retrieved from lookup tables, but such tables require large amounts 
of memory and the values can only be stored for specific arguments. General 
purpose approximations tend to be inefficient to implement on DSPs and 
may introduce intolerable inaccuracy. 

In this chapter we will specifically discuss sine and cosine generation, as 
well as rectangular to polar conversion (needed for demodulation), and the 
computation of arctangent, square roots, Puthagorean addition and loga- 
rithms. In the last section we introduce the CORDIC family of algorithms, 
and demonstrate its applicability to a variety of computational tasks. The 
basic CORDIC iteration delivers a bit of accuracy, yet uses only additions 
and shifts and so can be implemented efficiently in hardware. 

605 



606 FUNCTION EVALUATION ALGORITHMS 

16.1 Sine and Cosine Generation 

In DSP applications, one must often find sin(&) where the time t is quan- 
tizedt=Ict, andf,=i is the sampling frequency. 

sin(&) = sin(2r f k tS) = sin 

The digital frequency of the sine wave, f / fs( is required to have resolution 
&, which means that the physical frequency is quantized to f = gfs. Thus 
the functions to be calculated are all of the following form: 

sin (2nEk) = sin ($i) irmk=O...N 

In a demanding audio application, fs M 50 KHz and we may want the resolu- 
tion to be no coarser than 0.1 Hz; thus about N = 500,000 different function 
values are required. Table lookup is impractical for such an application. 

The best known method for approximating the trigonometric functions 
is via the Taylor expansions 

13 15 17 sin(x) = x - 3x + 3x - ;iix + .a. (16.1) 
. . . 

l2 l4 ‘6 cos(x) = 1- TX + TX - 3” + *** 
. . . 

which converge rather slowly. For any given place of truncation, we can im- 
prove the approximation (that is, reduce the error made) by slightly chang- 
ing the coefficients of the expansion. Tables of such corrected coefficients are 
available in the literature. There are also techniques for actually speeding up 
the convergence of these polynomial expansions, as well as alternative ratio- 
nal approximations. These approximations tend to be difficult to implement 
on DSP processors, although (using Horner’s rule) polynomial calculation 
can be pipelined on MAC machines. 

For the special case (prevalent in DSP) of equally spaced samples of a 
sinusoidal oscillator of fixed frequency, several other techniques are possi- 
ble. One technique that we studied in Section 6.11 exploits the fact that 
sinusoidal oscillations are solutions of second-order differential or difference 
equations, and thus a new sine value may be calculated recursively based on 
two previous values. Thus one need only precompute two initial values and 
thereafter churn out sine values. The problem with any recursive method of 
this sort is error accumulation. Our computations only have finite accuracy, 
and with time the computation error builds up. This error accumulation 
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leads to long-term instability. We can combine recursive computation with 
occasional nonrecursive (and perhaps more expensive) calculations, but then 
one must ensure that no sudden changes occur at the boundaries. 

Another simple technique that recursively generates sinusoids can simul- 
taneously produce both the sine and the cosine of the same argument. The 
idea is to use the trigonometric sum formulas 

sin(&) = sin 
( w(lc - 

l)> 
* cos(w) + cos 

( w(k - l)> rk sin(w) (16.2) 

cos(wk) = cos 
( 
w(k - 

4 
* cos(w) - sin 

( 
w(k - 

4 
* sin(w) 

with known sin(w) and cos(w). Here one initial value of both sine and cosine 
are required, and thereafter only the previous time step must be saved. These 
recursive techniques are easily implementable on DSPs, but also suffer from 
error accumulation. 

Let’s revisit the idea of table lookup. We can reduce the number of values 
which must be held in such a table by exploiting symmetries of the trigono- 
metric functions. For example, we do not require twice N memory locations 
in order to simultaneously generate both the sine and cosine of a given ar- 
gument, due to the connection between sine and cosine in equation (A.22). 

We can more drastically reduce the table size by employing the trigono- 
metric sum formula (A.23). To demonstrate the idea, let us assume one 
wishes to save sine values for all integer degrees from zero to ninety degrees. 
This would a priori require a table of length 91. However, one could instead 
save three tables: 

1. sin(O”), sin(lO”), sin(20”), . . . sin(90”) 
2. sin(O”), sin(l”), sin(2”), . . . sin(9”) 
3. cos(OO), cos(lO), cos(2O), . . . cos(9”) 

and then calculate, for example, sin( 54”) = sin(50”) cos(4”)+sin(40°) sin(4”). 
In this simple case we require only 30 memory locations; however, we must 
perform one division with remainder (in order to find 54” = 50” + 4”), two 
multiplications, one addition, and four table lookups to produce the desired 
result. The economy is hardly worthwhile in this simple case; however, for 
our more demanding applications the effect is more dramatic. 

In order to avoid the prohibitively costly division, we can divide the 
circle into a number of arcs that is a power of two, e.g., 21g = 524,288. Then 
every i, 0 5 i 5 524,288 can be written as i = j + k where j = 512(i/512) 
(here / is the integer division without remainder) and k = i mod 512 can be 
found by shifts. In this case we need to store three tables: 
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1. Major Sine: sin( a 512j) 512 values 
2. Minor Sine: sin(gk) 

Y 
512 values 

3. Minor Cosine: cos( Sk) 512 values 

which altogether amounts to only 1536 values (for 32-bit words this is 6144 
bytes), considerably less than the 524288 values in the straightforward table. 

An alternate technique utilizing the CORDIC algorithm will be pre- 
sented in Section 16.5. 

EXERCISES 

16.1.1 Evaluate equation (16.2), successively generating further sine and cosine val- 
ues (use single precision). Compare these values with those returned by the 
built-in functions. What happens to the error? 

16.1.2 Try to find limitations or problems with the trigonometric functions as sup- 
plied by your compiler’s library. Can you guess what algorithm is used? 

16.1.3 The simple cubic polynomial 

approximates sin(s) to within 2% over the range [-i , . . $1. What are the 
advantages and disadvantages of using this approximation? How can you 
bring the error down to less than l%? 

16.1.4 Code the three-table sine and cosine algorithm in your favorite programming 
language. Preprepare the required tables. Test your code by generating the 
sine and cosine for all whole-degree values from 0 to 360 and comparing with 
your library routines. 

16.1.5 The signal supplied to a signal processing system turns out to be inverted in 
spectrum (that is, f ---) fS - f) due to an analog mixer. You are very much 
worried since you have practically no spare processing power, but suddenly 
realize the inversion can be carried out with practically no computation. How 
do you do it? 

16.1.6 You are given the task of designing a mixer-filter, a device that band-pass 
filters a narrow bandwidth signal and at the same time translates it from 
one frequency to another. You must take undesired mixer by-products into 
account, and should not require designing a filter in real-time. Code your 
mixer filter using the three-table sine and cosine algorithm. Generate a sig- 
nal composed of a small number of sines, mix it using the mixer filter, and 
perform an FFT on the result. Did you get what you expect? 
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16.2 Arctangent 

The floating point arctangent is often required in DSP calculations. Most 
often this is in the context of a rectangular to polar coordinate transform& 
tion, in which case the CORDIC-based algorithm given in Section 16.5 is 
usually preferable. For other cases simple approximations may be of use. 

First one can always reduce the argument range to 0 5 x 5 1, by ex- 
ploiting the antisymmetry of the function for negative arguments, and the 
symmetry 

tail-1(x) = f - tan-l 
1 

0 
a; 

for x > 1. 
For arguments in this range, we can approximate by using the Taylor 

expansion around zero. 

tan-yx) = x - ix3 + 6x5 - 3x7 + 0 l l (16.3) 

As for the sine and cosine functions equations (16.1), the approximation can 
be improved by slightly changing the coefficients. 

EXERCISES 

16.2.1 Code the arctangent approximation of equation (16.3), summing up N terms. 
What is the maximum error as a function of N? 

16.2.2 How can improved approximation coefficients be found? 

16.2.3 Look up the improved coefficients for expansion up to fifth order. How much 
better is the improved formula than the straight Taylor expansion? Plot the 
two approximations and compare their global behavior. 

16.2.4 For positive 2 there is an alternative expansion: 

tan-l(z) = % + sly + a3y3 + a5y5 + . . . 
x- 1 

where y E - 
x+1 

Find the coefficients and compare the accuracy with that of equation (16.3). 

16.2.5 Make a phase detector, i.e., a program that inputs a complex exponential 

Sn = xn + iy, = A&(wn+dn), c omputes, and outputs its instantaneous phase 
$71 = tan-l(yn, xn) - wn using one of the arctangent approximations and 
correcting for the four-quadrant arctangent. How can you find w? Is the 
phase always accurately recovered? 
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16.3 Logarithm 

This function is required mainly for logarithmic AM detection, conversion 
of power ratios and power spectra to decibels, as well as for various musical 
effects, such as compression of guitar sounds. The ear responds to both 
sound intensities and frequencies in approximately logarithmic fashion, and 
so logarithmic transformations are used extensively in many perception- 
based feature extraction methods. Considerable effort has also been devoted 
to the efficient computation of the natural and decimal logarithms in the 
non-DSP world. 

Due to its compressive nature, the magnitude of the output of the ‘log’ 
operation is significantly less than that of the input (for large enough inputs). 
Thus, relatively large changes in input value may lead to little or no change 
in the output. This has persuaded many practitioners to use overly simplistic 
approximations, which may lead to overall system precision degradation. 

We can concentrate on base-two logarithms without limiting generality 
since logarithms of all other bases are simply related. 

log&J) = (log&)-l log&) 

If only a single bit of a number’s binary representation is set, say the kth 
one, then the log is simple to calculate-it is simply k. Otherwise the bits 
following the most significant set bit k contribute a fractional part 

k k k 

X = 
c 

xi p = 2” + c x&i 2k-i = 2’ 1 + c xk-@ = 2’ (1 + 2) 
i=o i=l i=l 

with 0 5 x < 1. Now logz(x) = k+loga(l+z) and so 0 2 u = log2(l+z) < 1 
as well. Thus to approximate log2(x) we can always determine the most 
significant bit set k, then approximate u(z) (which maps the interval [0 . . . l] 
onto itself), and finally add the results. The various methods differ in the 
approximation for U( 2). The simplest approximation is linear interpolation, 
which has the additional advantage of requiring no further calculation-just 
copying the appropriate bits. The maximum error is approximately 10% 
and can be halved by adding a positive constant to the interpolation since 
this approximation always underestimates. The next possibility is quadratic 
approximation, and an eighth-order approximation can provide at least five 
significant digits. 

For an alternate technique using the CORDIC algorithm, see Section 16.5. 



16.4. SQUARE ROOT AND PYTHAGOREAN ADDITION 611 

EXERCISES 

16.3.1 Code the linear interpolation approximation mentioned above and compare 
its output with your library routine. Where is the maximum error and how 
much is it? 

16.3.2 Use a higher-order approximation (check a good mathematical handbook for 
the coefficients) and observe the effect on the error. 

16.3.3 Before the advent of electronic calculators, scientists and engineers used slide 
rules in order to multiply quickly. How does a slide rule work? What is the 
principle behind the circular slide rule? How does this relate to the algorithm 
discussed above? 

16.4 Square Root and Pythagorean Addition 

Although the square root operation y = fi is frequently required in DSP 
programs, few DSP processors provide it as an instruction. Several have 
‘square-root seed’ instructions that attempt to provide a good starting point 
for iterative procedures, while for others the storage of tables is required. 

The most popular iterative technique is the Newton-Raphson algorithm 

Yn+l = &L + ;I, h h w ic converges quadratically. This algorithm has an 
easily remembered interpretation. Start by guessing y. In order to find out 
how close your guess is check it by calculating x = E; if x x y then you are 
done. If not, the true square root is somewhere between y and z so their 
average is a better estimate than either. 

Another possible ploy is to use the obvious relationship 

j/z = 22 * x = $log&) 

and apply one of the algorithms of the previous section. 
When x can only be in a small interval, polynomial or rational approxi- 

mations may be of use. For example, when x is confined to the unit interval 
0 < x < 1, the quadratic approximation y w -0.5973x2 + 1.4043x + 0.1628 
gives a fair approximation (with error less than about 0.03, except near 
zero). 

More often than not, the square root is needed as part of a ‘Pythagorean 
addition’. 
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This operation is so important that it is a primitive in some computer lan- 
guages and has been the study of much approximation work. For example, 
it is well known that 

x: $ y M abmax(z, y) + Ic abmin(z, y) 

with abmax (abmin) returning the argument with larger (smaller) absolute 
value. This approximation is good when 0.25 5 Ic 5 0.31, with Ic = 0.267304 
giving exact mean and Ic = 0.300585 minimum variance. 

The straightforward method of calculating z @ y requires two multipli- 
cations, an addition, and a square root. Even if a square root instruction is 
available, one may not want to use this procedure since the squaring oper- 
ations may underflow or overflow even when the inputs and output are well 
within the range of the DSP’s floating point word. 

Several techniques have been suggested, the simplest perhaps being that 
of Moler and Morrison. In this algorithm x and y are altered by transforma- 
tions that keep x $ y invariant while increasing x and decreasing y. When 
negligible, x contains the desired output. 

In pseudocode form: 

P + m=44 IYI) 
Q + min(l47 Ivl> 
while q > 0 

r + (g)2 
P 

--& 

p + p+2*s*p 
Q + S-P 

output p 

An alternate technique for calculating the Pythagorean sum, along with 
the arctangent, is provided by the CORDIC algorithm presented next. 

EXERCISES 

16.4.1 Practice finding square roots in your head using Newton-Raphson. 

16.4.2 Code Moler and Morrison’s algorithm for the Pythagorean sum. How many 
iterations does it require to obtain a given accuracy? 

16.4.3 Devise examples where straightforward evaluation of the Pythagorean sum 
overflows. Now find cases where underflow occurs. Test Moler and Morrison’s 
algorithm on these cases. 
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16.4.4 Can Moler-Morrison be generalized to compute 9 + x; + xi + . . . ? 

16.4.5 Make an amplitude detector, i.e., a program that inputs a complex expo- 
nential s(t) = x(t) + iy(t) = A(t)eiwt and outputs its amplitude A(t) = 

x2(t) + y2(t). Use Moler and Morrison’s algorithm. 

16.5 CORDIC Algorithms 

The Coordinate Rotation for DIgital Computers (CORDIC) algorithm is 
an iterative method for calculating elementary functions using only addition 
and binary shift operations. This elegant and efficient algorithm is not new, 
having been described by Volder in 1959 (he applied it in building a digi- 
tal airborne navigation computer), refined mathematically by Walther and 
used in the first scientific hand-held calculator (the HP-35), and is presently 
widely used in numeric coprocessors and special-purpose CORDIC chips. 

Various implementations of the same basic algorithmic architecture 
lead to the calculation of: 

l the pair of functions sin@) and cos(Q), 

l the pair of functions dm and tan-l(y/z), 

l the pair of functions sinh(0) and cash(B), 

l the pair of functions dm and tanh-‘(y/z), 

l the pair of functions &i and In(a), and 

l the function ea. 

In addition, CORDIC-like architectures can aid in the computation of 
FFT, eigenvalues and singular values, filtering, and many other DSP tasks. 
The iterative step, the binary shift and add, is implemented in CORDIC 
processors as a basic instruction, analogously to the MAC instruction in 
DSP processors. 

We first deal with the most important special case, the calculation of 
sin(e) and cos(8). It is well known that a column vector is rotated through 
an angle 6’ by premultiplying it by the orthogonal rotation matrix. 

(16.4) 
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If one knows numerically the R matrix for some angle, the desired functions 
are easily obtained by rotating the unit vector along the x direction. 

(16.5) 

However, how can we obtain the rotation matrix without knowing the values 
of sin(e) and cos(e)? We can exploit the sum rule for rotation matrices: 

= fiR(oI) 
i=o 

and SO for 8 = Cr=, ai, using equation (16.4), we find: 

R(8) = fJcoG-4 fi ( tan;ai) 
i=o i=o 

- ta;(ai) ) 

n n 

= n cos(ai) n Mi 
i=o i=o 

(16.6) 

(16.7) 

If we chose the partial angles oi wisely, we may be able to simplify the 
arithmetic. 

For example, let us consider the angle 0 that can be written as the sum 
of ai such that tan@) = 2-i. Then the M matrices in (16.7) are of the very 
simple form 

and the matrix products can be performed using only right shifts. We can 
easily generalize this result to angles 8 that can be written as sums of ai = 
Z/Z tan-1(2-i). Due to the symmetry cos(-a) = cos(o), the product of cosines 
is unchanged, and the M matrices are either the same as those given above, 
or have the signs reversed. In either case the products can be performed 
by shifts and possibly sign reversals. Now for the surprise-one can show 
that any angle 6’ inside a certain region of convergence can be expressed 
as an infinite sum of &cui = & tan-’ (2-i)! The region of convergence turns 
out to be 0 5 8 5 1.7433 radians M 99.9”, conveniently containing the first 
quadrant. Thus for any angle 8 in the first quadrant, we can calculate sin(@) 
and cos(8) in the following fashion. First we express 8 as the appropriate 
sum of ai. We then calculate the product of M matrices using only shift 
operations. Next we multiply the product matrix by the universal constant 
K E HE0 cos(cq) z 0.607. Finally, we multiply this matrix by the unit 



16.5. CORDIC ALGORITHMS 615 

column vector in the x direction. Of course, we must actually truncate the 
sum of CX~ to some finite number of terms, but the quantization error is not 
large since each successive M matrix adds one bit of accuracy. 

Now let’s make the method more systematic. In the ‘forward rotation’ 
mode of CORDIC we start with a vector along the x axis and rotate it 
through a sequence of progressively smaller predetermined angles until it 
makes an angle 0 with the x axis. Then its x and y coordinates are pro- 
portional to the desired functions. Unfortunately, the ‘rotations’ we must 
perform are not pure rotations since they destroy the normalization; were 
we to start with a unit vector we would need to rescale the result by K at 
the end. This multiplication may be more costly than all the iterations per- 
formed, so we economize by starting with a vector of length K. Assuming 
we desire b bits of precision we need to perform b iterations in all. We can 
discover the proper expansion of 8 by greedily driving the residual angle to 
zero. We demonstrate the technique in the following pseudocode: 

x+-K 

Yto 
xte 
for i t 0 to b-l 

s + w44 
x t x-s.y.2-i 

y + y+s*x*2-i 
x + x - s l tan-1(2-i) 

cos(8) t x 
sin(B) + y 
error + 2 

Of course only additions, subtractions, and right shifts are utilized, and the 
b values tan-l (2-i) are precomputed and stored in a table. Beware that in 
the loop the two values x and y are to be calculated simultaneously. Thus 
to code this in a high-level language place the snippet 

for i + 0 to b- 1 

s +x 
x t <-s.y+ 

y +-- y+s+2-i 

into your code. 
Did you understand how 6’ was decomposed into the sum of the ai 

angles? First we rotated counterclockwise by the largest possible angle, 
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a0 = tan-l 1 = 45”. If 8 > aa then the second rotation is counterclock- 
wise from there by or = tan-’ % M 261” to 71%“; but if 19 < QO then the 
second rotation is clockwise to 18$‘. At each iteration the difference be- 
tween the accumulated angle and the desired angle is stored in x, and we 
simply rotate in the direction needed to close the gap. After b iterations the 
accumulated angle approximates the desired one and the residual difference 
remains in 2. 

In order to calculate the pair of functions dm and ta&(g/z), 
we use the ‘backward rotation’ mode of CORDIC. Here we start with a 
vector (z, y) and rotate back to zero angle by driving the y coordinate to 
zero. We therefore obtain a vector along the positive x axis, whose length is 
proportional to the desired square root. The x coordinate accumulates the 
required arctangent. 

The following pseudocode demonstrates the technique: 

xtx 

Y+--Y 
X+--O 
for i+Otob-1 

s c W(Y) 
x +- x+s*y*2-i 
y +- y- s’x’2-2 
2 + 2 + s . tan-1(2-i) 

dm + Kex 
error t y 
tan-l(Y/X) t 2 

Once again the x and y in the loop are to be computed simultaneously. 
As mentioned before, the pseudocodes given above are only valid in the 

first quadrant, but there are two ways of dealing with full four-quadrant 
angles. The most obvious is to fold angles back into the first quadrant and 
correct the resulting sine and cosines using trigonometric identities. When 
the input is x, y and -n < 8 < n is desired, a convenient method to convert 
CORDIC’s z is to use 8 = a + 4 * x where Q = sgn(x)sgn(y) and a = 0 if 
x > 0, while otherwise a = sgn(y)n. 

It is also possible to extend the basic CORDIC region of convergence to 
the full four quadrants, at the price of adding two addition iterations and 
changing the value of K. The extended algorithm is initialized with 

rr 
tpi +- 1 

1 iLO 
2-i i 2 0 

atani t 
{ 

ilO 
t4an-1(2-i) i >, 0 
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and K +- q II!=, cos ( tan-‘(2-i)) and, for example, the backward rota- 
tion is now carried out by the following algorithm: 

x+X 

Y+--Y 
n-0 
for it-2tob-1 

s +- W(Y) 
x + x+s*y*tpi 

Y+Y - s ’ x ’ tpi 
z + x+seatq 

j/m +- K*x 
error + y 
tan-l(Y/X) t 2 

Up to now we have dealt only with circular functions. The basic CORDIC 
iteration can be generalized to 

(16.8) 

%+1 = Zi + Siti 

where for the circular functions m = +l and ti = tan-1(2-i), for the hyper- 
bolic functions m = -1 and ti = tanh-1(2-i), and for the linear functions 
m= 0 and ti = 2-i. For the circular and hyperbolic cases one must also 
renormalize by the constants K = I/ nyZo dp. For the hyperbolic 
case additional iterations are always required. 

EXERCISES 

16.5.1 Code the forward and backward extended-range CORDIC algorithms. Test 
them by comparison with library routines on randomly selected problems. 

16.5.2 Recode the mixer filter from the exercises of Section 16.1 using CORDIC to 
generate the complex exponential. 

16.5.3 Code a digital receiver that inputs a complex signal s(t) = A(t)ei(“t+4(t)), 
mixes the signal down to zero frequency s(t) = A(t)e@(Q (using forward 
CORDIC), and then extracts both the amplitude and phase (using backward 
CORDIC). 
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mathematically by Walther [269]. Its use in the first full-function scientific calculator 
(the HP-35) is documented in [38]. CORDIC’s approximation error is analyzed 
in [107]. Extending CORDIC to a full four-quadrant technique was proposed by 
[105], while its use for computation of the inverse trigonometric functions is in 
[162]. CORDIC-like architectures can aid in the computation of the FFT [51, 521, 
eigenvalues and singular values [60], and many other DSP tasks [106]. 



Digital Signal Processors 

Until now we have assumed that all the computation necessary for DSP ap- 
plications could be performed either using pencil and paper or by a general- 
purpose computer. Obviously, those that can be handled by human calcu- 
lation are either very simplistic or at least very low rate. It might surprise 
the uninitiated that general-purpose computers suffer from the same limita- 
tions. Being ‘general-purpose’, a conventional central processing unit (CPU) 
is not optimized for DSP-style ‘number crunching’, since much of its time 
is devoted to branching, disk access, string manipulation, etc. In addition, 
even if a computer is fast enough to perform all the required computation 
in time, it may not be able to guarantee doing so. 

In the late 197Os, special-purpose processors optimized for DSP appli- 
cations were first developed, and such processors are still multiplying to- 
day (pun definitely intended). Although correctly termed ‘Digital Signal 
Processors’, we will somewhat redundantly call them ‘DSP processors’, or 
simply DSPs. There are small, low-power, inexpensive, relatively weak DSPs 
targeted at mass-produced consumer goods such as toys and cars. More capa- 
ble fixed point processors are required for cellular phones, digital answering 
machines, and modems. The strongest, often floating point, DSPs are used 
for image and video processing, and server applications. 

DSP processors are characterized by having at least some of the fol- 
lowing special features: DSP-specific instructions (most notably the MAC), 
special address registers, zero-overhead loops, multiple memory buses and 
banks, instruction pipelines, fast interrupt servicing (fast context switch), 
specialized ports for input and output, and special addressing modes (e.g., 
bit reversal). 

There are also many non-DSP processors of interest to the DSP imple- 
mentor. There are convolution processors and FFT processors devoted to 
these tasks alone. There are systolic arrays, vector and superscalar proces- 
sors, RISC processors for embedded applications, general-purpose processors 
with multimedia extensions, CORDIC processors, and many more varieties. 

619 
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DSP ‘cores’ are available that can be integrated on a single chip with other 
elements such as CPUs, communications processors, and IO devices. Al- 
though beyond the scope of our present treatment the reader would be well 
advised to learn the basic principles of these alternative architectures. 

In this chapter we will study the DSP processor and how it is optimized 
for DSP applications. We will discuss general principles, without considering 
any specific DSP processor, family of processors, or manufacturer. The first 
subject is the MAC operation, and how DSPs can perform it in a single 
clock cycle. In order to understand this feat we need to study memory ar- 
chitectures and pipelines. We then consider interrupts, ports, and the issue 
of numerical representation. Finally, we present a simple, yet typical exam- 
ple of a DSP program. The last two sections deal with the practicalities of 
industrial DSP programming. 

17.1 Multiply-and-Accumulate (MAC) 

DSP algorithms tend to be number-crunching intensive, with computational 
demands that may exceed the capabilities of a general-purpose CPU. DSP 
processors can be much faster for specific tasks, due to arithmetic instruction 
sets specifically tailored to DSP needs. The most important special-purpose 
construct is the MAC instruction; accelerating this instruction significantly 
reduces the time required for computations common in DSP. 

Convolutions, vector inner products, correlations, difference equations, 
Fourier transforms, and many other computations prevalent in DSP all share 
the basic repeated MAC computation. 

loop 
update j , update Ic 
a + U-l-XjYk 

For inner products, correlations, and symmetric or coefficient-reversed FIR 
filters the updating of indices j and k both involve incrementation; for con- 
volutions one index is incremented while the other is decremented. 

First consider the outside of the loop. When a general-purpose CPU 
executes a fixed-length loop such as 

for i t 1 to N 
statements 

there is a lot of overhead involved. First a register must be provided to store 
the loop index i, and it must be properly initialized. After each execution of 
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the calculation the loop index register must be incremented, and checked for 
termination. Of course if there are not enough registers the loop index must 
be retrieved from memory, incremented and checked, and then stored back 
to memory. Except for the last iteration, a ‘branch’ or ‘jump’ instruction 
must be performed to return execution to the top of the loop. 

DSP processors provide a zero-overhead hardware mechanism (often 
called repeat or do) that can repeat an instruction or number of instructions 
a prespecified number of times. Due to hardware support for this repeat in- 
struction no clocks are wasted on branching or incrementing and checking 
the loop index. The maximum number of iterations is always limited (64K is 
common, although some processors have low limits such as 128) and many 
processors limit the number of instructions in the loop (1, 16), but these 
limitations fall into the envelope of common DSP operations. Some proces- 
sors allow loop nesting (since the FFT requires 3 loops, this is a common 
limit), while for others only the innermost loop can be zero overhead. 

Now let’s concentrate on the computations inside the loop. How would 
a general-purpose CPU carry out the desired computation? We assume that 
x and y are stored as arrays in memory, so that xj is stored j locations after 
x0, and similarly for yk. Furthermore, we assume that the CPU has at least 
two pointer registers (that we call j and k) that can be directly updated 
(incremented or decremented) and used to retrieve data from memory. Fi- 
nally, we assume the CPU has at least two arithmetic (floating point or 
fixed point) registers (x and y) that can be used as operands of arithmetic 
operations, a double-length register (z) that can receive a product, and an 
accumulator (a) for summing up values. 

Assuming that the loop has been set up (i.e., the counter loaded, the 
base pointers for Xj and yk set, and the automatic updating of these pointers 
programmed in), the sequence of operations for computation of the contents 
of the loop on a general-purpose CPU will look something like this. 

update pointer to Xj 

update 

load Zj 
pointer to yk 

into register x 
load ok into register y 
fetch operation (multiply) 

decode operation (multiply) 
multiply x by y storing the result in register z 
fetch operation (add) 
decode operat i on (add) 
add register z to accumulat or a 
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We see that even assuming each of the above lines takes the same amount 
of time (which is dubious for the multiplication), the computation requires 
about 10 instruction times to complete. Of course different CPUs will have 
slightly different instruction sets and complements of registers, but similar 
principles hold for all CPUs. 

A major distinction between a general-purpose CPU and a DSP is that 
the latter can perform a MAC in a single instruction time. Indeed this feature 
is of such importance that many use it as the definition of a DSP. The 
main purpose of this chapter is explain how this miracle is accomplished. 
In particular it is not enough to simply add a MAC instruction to the set 
of opcodes; such an ‘MAC-augmented CPU’ would still have to perform the 
following steps 

update pointer to zj 
update pointer to yk 
load z~j into register x 
load yk into register y 
fetch operation (MAC) 
decode operation (MAC) 
MAC a +- x * y 

for a total of seven instruction times. We have managed to save a few clocks 
but are still far from our goal. Were the simple addition of a MAC instruction 
all a DSP processor had to offer, it would probably not be worth devoting 
precious silicon real-estate to the special MAC hardware. In order to build 
a DSP we need more imagination than this. 

The first step in building a true DSP is to note that the pointers to xj and 
$fk are independent and thus their updating can be performed in parallel. To 
implement this we need new hardware; we need to add two address updating 
units to the hardware complement of our hypothetical DSP processor. Using 
the symbol 11 to signify two operations that are performed in parallel, the 
MAC now looks like this: 

update pointer to zj 11 update pointer to $)k 
load Xj into register x 
load yk into register y 
fetch operation (MAC) 
decode operation (MAC) 
MAC a t x * y 

We have obviously saved at least the time of one instruction, since the xj and 
yk pointers are now updated simultaneously, but even though we no longer 
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require use of the CPU’s own adder it does not seem possible to further 
exploit this in order to reduce overall execution time. It is obvious that we 
cannot proceed to load values into the x and y registers until the pointers 
are ready, and we cannot perform the MAC until the registers are loaded. 
The next steps in optimizing our DSP call for more radical change. 

EXERCISES 

17.1.1 For the CPU it would be clearer to have j and k stored in fixed point registers 
and to retrieve zz;j by adding j to the address of ~0. Why didn’t we do this? 

17.1.2 Explain in more detail why it is difficult for two buses to access the same 
memory circuits. 

17.1.3 Many DSP processors have on-chip ROM or RAM memory. Why? 

17.1.4 Many CPU architectures use memory caching to keep critical data quickly 
accessible. Discuss the advantages and disadvantages for DSP processors. 

17.1.5 A processor used in personal computers has a set of instructions widely ad- 
vertised as being designed for multimedia applications. What instructions are 
included in this set? Can this processor be considered a DSP? 

17.1.6 Why does the zero-overhead loop only support loops with a prespecified 
number of iterations (for loops)? What about while (condition) loops? 

17.2 Memory Architecture 

A useful addition to the list of capabilities of our DSP processor would 
be to allow ~j and yk to be simultaneously read from memory into the 
appropriate registers. Since ~j and yk are completely independent there is 
no fundamental impediment to their concurrent transfer; the problem is that 
while one value is being sent over the ‘data bus’ the other must wait. The 
solution is to provide two data buses, enabling the two values to be read 
from memory simultaneously. This leaves us with a small technical hitch; it 
is problematic for two buses to connect to the same memory circuits. The 
difficulty is most obvious when one bus wishes to write and the other to 
read from precisely the same memory location, but even accessing nearby 
locations can be technically demanding. This problem can be solved by using 
so-called ‘dual port memories’, but these are expensive and slow. 
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The solution here is to leave the usual model of a single linear memory, 
and to define multiple memory banks. Different buses service different mem- 
ory banks, and placing the zj and yk arrays in separate banks allows their 
simultaneous transfer to the appropriate registers. The existence of more 
than one memory area for data is a radical departure from the memory 
architecture of a standard CPU. 

update pointer to xj 11 update pointer to yk 
load q into register x 11 load yk into register y 
fetch operation (MAC) 
decode operation (MAC) 
MAC a t x * y 

The next step in improving our DSP is to take care of the fetch and 
decode steps. Before explaining how to economize on these instructions we 
should first explain more fully what these steps do. In modern CPUs and 
DSPs instructions are stored sequentially in memory as opcodes, which are 
binary entities that uniquely define the operation the processor is to perform. 
These opcodes typically contain a group of bits that define the operation 
itself (e.g., multiply or branch), individual bit parameters that modify the 
meaning of the instruction (multiply immediate or branch relative), and 
possibly bits representing numeric fields (multiply immediate by 2 or branch 
relative forward by 2). Before the requested function can be performed these 
opcodes must first be retrieved from memory and decoded, operations that 
typically take a clock cycle each. 

We see that a nonnegligible portion of the time it takes to execute an 
instruction is actually devoted to retrieving and decoding it. In order to 
reduce the time spent on each instruction we must find a way of reducing this 
overhead. Standard CPUs use ‘program caches’ for this purpose. A program 
cache is high speed memory inside the CPU into which program instructions 
are automatically placed. When a program instruction is required that has 
already been fetched and decoded, it can be taken from the program cache 
rather than refetched and redecoded. This tends to significantly speed up 
the execution of loops. Program caches are typically rather small and can 
only remember the last few instructions; so loops containing a large number 
of instructions may not benefit from this tactic. Similarly CPUs may have 
‘data caches’ where the last few memory locations referenced are mirrored, 
and redundant data loads avoided. 

Caches are usually avoided in DSPs because caching complicates the 
calculation of the time required for a program to execute. In a CPU with 



17.2. MEMORY ARCHITECTURE 625 

caching a set of instructions requires different amounts of run-time depend- 
ing on the state of the caches when it commences. DSPs are designed for 
real-time use where the prediction of exact timing may be critical. So DSPs 
must use a different trick to save time on instruction fetches. 

Why can’t we perform a fetch one step before it is needed (in our case 
during the two register loads)? Once again the fundamental restriction is 
that we can’t fetch instructions from memory at the same time that data is 
being transferred to or from memory; and the solution is, once again, to use 
separate buses and memory banks. These memory banks are called program 
memory and data memory respectively. 

Standard computers use the same memory space for program code and 
data; in fact there is no clear distinction between the two. In principle the 
same memory location may be used as an instruction and later as a piece 
of data. There may even be self-modifying code that writes data to memory 
and later executes it as code. This architecture originated in the team that 
built one of the first digital computers, the lB,OOO-vacuum-tube ENIAC 
(Electronic Numerical Integrator and Computer) designed in the early forties 
at the University of Pennsylvania. The main designers of this machine were 
J. W. Mauchly and J. Presper Eckert Jr. and they relied on earlier work 
by J.V. Atanasoff. However, the concept of a single memory for program 
and data is named after John von Neumann, the Hungarian-born German- 
American mathematician-physicist, due to his 1945 memo and 1946 report 
summarizing the findings of the ENIAC team regarding storing instructions 
in binary form. The single memory idea intrigued von Neumann because of 
his interest in artificial intelligence and self-modifying learning programs. 

Slightly before the ENIAC, the Mark I computer was built by a Harvard 
team headed by Howard Aiken. This machine was electromechanical and was 
programmed via paper tape, but the later Mark II and Mark III machines 
were purely electrical and used magnetic memory. Grace Hopper coined 
the term ‘bug’ when a moth entered one of the Harvard computers and 
caused an unexpected failure. In these machines the program memory was 
completely separate from data memory. Most DSPs today abide by this 
Harvard architecture in order to be able to overlap instruction fetches with 
data transfers. Although von Neumann’s name is justly linked with major 
contributions in many areas of mathematics, physics, and the development 
of computers, crediting him with inventing the ‘von Neumann architecture’ 
is not truly warranted, and it would be better to call it the ‘Pennsylvania 
architecture’. Aiken, whose name is largely forgotten, is justly the father of 
the two-bus architecture that posterity named after his institution. No one 
said that posterity is fair. 
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In the Harvard architecture, program and data occupy different address 
spaces, so that address A in program memory is completely distinct from 
address A in data memory. These two memory spaces are connected to the 
processor using separate buses, and may even have different access speeds 
and bit widths. With separate buses we can perform the fetch in parallel 
with data transfers, and no longer need to waste a clock. We will explain 
the precise mechanism for overlapping these operations in the next section, 
for now we will simply ignore the instruction-related operations. Our MAC 
now requires only three instruction times. 

update pointer to zj 11 update pointer to ok 
load z:j into register x 11 load yk into register y 
MAC a t x * y 

We seem to be stuck once again. We still can’t load zj and yk before the 
pointers are updated, or perform the MAC before these loads complete. In 
the next section we take the step that finally enables the single clock MAC. 

EXERCISES 

17.2.1 A pure Harvard architecture does not allow any direct connection between 
program and data memories, while the modified Harvard architecture contains 
copy commands between the memories. Why are these commands useful? 
Does the existence of these commands have any drawbacks? 

17.2.2 DSPs often have many different types of memory, including ROM, on-chip 
RAM, several banks of data RAM, and program memory. Explain the func- 
tion of each of these and demonstrate how these would be used in a real-time 
FIR filter program. 

17.2.3 FIR and IIR filters require a fast MAC instruction, while the FFT needs the 
butterfly 

X +- x+wy 

Y t X-WY 

where x and y are complex numbers and W a complex root of unity. Should 
we add the butterfly as a basic operation similar to the MAC? 

17.2.4 There are two styles of DSP assembly language syntax. The opcode-mnemonic 
style uses commands such as MPY A0 , Al, A2, while the programming style 
looks more like a conventional high-level language A0 = Al * A2. Research 
how the MAC instruction with parallel retrieval and address update is coded 
in both these styles. Which notation is better? Take into account both algo- 
rithmic transparency and the need to assist the programmer in understanding 
the hardware and its limitations. 
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17.3 Pipelines 

In the previous sections we saw that the secret to a DSP processor’s speed 
is not only special instructions, but the exploitation of parallelism. Address 
registers are updated in parallel, memory retrievals are performed in parallel, 
and program instructions are fetched in parallel with execution of previous 
instructions. The natural extension is to allow parallel execution of any 
operations that logically can be performed in parallel. 

update 1 update 2 update 3 update 4 update 5 

load 1 load 2 load 3 load 4 load 5 

MAC 1 MAC 2 MAC 3 MAC 4 MAC 5 

Figure 17.1: The pipelining of a MAC calculation. Time runs from left to right, while 
height corresponds to distinct hardware units, ‘update’ meaning the updating of the xj 
and yk pointers, ‘load’ the loading into x and y, and ‘MAC’ the actual computation. At 
the left there are three cycles during which the pipeline is filling, while at the right there 
are a further three cycles while the pipeline is emptying. The result is available seven 
cycles after the first update. 

The three steps of the three-clock MAC we obtained in the previous sec- 
tion use different processor capabilities, and so should be allowed to operate 
simultaneously. The problem is the dependence of each step on the comple- 
tion of the previous one, but this can be sidestepped by using a pipeline to 

overlap these operations. The operation of the pipeline is clarified in Fig- 
ure 17.1. In this figure ‘update 1’ refers to the first updating of the pointers 
to zj and yk; ‘load 1’ to the first loading of Xj and yk into registers x and y; 
and ‘MAC 1’ means the first multiplication. As can be seen, the first load 
takes place only after the first update is complete, and the MAC only after 
the loads. However, we do not wait for the MAC to complete before updat- 
ing the pointers; rather we immediately start the second update after the 
first pointers are handed over to the loading process. Similarly, the second 
load takes place in parallel with the first MAC, so that the second MAC 
can commence as soon as the first is completed. In this way the MACs are 
performed one after the other without waiting, and once the pipeline is filled 
each MAC requires only one instruction cycle. Of course there is overhead 
due to the pipeline having to fill up at the beginning of the process and 
empty out at the end, but for large enough loops this overhead is negligible. 
Thus the pipeline allows a DSP to perform one MAC per instruction clock 
on the average. 
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Pipelines can be exploited for other purposes as well. The simplest 
general-purpose CPU must wait for one basic operation (e.g., fetch, decode, 
register arithmetic) to complete before embarking on the next; DSPs exploit 
parallelism even at the subinstruction level. How can the different primitive 
operations that make up a single instruction be performed in parallel? They 
can’t; but the primitive operations that comprise successive instructions can. 

Until now we have been counting ‘instructions’ and have not clarified the 
connection between ‘instruction times’ and ‘clock cycles’. All processors are 
fed a clock signal that determines their speed of operation. Many processors 
are available in several versions differing only in the maximum clock speed 
at which they are guaranteed to function. While a CPU processor is always 
specified by its clock frequency (e.g., a 400 MHz CPU), DSP processors are 
usually designated by clock interval (e.g., a 25 nanosecond DSP). 

Even when writing low-level assembly language that translates directly 
to native opcodes, a line of code does not directly correspond to a clock 
interval, because the processor has to carry out many operations other than 
the arithmetic functions themselves. To see how a CPU really works at the 
level of individual clock cycles, consider an instruction that adds a value in 
memory to a register, leaving the result in the same register. At the level of 
individual clock cycles the following operations might take place. 

fetch instruction 
decode instruction 
retrieve value from memory 

perform addition 

We see that a total of four clock cycles is required for this single addition, 
and our ‘instruction time’ is actually four ‘clock cycles’. There might be 
additional subinstruction operations as well, for instance, transfer of a value 
from the register to memory. Fixed point DSP processors may include an op- 
tional postarithmetic scaling (shift) operation, while for floating point there 
is usually a postarithmetic normalization stage that ensures the number is 
properly represented. 

Using a subinstruction pipeline we needn’t count four clock cycles per 
instruction. While we are performing the arithmetic portion of an instruc- 
tion, we can already be decoding the next instruction, and fetching the one 
after that! The number of overlapable operations of which an instruction is 
comprised is known as the depth of the pipeline. The minimum depth is three 
(fetch, decode, execute), typical values are four or five, but by dividing the 
arithmetic operation into stages the maximum depth may be larger. Recent 
DSP processors have pipeline depths as high as 11. 
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fetch 1 fetch 2 fetch 3 fetch 4 fetch 5 
decode 1 decode 2 decode 3 decode 4 decode 5 

get 1 get 2 get 3 get 4 get 5 
add 1 add2 add3 add4 add5 

Figure 17.2: The operation of a depth-four pipeline. Time runs from left to right, while 
height corresponds to distinct hardware units. At the left there are three cycles during 
which the pipeline is filling, while at the right there are three cycles while the pipeline is 
emptying. The complete sum is available eight cycles after the first fetch. 

As an example, consider a depth-four pipeline that consists of fetch, de- 
code, load data from memory, and an arithmetic operation, e.g., an addition. 
Figure 17.2 depicts the state of a depth-four pipeline during all the stages 
of a loop adding five numbers. Without pipelining the summation would 
take 5 * 4 = 20 cycles, while here it requires only eight cycles. Of course 
the pipeline is only full for two cycles, and were we to sum 100 values the 
pipelined version would take only 103 cycles. Asymptotically we require only 
a single cycle per instruction. 

The preceding discussion was based on the assumption that we know 
what the next instruction will be. When a branch instruction is encoun- 
tered, the processor only realizes that a branch is required after the decode 
operation, at which point the next instruction is already being fetched. Even 
more problematic are conditional branches, for which we only know which 
instruction is next after a computation has been performed. Meanwhile the 
pipeline is being filled with erroneous data. Thus pipelining is useful mainly 
when there are few (if any) branches. This is the case for many DSP algo- 
rithms, while possibly unjustified for most general-purpose programming. 

As discussed above, many processor instructions only return results after 
a number of clocks. Attempting to retrieve a result before it is ready is a 
common mistake in DSP programming, and is handled differently by differ- 
ent processors. Some DSPs assist the programmer by locking until the result 
is ready, automatically inserting wait states. Others provide no locking and 
it is entirely the programmer’s responsibility to wait the correct number of 
cycles. In such cases the NOP (no operation) opcode is often inserted to 
simply waste time until the required value is ready. In either case part of 
the art of DSP programming is the rearranging of operations in order to 
perform useful computation rather than waiting with a NOP. 
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EXERCISES 

17.3.1 Why do many processors limit the number of instructions in a repeat loop? 

17.3.2 What happens to the pipeline at the end of a loop? When a branch is taken? 

17.3.3 There are two styles of DSP assembly language syntax regarding the pipeline. 
One emphasizes time by listing on one line all operations to be carried out 
simultaneously, while the other stresses data that is logical related. Consider 
a statement of the first type 

where Al, A2, A3, A4 are accumulators and Rl, R2 pointer registers. Explain 
the relationship between the contents of the indicated registers. Next consider 
a statement of the second type 

AO=AO+(*Rl++**R2++) 

and explain when the operations are carried out. 

17.3.4 It is often said that when the pipeline is not kept filled, a DSP is slower than 
a conventional processor, due to having to fill up and empty out the pipeline. 
Is this a fair statement? 

17.3.5 Your DSP processor has 8 registers RI, R2, R3, R4, R5, R6, R7, R8, and 
the following operations 

l load register from memory: Rn + location 

0 store register to memory: location t Rn 

l single cycle no operation: NOP 

0 negate: Rn +- - Rn [l cycle latency] 

l add: Rn +- Ra + Rb [2 cycle latency] 

l subtract: Rn +-- Ra - Rb [2 cycle latency] 

l multiply: Rn + Ra . Rb [3 cycle latency] 

l MAC: Rn + Rn + Ra . Rb [4 cycle latency] 

where the latencies disclose the number of cycles until the result is ready to 
be stored to memory. For example, 

RI t Rl + R2 . R3 

answer + RI 

does not have the desired effect of saving the MAC in answer, unless four 
NOP operations are interposed. Show how to efficiently multiply two complex 
numbers. (Hint: First code operations with enough NOP operations, and then 
interchange order to reduce the number of NOPs.) 
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17.4 Interrupts, Ports 

When a processor stops what it has been doing and starts doing something 
else, we have a context switch. The name arises from the need to change the 
run-time context (e.g, the pointer to the next instruction, the contents of 
the registers). For example, the operating system of a time-sharing computer 
system must continually force the processor to jump between different tasks, 
performing numerous context switches per second. Context switches can be 
initiated by outside events as well (e.g., keyboard presses, mouse clicks, 
arrival of signals). In any case the processor must be able to later return to 
the original task and continue as if nothing had happened. 

Were the software responsible for initiating all externally driven context 
switches, it would need to incessantly poll all the possible sources of such 
requests to see whether servicing is required. This would certainly be a 
waste of resources. All processors provide a hardware mechanism called the 
interrupt. An interrupt forces a context switch to a predefined routine called 
the interrupt handler for the event in question. The concept of an interrupt 
is so useful that many processors provide a ‘software interrupt’ (sometimes 
called a trap) by which the software itself can instigate a context switch. 

One of the major differences between DSPs and other types of CPUs is 
the speed of the context switch. A CPU may have a latency of dozens of 
cycles to perform a context switch, while DSPs always have the ability to 
perform a low-latency (perhaps even zero-overhead) interrupt. 

Why does a DSP need a fast context switch? The most important rea- 
son is the need to capture interrupts from incoming signal values, either 
immediately processing them or at least storing them in a buffer for later 
processing. For the latter case this signal value capture often occurs at a high 
rate and should only minimally interfere with the processing. For the former 
case delay in retrieving an incoming signal may be totally unacceptable. 

Why do CPU context switches take so many clock cycles? Upon restora- 
tion of context the processor is required to be in precisely the same state it 
would have been had the context switch not occurred. For this to happen 
many state variables and registers need to be stored for the context being 
switched out, and restored for the context being switched in. The DSP fast 
interrupt is usually accomplished by saving only a small portion of the con- 
text, and having hardware assistance for this procedure. Thus if the context 
switch is for the sole purpose of storing an incoming sample to memory, the 
interrupt handler can either not modify unstored registers, or can be coded 
to manually restore them to their previous state. 
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All that is left is to explain how signal values are input to and output 
from the DSP. This is done by ports, of which there are several varieties. 
Serial ports are typically used for low-rate signals. The input signal’s bits 
are delivered to the DSP one at a time and deposited in an internal shift 
register, and outputs are similarly shifted out of the DSP one bit per clock. 
Thus when a 16-bit A/D is connected to a serial port it will send the sample 
as 16 bits, along with a bit clock signal telling the DSP when each bit is 
ready. The bits may be sent MSB first or LSB first depending on the A/D 
and DSP involved. These bits are transferred to the DSP’s internal serial 
port shift register. Each time the A/D signals that a bit is ready, the DSP 
serial port shift register shifts over one bit and receives the new one. Once 
all 16 bits are input the A/D will assert an interrupt requesting the DSP to 
store the sample presently in the shift register to memory. 

Parallel ports are faster than serial ports but require more pins on the 
DSP chip itself. Parallel ports typically transfer eight or sixteen bits at a 
time. In order to further speed up data transfer Direct Memory Access 
(DMA) channels are provided that can transfer whole blocks of data to or 
from the DSP memory without interfering with the processing. Typically 
once a DMA transfer is initiated, only a single interrupt is required at the 
end to signal that the transfer is complete. 

Finally, communications ports are provided on those DSPs that may be 
interconnected with other DSPs. By constructing arrays of DSPs processing 
tasks may be divided up between processors and such platforms may attain 
processing power far exceeding that available from a single processor. 

EXERCISES 

17.4.1 How does the CPU know which interrupt handler to call? 

17.4.2 Some DSPs have ‘internal peripherals’ that can generate interrupts. What 
can these be used for? 

17.4.3 What happens when an interrupt interrupts an interrupt? 

17.4.4 When a DSP is on a processing board inside a host computer there may be a 
method of input and output other than ports-shared memory. Discuss the 
pros and cons of shared memory vs. ports. 
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17.5 Fixed and Floating Point 

The first generation of DSP processors were integer-only devices, and even 
today such fixed point DSPs flourish due to their low cost. This seems para- 
doxical considering that DSP tasks are number-crunching intensive. You 
probably wouldn’t consider doing serious numeric tasks on a conventional 
CPU that is not equipped with floating point hardware. Yet the realities 
of speed, size, power consumption, and price have compelled these incon- 
venient devices on the DSP community, which has had to develop rather 
intricate numeric methods in order to use them. Today there are floating 
point DSPs, but these still tend to be much more expensive, more power 
hungry, and physically larger than their fixed point counterparts. Thus ap- 
plications requiring embedding a DSP into a small package, or where power 
is limited, or price considerations paramount, still typically utilize fixed point 
DSP devices. Fixed point DSPs are also a good match for A/D and D/A 
devices, which are typically unsigned or two’s-complement integer devices. 

The price to be paid for the use of fixed point DSPs is extended develop- 
ment time. After the required algorithms have been simulated on computers 
with floating point capabilities, floating point operations must then be care- 
fully converted to integer ones. This involves much more than simple round- 
ing. Due to the limited dynamic range of fixed point numbers, resealing must 
be performed at various points, and special underflow and overflow handling 
must be provided. The exact placement of the resealings must be carefully 
chosen in order to ensure the maximal retention of signal vs. quantization 
noise, and often extensive simulation is required to determine the optimal 
placement. In addition, the precise details of the processor’s arithmetic may 
need to be taken into account, especially when interoperability with other 
systems is required. For example, standard speech compression algorithms 
are tested by providing specified input and comparing the output bit stream 
to that specified in the standard. The output must be exact to the bit, even 
though the processor may compute using any number of bits. Such bit-exact 
implementations may utilize a large fraction of the processor’s MIPS just to 
coerce the fixed point arithmetic to conform to that of the standard. 

The most common fixed point representation is 16-bit two’s complement, 
although longer registers (e.g., 24- or 32-bit) also exist. In fixed point DSPs 
this structure must accommodate both integers and real numbers; to repre- 
sent the latter we multiply by some large number and round. For example, if 
we are only interested in real numbers between -1.0 and +l .O we multiply 
by 215 and think of the two’s-complement number as a binary fraction. 
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When two 16-bit integers are added, the sum can require 17 bits; when 
multiplied, the product can require 32 bits. Floating point hardware takes 
care of this bit growth by automatically discarding the least significant bits, 
but in fixed point arithmetic we must explicitly handle the increase in preci- 
sion. CPUs handle addition by assuming that the resultant usually does fit 
into 16 bits; if there is an overflow a flag is set or an exception is triggered. 
Products are conventionally stored in two registers, and the user must de- 
cide what to do next based on the values in the registers. These strategies 
are not optimal for DSP since they require extra operations for testing flags 
or discarding bits, operations that would break the pipeline. 

Fixed point DSPs use one of several strategies for handling the growth of 
bits without wasting cycles. The best strategy is for the adder of the MAC 
instruction to use an accumulator that is longer than the largest possible 
product. For example, if the largest product is 32 bits the accumulator could 
have 40 bits, the extra bits allowing eight MACs to be performed without any 
possibility of overflow. At the end of the loop a single check and possible 
discard can be performed. The second strategy is to provide an optional 
scaling operation as part of the MAC instruction itself. This is basically a 
right shift of the product before the addition, and is built into the pipeline. 
The least satisfactory way out of the problem, but still better than nothing, is 
the use of ‘saturation arithmetic’. In this case a hard limiter is used whenever 
an overflow occurs, the result being replaced by the largest representable 
number of the appropriate sign. Although this is definitely incorrect, the 
error introduced is smaller than that caused by straight overflow. 

Other than these surmountable arithmetic problems, there are other pos- 
sible complications that must be taken into account when using a fixed point 
processor. As discussed in Section 15.5, after designing a digital filter its co- 
efficients should not simply be rounded; rather the best integer coefficients 
should be determined using an optimization procedure. Stable IIR filters 
may become unstable after quantization, due to poles too close to the unit 
circle. Adaptive filters are especially sensitive to quantization. When bits 
are discarded, overflows occur, or limiting takes place, the signal processing 
system ceases to be linear, and therefore cycles and chaotic behavior become 
possible (see Section 5.5). 

Floating point DSPs avoid many of the above problems. Floating point 
numbers consist of a mantissa and an exponent, both of which are signed 
integers. A recognized standard details both sizes for the mantissa and ex- 
ponent and rules for the arithmetic, including how exceptions are to be 
handled. Not all floating point DSPs conform to this standard, but some 
that don’t provide opcodes for conversion to the standard format. 
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Unlike the computing environments to which one is accustomed in off- 
line processing, even the newer floating point DSP processors do not usually 
have instructions for division, powers, square root, trigonometric functions, 
etc. The software libraries that accompany such processors do include such 
functions, but these general-purpose functions may be unsuitable for the 
applications at hand. The techniques of Chapter 16 can be used in such 
cases. 

EXERCISES 

17.5.1 Real numbers are represented as integers by multiplying by a large number 
and rounding. Assuming there is no overflow, how is the integer product 
related to the real product? How is a fixed point multiply operation from 
two b-bit registers to a b-bit register implemented? 

17.5.2 Simulate the simple IIR filter yn = cry,-1 + xn (0 5 o. ,< 1) in floating point 
and plot the impulse response for various a. Now repeat the simulation using 
8-bit integer arithmetic (1 becomes 256, 0 5 a! 5 256). How do you properly 
simulate 8-bit arithmetic on a 32-bit processor? 

17.5.3 Design a narrow band-pass FIR filter and plot its empirical frequency re- 
sponse. Quantize the coefficients to 16 bits, 8 bits, 4 bits, 2 bits, and finally a 
single bit (the coefficient’s sign); for each case replot the frequency response. 

17.5.4 Repeat the previous exercise for an IIR filter. 

17.6 A Real-Time Filter 

In this section we present a simple example of a DSP program that FIR 
filters input data in real-time. We assume that the filter coefficients are 
given, and that the number of coefficients is L. 

Since this is a real-time task, every tS seconds a new input sample X~ 
appears at the DSP’s input port. The DSP must then compute 

L-l 

Yn = c hlxn-1 
z=o 

and output yn in less than t, seconds, before the next sample arrives. This 
should take only somewhat more than L processor cycles, the extra cycles 

being unavoidable overhead. 
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On a general purpose CPU the computation might look like this: 

for 1 + 1 to (L-l) 
x11-11 + xc11 

x[L-11 + input 

Y+-O 
for 1 t- 0 to (L-1) 

y + y + h[l] * x[L-l-l] 
output + y 

We first made room for the new input and placed it in x [L-l]. We then 
computed the convolution and output the result. 

There are two main problems with this computation. First we wasted 
a lot of time in moving the static data in order to make room for the new 
input. We needn’t physically move data if we use a circular bufler, but then 
the indexation in the convolution loop would be more complex. Second, the 
use of explicit indexation is wasteful. Each time we have need x [L-l-l] 
we have to compute L-l-l, find the memory location, and finally retrieve 
the desired data. A similar set of operations has to be performed for h Cl] 
before we are at last ready to multiply, A more efficient implementation 
uses ‘pointers’; assuming we initialize h and x to point to ho and ~-1-l 
respectively, we have the following simpler loop: 

Y+-O 
repeat L times 

y t y + (*h) * C*(x) 
h+h+l 
x+x-l 

Here *h means the contents of the memory location to which the pointer 
h points. We can further improve this a little by initializing y to horn and 
performing one less pass through the loop. 

How much time does this CPU-based program take? In the loop there is 
one multiplication, two additions and one subtraction, in addition to assign- 
ment statements; and the loop itself requires an additional implicit decre- 
ment and comparison operation. 

Now we are ready to try doing the same filtering operation on a DSP. 
Figure 17.3 is a program in assembly language of an imaginary DSP. The 
words starting with dots (such as . table) are ‘directives’; they direct the 
assembler to place the following data or code in specific memory banks. In 
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. table 
H: ho 

h 

HLAST: hLsl 

. data 
x: (L-1) * 0 
XNEW : 0 

. program 
START : 

if (WAIT) goto START 
*XNEW + INPUT 
h + HLAST 
x+x 

y + (*h)*(*x) 11 h + h-l 11 x t x+1 
repeat (L-l) times 

Y + y + (*h)*(*x) 11 *(x-l> + *x 11 h t h-l II x t x+1 

NOP 
OUTPUT t y 
goto START 

Figure 17.3: A simple program to FIR filter input data in real-time. 

this case the L filter coefficients ho . . . hLsl are placed in ‘table memory’; the 
static buffer of length L is initialized to all zeros and placed in ‘data memory’; 
and the code resides in ‘program memory’. These placements ensure that the 
MAC instructions will be executable in a single cycle. The names followed 
by colons (such as HLAST : ) are ‘labels’, and are used to reference specific 
memory lo cat ions. 

The filter coefficients are stored in the following order ho, hl, . . . hL-1 
with ho bearing the label H and hL-1 labeled HLAST. The static buffer is in 
reversed order z,+-11, . . . xn-.r, x 72 with the oldest value bearing the label 
X and the present input labeled XNEW. 

The program code starts with the label START, and each nonempty line 
thereafter corresponds to a single processor cycle. The first line causes the 
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processor to loop endlessly until a new input arrives. In a real program such 
a tight loop would usually be avoided, but slightly looser do-nothing loops 
are commonly used. 

Once an input is ready it is immediately copied into the location pointed 
to by XNEW, which is the end of the static buffer. Then pointer register h is 
set to point to the end of the filter buffer (hi-1) and pointer x is set to point 
to the beginning of that buffer (the oldest stored input). 

Accumulator y is initialized to h~-r~a, the last term in the convolution. 
Note that y is a numeric value, not a pointer like x. The 11 notation refers 
to operations that are performed in parallel. In this line the filter buffer 
pointer is decremented and the static buffer pointer is incremented. These 
operations are carried out before they are next required. 

The next line contains a ‘zero-overhead loop’. This loop is only executed 
L-l times, since the last term of the convolution is already in the accu- 
mulator. The last iteration multiplies the he coefficient by the new input. 
However, something else is happening here as well. The * (x-l) + *x being 
executed in parallel is a data-move that shifts the input data that has just 
been used one place down; by the time the entire loop has been executed 
the static buffer has all been shifted and is ready for the next iteration. 

Once the entire convolution has been carried out we are ready to output 
the result. However, in some DSP processors this output operation can only 
take place once the pipeline has been emptied; for this reason we placed 
a NOP (no-operation) command before copying the accumulator into the 
output register. Finally, we jump back to the start of the program and wait 
for the next input to arrive. 

EXERCISES 

17.6.1 Taking a specific number of coefficients (e.g., L=5), walk through the program 
in Figure 17.3, noting at each line the values of the pointers, the state of the 
static buffer, and the algebraic value in the accumulator. 

17.6.2 Code a real-time FIR filter for a DSP that does not support data-move in 
parallel with the MAC, but has hardware support for a circular buffer. 

17.6.3 Code a real-time IIR routine similar to the FIR one given in the text. The 
filter should be a cascade of N second order sections, and the main loop 
should contain four lines and be executed N times. 

17.6.4 Write a filtering program for a real DSP and run it in real-time. 
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17.7 DSP Programming Projects 

DSP programming is just like any other programming, only more so. As in 
any other type of programming attention to detail is essential, but for DSP 
processors this may extend beyond syntax issues. For example, some proces- 
sors require the programmer to ensure that the requisite number of cycles 
have passed before a result is used; forgetting a NOP in such a situation cre- 
ates a hard-to-locate bug. For many types of programming intimate knowl- 
edge of the hardware capabilities isn’t crucial, but for DSP programming 
exploitation of special-purpose low-level features may mean the difference 
between success and failure. As in any other type of programming, famil- 
iarity with the software development tools is indispensable, but for DSP 
processors emulation, debugging and profiling may be much more difficult 
and critical tasks. 

In this section we present a model that you may find useful to consider 
when embarking on a new DSP programming project. However, whether or 
not you adhere to all the details of this model, remember that you must 
always obey the golden rule of DSP programming: 

Always program for correctness first, efficiency second. 

All too often we are driven by the need to make our algorithms faster and 
faster, and are tempted to do so at the expense of system stability or thor- 
ough testing. These temptations are to be avoided at all costs. 

Once this is understood I suggest that the task of implementing a new 
system is CHILD’s play. Here the word CHILD is a mnemonic for: 
Collect requirements and decide on architecture 
High-level design 
Intermediate level, simulation and porting to platform 
Low-level coding and efficiency improvement 
Deliver and document 
We shall devote a paragraph or two to each of these stages. 

The collection stage is a critical one, all too often incompletely executed. 
The implementor must collect all the requirements, including the expected 
range of inputs, the exact output(s) required, the overall development sched- 
ule and budget, the desired end user cost, interface specifications, etc. Some- 
times someone else has done the preliminary work for you and you receive a 
Hardware Requirements Specification (HRS) and a Software Requirements 
Specification (SRS). Remember that anything missed during the collection 
stage will be difficult or impossible to reintroduce later on, One of the things 
to be decided at this stage is how the final product is to be tested, and the 
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exact criteria for success. You should make sure the end users (or techni- 
cal marketing personnel) ‘sign off’ on the requirement specifications and 
acceptance procedures. 

Between the end of the collection stage and the beginning of the high- 
level design stage it is highly recommended to go on vacation. 

The technical output of the high-level design stage will usually be a pair 
of documents, the Hardware Design Document (HDD) and the Software 
Design Document (SDD). There will also be project management litera- 
ture, including various charts detailing precisely what each team member 
should be doing at every time, dates by which critical tasks should be com- 
pleted, milestones, etc. We will focus on the SDD. The SDD explains the 
signal processing system, first in generality, and then increasingly in de- 
tail. The function of each subsystem is explained and its major algorithms 
noted. There are two ways to write an SDD. The first (and most commonly 
encountered) is to have done something extremely similar in the past. In 
this case one starts by cutting and pasting and then deleting, inserting, and 
modifying until the present SRS is met. The more interesting case is when 
something truly new is to be built. In this case a correct SDD cannot be 
written and the project management literature should be considered science 
fiction. Remember that the ‘R’ and ‘D’ in R&D are two quite different tasks, 
and that a true research task cannot be guaranteed to terminate on a certain 
date and in a certain way (the research would be unnecessary if it could). 

Often simulations must be performed during the high-level design stage. 
For these simulations efficiency is of no concern; but development speed, 
ease of use and visualization ability are of the utmost importance. For this 
reason special development environments with graphics and possibly visual 
programming are commonly used. The output of these simulations, both 
block diagrams and performance graphs, can be pasted into the design doc- 
uments. The amount of memory and processing power required for each 
subsystem can now be better estimated. It is best to plan on using only 50% 
to 75’% of the available processing power (it will always turn out to require 
a lot more than you anticipate). 

At the end of the high-level design a Design Review (DR) should be 
carried out. Here the HDD and SDD are explained and comments solicited. 
Invite as many relevant people as possible to the DR. Remember that mis- 
takes in the high-level design are extremely costly to repair later on. 

The intermediate-stage may be bypassed only for very small projects. 
Here the block diagrams developed in the high-level stage are fleshed out 
and a complete program is written. This is often done first in a high-level 
language, liberally using floating point numbers and library functions. While 
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the high-level software design stage is often carried out by a single person, 
the intermediate stage is usually handed over to the full development team. 
Once the team starts to work, the project should be placed under revision 
control. Once completed and integrated the full program can be tested with 
test inputs and outputs to ensure passing the final acceptance procedures. 
Next the high-level language program is rewritten in a real-time style, using 
the proper block lengths, converting to fixed point if required, etc. After 
each major step the program behavior can be compared to that of the orig- 
inal to ensure correctness. Mechanisms for debugging, exception handling, 
maintainability, and extensibility should be built into the code. 

The low-level programming commences as a straightforward port of the 
intermediate level program to the final platform. Once again the first code 
should be written to maintain correctness at the expense of efficiency. After 
the first port, decisions must be made as to what can remain in a high- 
level language and what must be coded in assembly language; where major 
improvements in efficiency are required; where memory usage is excessive; 
etc. Efficiency is increased incrementally by concentrating on areas of code 
where the program spends most of its time. Various debugging tools, such 
as simulators, emulators, debug ports, and real-time monitoring are used. 
Eventually a correct version that is fast enough is generated. 

Delivery of a version is something that no one likes doing, but the project 
is not complete without it. The final version must be cleaned up and accep- 
tance tests thoroughly run (preferably with the end user or disinterested 
parties present). User and programmer documentation must be completed. 
The former is usually written by professional publications personnel. The 
latter include internal documentation (the final code should be at least 25% 
comments), an updated SDD, and a Version Description Document (VDD) 
that describes all limitations, unimplemented features, changes, and out- 
standing problems. 

After delivery the boss takes the development team out to lunch, or lets 
everyone take an extended weekend. The following week the whole process 
starts over again. 

17.8 DSP Development Teams 

‘Congratulations, you’ve got the job!’ You heard those words just last week, 
but you are already reporting for work as a junior DSP engineer in the ASP 
(Advanced Signal Processing) division of III (Infinity Integrators Inc.). In 
your previous jobs you worked by yourself or with one or two other people 
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on some really impressive DSP projects. You’ve programmed DSP boards in 
PCs, completing whole applications in a week, often writing over 500 lines 
of assembly language in a day. You are quite sure that this has prepared 
you for this new job. Of course in a big company like III with hundreds of 
engineers and programmers, working on multimillion dollar projects, there 
will be more overhead, but DSP programming is DSP programming. There 
is only one thing that your new boss said during your interview that you 
don’t quite understand. Why do the programmers here only write an average 
of ten to twenty lines of code in a day? Are they lazy or just incompetent? 

Well, you’ll soon find out. Your first assignment is to understand the 
system you will be working on. This system is a newer version of an older 
one that has been operational for over five years. Your boss has given you 
five days to come up to speed. Sounds easy. 

In your cubicle you find a stack of heavy documents. The first thing you 
have to learn is what a TLA is. TLA is a self referential term for Three 
Letter Acronym, and the system you are going to work on is full of them. 
There are several FEUs (front end units), a BEU (back end unit), and a MPC 
(main processing computer) with a HIC (human interface console). You learn 
all this by reading parts of two documents titled HRS and SRS, that are 
followed by even larger ones marked HDD and SDD. These documents are 
so highly structured that you soon understand that it would take a full five 
days just to read them and follow up the cross references. There are also 
countless other documents that you have been told are not as important 
to you (yet), like the PMP (program management plan) that even specifies 
how much time you are allotted to learn the system (5 days). 

Your second day is spent trying to figure out where DSP fits in to all 
this and what you are expected to do. As a shortcut you look up your tasks 
in the PMP. After an hour or so you have jotted down the cross references 
of tasks to which you have been assigned, and start looking up what they 
are. A lot is written about when they start and end, what resources they 
need, and what they hold up if not finished on time. The only explanation of 
exactly what you are expected to do seems to be one-line descriptions that 
are entirely incomprehensible. In fact, the only thing you think you fully 
understand is the ‘handbook for the new employee’ that human resources 
placed in your cubicle. Even that seems to have been written in the same 
style, but at least it is one self-contained document (except the reference to 
the manual for using the voicemail system). 

On your third day on the job you attend your first weekly TRM (team 
review meeting). The main subject seems to be when the PDR (preliminary 
design review) and CDR (critical design review) will take place. Luckily 
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the TRM will only last about a half hour since the boss has to go to the 
TLM (team leader meeting) that has to take place before the GLM (group 
leader meeting) headed by the director of ASP. Any questions? Somewhat 
timidly you speak up-why is it called the FEU and not the DSP? In all 
the jobs you worked on up to now the module with the DSPs was simply 
called the DSP. The boss explains patiently (while several coworkers smile) 
that the name has been chosen to be accurate from a system point of view. 
DSP stands for digital signal processing. Here the fact that the processing 
is digital is irrelevant to the rest of the system; indeed in an earlier version 
a lot of the processing was analog. The words signal and processing turn 
out to be incorrect from a system point of view. The purpose of this unit is 
acquisition of the data needed by the rest of the system, even if this data 
already requires a great deal of processing from raw input. 

After the meeting you spend a few hours in the library. The SDD refer- 
ences a lot of international standards and each of these in turn references still 
other standards. The standards documents seem even less comprehensible 
than the SDD itself. You spend the next few hours by the copying machine. 

On the fourth day you are invited to attend a discussion between the 
hardware and software guys. Not yet having learned about the subsystem in 
question you can’t quite make out what is going on, other than the hardware 
guys saying it’s an obvious software bug and the software guys saying its 
a hardware failure. You speak up asking why a simple test program can’t 
be used to test the hardware. The hardware people explain that they had 
written such a program and that is precisely how they know its a software 
problem. The software people reply that the hardware test program was 
unrealistically simplistic and didn’t really test this aspect of the design. 
They, however, have written a simulation of the hardware, and their software 
runs perfectly on it. 

You glance at your watch. Although it’s after six o’clock you think you’ll 
spend a few more hours reading the SDD. Just this morning you had at last 
found out what the DSP processing elements were, and were beginning to 
feel more confident that it was, in principle, possible to extract information 
from these documents. How will you ever finish reading all this by tomorrow? 

The fifth day starts auspiciously-your development system arrives. You 
are given a table in the lab; its one floor down from your cubicle and you learn 
to use the stairs rather than wait for the elevator. The entire morning is spent 
on unpacking, reading the minimal amount of documentation, hooking up all 
the cables, and configuring the software. A coworker helps you out, mostly 
in order to see the improvements in the new version you have received. You 
go out to lunch with your co-workers, and the entire time is spent talking 
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about work. Once back you return to your cubicle only to find that someone 
has ‘borrowed’ your copy of the SDD. You return to the lab only to find 
that several power cables are missing as well. It’s after three and you start 
to panic. Are your coworkers playing some kind of initiation prank or does 
this kind of thing happen all the time? 

Bibliographical Notes 

Jonathan Allen from MIT gave two early, but still relevant, overviews of the basic 
architecture of digital signal processors [3, 41. More modern reviews are [142, 143, 
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a DSP, how DSPs differ from CPUs, and how they differ one from another. 

Manuals supplied by the various processor manufacturers are the best source for 
information on DSP architecture and how to best exploit it. Usually each processor 
has a Processor User’s Guide that details its architecture and instruction set; an 
Assembly Language Reference with explanations of its programming environment; 
and an Applications Library Manual with sample code and library routines for 
FFTs, FIR and IIR filters, etc. For popular processors many useful DSP functions 
and full applications will be available for licensing or in the public domain. The 
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extant DSPs. 

[140] is devoted entirely to fundamentals of DSP processors, and its authors also 
publish an in-depth study and comparison of available DSPs. Readers considering 
implementing DSP functions in VLSI should consult [154]. 
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Communications Signal Processing 

In this chapter we will survey various topics in signal processing for com- 
munications. Communications, like signal processing itself, is commonly di- 
vided into analog and digital varieties. Analog communications consist of 
techniques for transmitting and receiving speech, music or images as analog 
signals, as in telephones, broadcast radio and television. Digital communi- 
cations are methods of transferring digital information, usually in the form 
of bit streams. Digital communications are often between computers, or be- 
tween human and computer, although increasingly digital communications 
are being used between people as well (email). Both analog and digital sig- 
nal processing may be used for various portions of both analog and digital 
communications systems. 

A device that takes an analog input signal and creates an analog com- 
munications signal is called a transmitter, while a receiver inputs an analog 
communications signal and attempts to recover, as accurately as possible, 
the original analog message signal. A device that takes a digital input and 
creates a digital communications signal is usually called a modulator, while a 
demodulator inputs a digital communications signal and attempts to recover, 
with as few bit errors as possible, the original digital message. Transmitters 
and receivers are sometimes packaged together and called transceivers; for 
digital communications it is almost universal to package the modulator and 
demodulator together, and to call the combined device a modem. 

Digital communications systems include such diverse objects as fax ma- 
chines, telephone-grade modems, local area networks, wide area networks, 
private digital telephone exchanges, communications satellites and their 
ground stations, the public switched telephone network (yes, it too has be- 
come digital), and the Internet. Although the history of data communica- 
tions is relatively short, the present scope of its theory and application is 
huge, and we will have to stringently restrict the scope of our treatment. 

647 
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After a historical introduction we will start our survey with an overview 
of analog communications, including AM and FM transmitters and receivers. 
We then briefly study information and communications theory, including er- 
ror correcting codes. We then design our first modem, the rest of the chapter 
being devoted to successive improvements to its design. We roughly follow 
the chronological development of telephone-grade modems that increased bit 
rates from 300 b/s to 56 Kb/s. Along the way we will learn about FSK, PSK, 
QAM, MCM, TCM, and PCM modems, and master the basic algorithms 
needed for modem implementation. 

18.1 History of Communications 

Let’s go back over 2000 years and imagine ourselves at the foot of the great 
Temple in Jerusalem. It is the thirtieth day of the month, and the Calendar 
Council is in session, waiting for witnesses to come to testify that they 
had seen the new moon. A group of people approach running. They are 
ushered into the chamber and interrogated by experts in astronomy and 
mathematics. If their testimony is found to be genuine, the new month is 
declared to have begun; if no reliable witnesses arrive the new month only 
starts the next day. Now that information must be disseminated quickly 
to those living as far away as Babylon. Only one bit of information must 
be transmitted-whether the new month has commenced-but telephones, 
radio, and even telegraph lines do not yet exist. 

Now it is not really difficult to transmit the single bit of information 
to nearby locations. One need only do something that can be reliably seen 
from afar. So the Council orders a bonfire to be lit on the top of a nearby 
mountain. On a neighboring mountain an official is waiting. When he sees 
the beacon he lights a fire of his own, which is observed at the first mountain 
and recognized as an acknowledgment that the message has been received. It 
is also observed at another mountain further away, where the next beacon in 
the chain is lit. In this way the message that the new month has commenced 
is quickly and reliably transmitted. This technique was in use until thwarted 
by the (good?) Samaritans, who maliciously lit beacons at inappropriate 
times in order to create confusion. 

Similar communications techniques were used by other pretelegraph peo- 
ples. Native Americans would burn wet grass under a blanket, which when 
removed would send up a blast of dark smoke that could be seen from afar. 
Natives of western Africa used tomtom drums that could be heard through- 
out the jungle (where visibility is limited). Mariners used signaling lamps 
that could be seen from miles away. 
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What can we do if we need to transmit more than one bit of information? 
The native Americans would simultaneously light two or three separate fires, 
and the number of columns of smoke signified the urgency of the message. 
The Africans used drums of variable pitch, and could send intricate messages 
by varying the sounds of their drumming. At sea mariners would open and 
close shutters on the signaling lamps, thus sending entire messages. 

These methods of communications suffer from several drawbacks. First, 
they work over limited distances, requiring relay operators for larger range. 
Second, they are not reliable; after the battle of Waterloo a signal lamp mes- 
sage over the English channel was received as ‘At Waterloo Nelson defeated 
. . . ’ with ‘Napoleon’ covered up by the fog. Nathan Rothschild made a for- 
tune buying up stocks on the plunging London exchange, knowing the truth 
through more reliable carrier pigeons. Third, these communications media 
are all broadcast, meaning that they can be intercepted by all. Although this 
is sometimes required it can also be a disadvantage. Settlers of the American 
West spotted Indian smoke signals and recognized that the enemy was close 
at hand. Finally, all these methods are multiple access with no signature, 
and can thus be easily forged (as the Samaritans did). 

The discovery of electric current by Stephen Gray of London in 1729 pro- 
duced a new medium for reliable communications over distances, removing 
many of the disadvantages of previous methods. In 1747, William Watson 
laid 1200 feet of wire over Westminster bridge, touching one end to the wa- 
ter of the Thames, and the other to a charged Leiden jar; a man touching 
the jar with his feet in the river received a shock. It took a while longer 
to realize that the flow of current could be detected by its lighting a light 
or moving an armature. In 1844, Samuel Morse telegraphed the message 
‘What hath God wrought?’ over an electric cable, ushering in a new era for 
humankind. Morse’s telegraph could distinguish between two states, current 
flowing or not, and so Morse had to devise a code to efficiently send letters of 
the alphabet using only two-state signals. The Morse code represents letters 
using combinations of s = 0 and s = 1 values; s = 0 are used as dividers, 
while s = 1 may occur in short durations (called a dot) or three times that 
duration (called a dash). The letter ‘E’ is encoded as a dot, that is, by a sin- 
gle s = 1, and thus only requires 1 time unit to transmit (although it must 
be followed by a single s = 0 inside a word and by three consecutive s = 0 
at the end of a word). The letter ‘Q’ is encoded as dash, dash, dot, dash, 
occupying 13 basic time intervals. The entire Morse code is presented in 
Table 18.1. In 1866, the first transatlantic cable was laid, for the first time 
linking America and Europe by an almost instantaneous communications 
medium (unfortunately, it failed within a month). 
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I . . S . . . ? .,--.. 8 ---.. 
J .--- T - _ _ . . . _ 9 -----. 

Table 18.1: The Morse code. Every letter, number, or punctuation mark is assigned a 
unique combination of dots and dashes. 

Telegraphy using Morse code still had a few disadvantages. It was rel- 
atively slow and error prone. It required skilled telegraphers at both ends 
and could not be directly used by individuals. Unless special codes were 
employed the messages could be read by others, and it was difficult to au- 
thenticate the sender’s identity. For some time people strived to mechanize 
the transfer of text using the Morse code, but this was a difficult task due to 
the variable-length characters. In 1875, Emile Baudot from France created 
a new code, one optimized for mechanized text transfer. In the Baudot code 
each letter took five equal time units, where each unit could be current flow 
(ma&) or lack thereof (space). Actual commercial exploitation of this code 
began in early twentieth century, under the trademark name teletype. 

A further breakthrough was announced within a year of Baudot’s code 
when, on March 10, 1876, Dr. Alexander Graham Bell in Boston and Elisha 
Gray in Chicago both filed for patents for a new invention, later to be called 
the telephone. Like the telegraph it used voltage signals traveling over a wire, 
but rather than being simple on-off, these signals carried a voice. Eventually, 
Dr. Bell won the protracted legal battle that reached the level of the US. 
Supreme Court. The telephone could be placed in every home, and used by 
anyone without the need for intervention of skilled middlemen. For the first 
time,point-to-point communication was direct, reliable, relatively private, 
and the voice of the person at the other end could be recognized. 

Another development was born out of a purely mathematical insight. 
In 1865, James Clerk Maxwell wrote down differential equations describing 
all that was then known about electricity and magnetism. These equations 
described how an electric charge created an electric field (Coulomb’s law), 
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how an electric current created a magnetic field (Ampere’s law), and how 
a changing magnetic field created an electric field. Far away from currents 
and charges the equations 

VE = 0 V-B = 0 
1 aB Ox-ii = -;Jj- Vii3 = 0 - - 

were obviously not symmetric. To make them completely symmetric Maxwell 
hypothesized that a changing electric field could induce a magnetic field, 

VE = 0 VB = 0 

vxk = -;-J-f 1 i3B 
- VxB = +g 

- 

a phenomenon that had not previously been observed. These new equations 
admitted a new type of solution, a changing electric field inducing a changing 
magnetic field reinforcing the original changing electric field. This electro- 
magnetic field could travel at the speed of light (not surprising since light is 
exactly such a field) and carry a signal far away without the need for wires. 
In 1887, Hertz performed an experiment to test Maxwell’s purely theoretical 
prediction. He made sparks jump between two polished brass knobs sepa- 
rated by a small gap, and detected the transmitted electromagnetic waves 
using a simple receiver of looped wire and similar knobs several meters away. 

Radio waves can carry Morse or Baudot code by transmitting or not 
transmitting (on-off keying). They can also carry voice by continuously 
changing some characteristic of the field, such as its amplitude (AM) or 
frequency (FM). In the next section we will learn how this can be done. 

EXERCISES 

18.1.1 Compute the time durations of the 26 letters in Morse code. What is the 
average duration assuming all characters are equally probable? What is the 
average duration assuming that the letter probabilities are roughly E:12%, 
TAOINS:8%, HRDLU:4%, MCFGPB:2%, and all the rest 1%. Is Morse 
code better or worse than Baudot code for actual text? 

18.1.2 Write a program that inputs a text file and outputs Morse code. You will 
need a computer with minimal sound capabilities. Whenever s = 1 play a 
tone (1000 Hz is good). Make the speed an adjustable parameter, specified in 
words per minute (figure an average word as 5 characters). Add an option to 
your program to output two different tones, a high-frequency tone for s = 1 
and a low-frequency one for s = 0. 
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18.1.3 Modify the above program to output a file with sampled signal values (use 
a sampling rate of 8000 Hz and a tone of 750Hz). Now write a program that 
inputs this file and decodes Morse code (converts signal values back to text). 
Improve your program to take into account small amounts of noise and small 
variabilities in speed (and add these features to the generating program). Do 
you think you could write a program to read Morse code sent by hand on a 
noisy channel? 

18.2 Analog Modulation Types 

In our historical discussion we carefully avoided using the word ‘modulation’; 
we now just as carefully define it. 

Definition: modulation 
Modulation is the exploitation of any observable characteristic of a signal 
to carry information. The signal whose characteristics are varied is called 
a carrier. We modulate the carrier by the information signal in order to 
create the modulated signal, and demodulate the modulated signal in order 
to recover the information signal. The systems that perform these functions 
are called the modulator and demodulator, respectively. n 

Modulation is used whenever it is not possible or not convenient to con- 
vey the information signal directly. For example, a simple two station inter- 
com will probably directly transmit the voice signals (after amplification) 
from one station to another over a pair of wires. This scenario is often called 
baseband transmission. A more sophisticated intercom system may modu- 
late a radio signal, or the AC power signal, in order to eliminate the need 
for wires. The public switched telephone network uses wires, but maximizes 
their utilization by modulating a single base signal with a large number of 
subscriber signals. 

Perhaps the simplest signal that is used as a carrier is the sinusoid. 

s(t) = Acos(2rft + 4) (18.1) 

For example, the very existence of the carrier can be used to send Morse or 
Baudot code. This is called On-Off Keying (OOK) and mathematically is 
represented by 

SooK = A(t) cos(2d t) (18.2) 
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C 

Figure 18.1: Amplitude modulation changes the amplitude of a carrier in accordance to 
a modulating signal. In (A) we see the carrier, in (B) a sinusoidal modulating signal, and 
in (C) the resulting AM signal (the modulation index was 75%). 

where A(t) takes the values zero or one, fc is the carrier frequency, and (with- 
out limiting generality) we choose the phase to be zero. In order to carry 
voice or other acoustic modulating signals w(t), we need more freedom. Now 
equation (18.2) is strongly reminiscent of the instantaneous representation 
of a signal of equation (4.66); but there the amplitude A(t) was a continu- 
ously varying function. This leads us to the idea of conveying a continuously 
varying analog signal v(t) by varying the carrier’s amplitude 

SAM@> = Ao (1 + mAM v(t)) co@f,t) 

where we assume Iv(t) 1 < 1. This modulation technique, known as Amplitude 
Modulation (AM), is depicted in Figure 18.1. The coefficient 0 < ?nAM 5 1 
is known as the modulation index, and is often specified as a percentage. 

Amplitude is not the only signal characteristic that one can modulate. 
The sinusoidal carrier of equation (18.1) has two more characteristics that 
may be varied, the frequency f and the phase 4. Morse- or Baudot-encoded 
text may be sent by Frequency Shift Keying (FSK), that is, by jumping 
between two frequencies. 

s,,,(t) = Aces (%rf(t) t + 4) (18.4) 
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C 

Figure 18.2: Frequency modulation changes the frequency of a carrier in accordance to 
a modulating signal. In (A) we see the carrier, in (B) a sinusoidal modulating signal, and 
in (C) the resulting FM signal. 

Here it is f(t) that can take on two different values. The third alternative is 
called Phase Shift Keying (PSK), 

sps&) = &OS (Wd + 4(t)) 

where 4(t) can take on two values (e.g., 0” and lSO”). Similarly, voice can 
be transmitted by Frequency Modulation (FM) and by Phase Modulation 
(PM), as will be explained in the next section. For example, in Figure 18.2 
we see the frequency of a sinusoid continuously varying in sinusoidal fashion. 

We have still not exhausted the possibilities for modulation. The sinu- 
soid, although the most prevalent carrier, is not the only signal that can 
be modulated. An alternative is to start with a train of pulses and modify 
their amplitudes (PAM), their relative timing (PPM) or their pulse widths 
(PWM). Another common occurrence is secondary modulation where mod- 
ulated signals are used to modulate a second signal. For example, several 
AM-modulated voice signals may be used to frequency modulate a wide- 
band radiotelephone link carrier. Sometimes it seems that the number of 
different modulation techniques that have been used in communications sys- 
tems equals the number of communications systems designers. 
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EXERCISES 

18.2.1 Why is equation (18.3) not simply Aov(t) cos(27rf,t)? Plot sinusoidally mod- 
ulated AM signals for various values of modulation index. What index do 
you think should be used? 

18.2.2 Write a program that generates an AM-modulated wave. (For concreteness 
you may assume a sampling frequency of 2.048 MHz, a carrier of 455 KHz, 
and take the modulating signal to be a sinusoid of frequency 5 KHz.) Plot 1 
millisecond of signal. What does the spectrum look like? 

18.2.3 Why do we prefer sinusoidal carriers to other waveforms (e.g., square waves)? 

18.2.4 Can we simultaneously modulate with AM and FM? AM and PM? FM and 
PM? 

18.3 AM 

Now that we know what modulation is, we can commence a more systematic 
study of modulated signals and the signal processing systems used to mod- 
ulate and demodulate. For now we are only interested in modulating with 
continuous analog signals such as speech; digital modulation will be treated 
later. 

How can we create an amplitude modulated signal using analog electron- 
ics? The simplest way would be to first create the carrier using an oscillator 
set to the desired frequency. Next the output of this oscillator is input to 
an amplifier whose gain is varied according to the modulating signal (see 
Figure 18.3). Since both oscillators and variable gain amplifiers are stan- 
dard electronic devices, building an AM transmitter in analog electronics 

oscillator 
c 

v amplifier 
A 

I 

microphone I 

Figure 18.3: The basic analog AM transmitter built from an oscillator and a variable gain 
amplifier. The oscillator has a single parameter fc that is not varied during transmission. 
The amplifier’s gain parameter A is varied according to the signal. The inverted 
at the top right is the conventional graphic representation of an antenna. 

triangle 
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is straightforward. Of course there are lots of technical details to be dealt 
with, such as guaranteeing oscillator frequency stability, ensuring that the 
microphone’s output is sufficiently strong, keeping the amplifier in its linear 
range, band-pass filtering the signal to avoid interference to nearby receivers, 
matching the input impedance of the amplifier with the output impedance 
of the oscillator, etc. Failing to properly cope with any of these details will 
result in inefficiency, low or distorted audio, or interference. 

Wouldn’t it be simpler to implement the AM transmitter using DSP? 
The analog oscillator and amplifier could be replaced with digital ones, and 
using correct digital techniques there will be no problems of efficiency, fre- 
quency stability, amplifier stability, impedance matching, etc. Although in 
principle this approach is correct, there are two practical problems. First, 
a digital amplifier by itself will only be sufficient for very low-power appli- 
cations; in order to supply the high power usually needed (from about ten 
watts for mobile radios to many thousands of watts for broadcast stations) 
an additional analog power amplifier will usually be needed. Second, the 
bandwidth B W of the audio frequencies (AF) is usually much lower than 
the radio frequency (RF) of fc. Directly implementing Figure 18.3 digitally 
would require us to operate at a sampling rate over twice fC + BW, which 
would be extremely wasteful of computational power. Instead we can per- 
form all the computation at an intermediate frequency (IF) and then upmix 
the signal to the desired radio frequency. Figure 18.4 shows a hybrid AM 
transmitter that utilizes digital techniques for the actual modulation and 
analog electronics for the upmixing and power amplification. 

Now that we know how to transmit AM we need a receiver to demodulate 
our AM transmission. The simplest analog receiver is the envelope detector, 

synthesizer = 

digit al 
oscillator 

digit al 
amplifier - D/A - mixer . = 

power 
amplifier 

7 

Figure 18.4: The basic hybrid digital-analog AM transmitter. The digital components 
operate at an intermediate frequency and at low power. After conversion to the analog 
domain the signal is upmixed to the desired carrier frequency and amplified to the required 
output power. The synthesizer is a (digital) local oscillator. 
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Figure 18.5: The basic analog envelope detector for the demodulation of AM signals. 
In (A) we see the AM signal to be demodulated. After half wave rectification the signal 
depicted in (B) results. Subsequent low-pass filtering removes the RF and leaves (C) the 
desired AF to within DC. 

the operation of which can be best understood by studying Figure 18.5. Since 
the desired signal is the ‘envelope’ of the received signal, it can be retrieved 
from either the top or bottom of Figure 18.5.A by connecting the peaks. 
Choosing to use the top half, half wave rectification results in the signal 
of Figure 18.5.B. We next low-pass filter this signal in order to remove the 
high-frequency RF, leaving only the envelope as in Figure 18.5.C (with a 
strong DC component). This filtering is performed by placing the rectified 
signal onto a capacitor that charges up to the voltage peaks and slowly 
interpolates between them. Finally a DC blocking filter is used to remove 
the 1 from 1 + v(t). 

Unfortunately, the envelope detector is ill suited to digital implementa- 
tion. It assumes fc to be very high compared to fm, otherwise the envelope 
will not be well sampled, and thus downmixing to a low IF will decrease its 
efficacy. More importantly, in order to actually see the analog signal’s peaks 
in its digital representation, a sampling frequency much higher than Nyquist 
is required. Even sampling at several times Nyquist we can not expect most 
of the sampling instants to fall close enough to the peaks. 

A better way of digitally performing AM demodulation is to use the 
instantaneous representation of Section 4.12. There are two closely related 
ways of doing this. The first is to apply the Hilbert transform to the IF signal 
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and to obtain the instantaneous amplitude by the square root of the sum 
of the squares. The second involves a complex downmix to zero including a 
complex low-pass filter to remove everything except the frequency compo- 
nents from zero to BW. We can then proceed to obtain the instantaneous 
amplitude as before. These methods of digital AM demodulation do not 
require high fC and function with sampling frequencies close to Nyquist. 

Up to now we have been thinking of AM only in the time domain. What 
does the spectrum of an AM signal look like? We’ll first consider modulating 
with a single sinusoid, so that equation (18.3) becomes 

SAM@) = Ao (1 + mAM C+ht)) COs(w,t) (18.6) 

where wm and wC are the modulating and carrier angular frequencies. A little 
algebra proves 

SAM(t) = A0 COS(W,~) + A0 UJAM COS(W,~) COS(W,~) (18.7) 

A0 = A0 COS(W,~) + mAMy ( COS(W, + u,)t + COS(W~ - w,)t) 

so that the spectrum contains three discrete lines, one corresponding to the 
original carrier frequency, and two lines at the carrier plus and minus the 
modulation frequency (Figure 18.6.A). 

What if we modulate the carrier not with a single sinusoid but with 
a general signal w(t)? The modulating signal can be Fourier analyzed into 
a collection of sinusoids each of which causes two lines spaced fm away 
from the carrier. We thus obtain a carrier and two sidebands as depicted in 
Figure 18.6.B. The two sidebands are inverted in frequency with respect to 
each other but contain precisely the same information. 

-L A / !A 
Figure 18.6: The generation of sidebands of an AM signal. In (A) we modulate a sinusoid 
of frequency fc by a single sinusoid of frequency f7n to obtain an AM signal with three 
frequency lines, fc , fc f fm. In (B) we modulate a sinusoid by a signal with an entire 
spectrum of frequencies, conventionally depicted as a triangle. We obtain the carrier and 
two sidebands. 
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EXERCISES 

18.3.1 Our basic analog AM receiver assumed that only a single signal is received 
at the antenna, while in fact many signals are received simultaneously. One 
method of isolating the signal of interest uses a band-pass filter centered at fc ; 
the more conventional method uses a mixer and a band-pass filter centered at 
an intermediate frequency (IF). Diagram the two methods and discuss their 
advantages and disadvantages. 

18.3.2 Diagram an entire AM receiver including antenna, local oscillator and mixer, 
IF filter, a half wave rectifier, a low-pass filter, DC blocking filter, and speaker. 
Show representative signals at the output of each block. 

18.3.3 Implement a digital envelope detector. Create a sinusoidally modulated sig- 
nal with fc = 50, fm = 2, and sampling frequency fs = 500. Compare the 
demodulated signal with the correct modulating signal. Now decrease fs to 
200. Finally decrease fc to 10. What do you conclude? 

18.3.4 Show that half of the energy of an AM signal with index of modulation 
?nAM = 1 is in the carrier and one-quarter is in each of the sidebands. 

18.3.5 Double sideband (DSB) is a more energy-efficient variant of AM, whereby 
the carrier is removed and only the two sidebands are transmitted. Diagram 
a transmitter and receiver for DSB. 

18.3.6 Single sideband (SSB) is the most efficient variant of AM, whereby only a 
single sideband is transmitted. Diagram a transmitter and receiver for SSB. 

18.3.7 Can AM demodulation be performed by a filter? If yes, what is its frequency 
response? If not, what portion of the analog and digital detectors is not a 
filter? 

18.4 FM and PM 

You might expect that frequency modulation of a carrier A cos(w,t) with a 
signal w(t) would be accomplished by 

s(t) = Aces ( (We + mv(t)) t> (18.8) 

where rn is the index of modulation. Indeed the amplitude is constant and the 
frequency varies around the carrier frequency according to the modulating 
signal; yet this is not the way FM is defined. To see why not, assume that 
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Figure 18.7: Frequency modulation according to the naive 
artifacts. True frequency modulation should look sinusoidal. 

equation (18.8) has obvious 

the modulating signal v(t) is a sinusoid (let’s use sine rather than cosine this 
time) of frequency wm. 

s(t) = Aces ( (& + m sin@&)) t> 

Plotting this for time close to t = 0 results in a picture similar to 18.2.C, 
but for longer times we observe artifacts as in Figure 18.7. This is not what 
we expect from FM; in particular we want all the extrema of the signal 
to be those of the underlying carrier, whereas here we observe obviously 
nonsinusoidal extrema as well! 

The reason for this errant behavior is not hard to see. The signal can be 
rewritten 

s(t) = Aces (w,t + m t sin&,.$)) 

and so has phase swings that increase linearly with time. For large t the 
phase swings completely dominate the argument of the sine except in the 
immediate vicinity of the modulating sinusoid’s zeros, thus completely de- 
stroying the overall sinusoidal behavior. The solution to this problem is 
easy to see as well-we simply move the modulating sinusoid so that it is 
not multiplied by time 

s(t) = Aces (& + msin(w,t)) 

or for a more general modulating signal 

s(t) = Aces w,t + m PM v(t)) 

(18.10) 

(18.11) 

which is known as Phase Modulation (PM). 
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There is a more direct way to arrive at PM. We think of a carrier signal 
A cos(w,t + 4) as having a degree of freedom not previously exploited-the 
phase 4. Having the phase vary with the modulating signal will create an 
information-bearing signal from which the modulating signal may be later 
retrieved, at least assuming the phase does not vary too much. We can use 
the PM index of modulation mPM to ensure that the phase deviation does 
not exceed 27r, the point where ambiguity would set in. 

True frequency modulation is similar to phase modulation, but not iden- 
tical. Recalling equation (4.72) we realize that we can make the instan- 
taneous frequency vary with a modulating signal by phase modulating by 
that signal’s integral. If that is done, the information-bearing signal has no 
unwanted artifacts, and phase recovery followed by differentiation indeed 
restores the modulating signal. 

s(t) = ACOS w,t + VIFM (18.12) 

For a modulating signal that consists of a single sinusoid, the entire difference 
between PM and FM is a phase shift and a change in the modulation index; 
for a more general modulating signal, FM and PM are less compatible. The 
integral of v(t) = sin(w,t) is -& cos(wt) , and so high-frequency Fourier 
components of v(t) are much weaker in FM than in PM, a phenomenon 
known as de-emphasis. A PM signal heard on an FM receiver has too much 
treble and sounds ‘tinny’, while using a receiver designed for PM to intercept 
an FM signal produces a ‘bassy’ sound. FM may be generated using a PM 
transmitter, if pre-emphasis is performed on the modulating audio in order 
to compensate for the later loss of high frequencies. 

The PM/FM transmitter is very similar to the AM one, with the ex- 
ception that the amplified microphone voltage is used to vary the phase 
rather than the amplitude of the carrier; but how do we make an analog 
FM receiver? One way is to use frequency-to-voltage conversion to convert 
the received FM signal into an AM one. An FM discriminator is a circuit 
with gain that varies linearly with frequency, and can thus be used for the 
frequency-to-voltage conversion. 

The digital FM receiver can derive the instantaneous frequency from the 
instantaneous phase through differentiation. Were we to drastically over- 
sample we could get by with the simple difference, since 

qqt + st> - 4(t) - &t) 6t 
as long as the phase behaves approximately linearly in the time interval 6t. 
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For more rapidly varying phases we must use a true differentiation filter (see 
Section 7.3). 

The instantaneous phase signal is bounded in the interval between -r 
and 7r (or perhaps [0 . . .27r]) and has discontinuities when it crosses these 
boundaries. These phase jumps have no physical meaning, they are simply 
artifacts of the nonuniqueness of inverse trigonometric functions. Differenti- 
ation of such discontinuities would give rise to tremendous unphysical spikes 
in the frequency demodulation. Hence we must first unwrap the phase be- 
fore differentiation. This can be done by setting a phase change threshold, 
and adding ~t27r whenever the phase jumps by more than this threshold. 
For oversampled signals this threshold can be relatively small, but close to 
Nyquist it must be carefully chosen in order to avoid unwrapping legitimate 
changes in phase. 

The unwrapped phase signal resulting from the above operation is con- 
siderably smoother than the original phase. If, however, the signal has not 
been correctly mixed down to zero frequency, the residual carrier frequency 
causes linear phase increase or decrease, which will eventually cause the 
phase to overflow. In sophisticated implementations one models this phase 
change by linear regression and corrects the mixer frequency accordingly. 
A simpler technique to avoid phase overflow is not to correct the phase at 
all, only the phase diference. Differentiation of the phase difference signal 
gives the frequency difference, and the actual frequency is found by adding 
the frequency difference to the previous frequency. This frequency is in the 
vicinity of the residual carrier frequency, and thus never overflows. 

An alternative method of phase differentiation is called the dual differ- 
entiator method. It exploits the fact that the specific differentiation to be 
performed is 

2!@(t) = -&an-’ (g) = tix-ky 
A2 (t> (18.13) 

2(t) + y2(t) is the amplitude detection. If we are interested 
in the frequency alone, we can limit the input signal (giving a constant 
amplitude) and then the above is directly proportional to the instantaneous 
frequency, If the amplitude is to be calculated in any event, it should be 
done first, and then a division carried out. 

We turn now to the spectrum of PM and FM signals, wondering whether 
there are sidebands here as there were in the AM case. Even if there are 
sidebands, they must be much different than those we saw for AM. For 
example, assume the power of the modulating signal increases. For AM the 
carrier remains unchanged and the sideband energy increases; for PM/FM 
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the total power must remain unchanged (otherwise there would be unwanted 
AM!) and thus an increase in sideband power must result in a decrease in 
carrier power. At some point the carrier will even have to entirely disappear! 
Using the same type of algebra that led to equation (18.7) we find 

s(t) = A cos (uct + m sin@&)) 

cos(wt) cos (m sin(w,t)) - sin(&) sin (m sin(w,t )) ) 

where m means m PM or mFMa Now cos(m sin(w&)) and sin(mFM sin&,&) 
are easily seen to be periodic signals with frequency wm. It turns out that 
these periodic functions have expansions in terms of the Bessel functions 
JO, J1, . . . (see A.l). 

sin(m sin(wt)) = 2 (J1 (m) sin(&) + J3 sin(3wt) + . l .) 

cos(m sin(wt)) = Jo(m) + 2 (&(m) sin(2wt) + Jd(m) sin(4wt) + a a .) 

Plugging these in, and using the trigonometric product identities (A.32) 
multiple times, we obtain the desired spectral representation. 

s(t) = A ( Jo(m) cos(wct) (18.14) 

+ Jl (m) ( cos ((h + w,)t) - cos ((w, - w,)t)) 

+ Jz(m> (cos (( w,+2w,)t) +cos((w, - 2w,)t)) 

+ J3(m)(c+Jc+3w,)t) -co+.+ - 3~449) ) 

+ *.. 

This is quite different from equation (18.7) with its sidebands at wC & +w,! 
Here we have an infinite number of sidebands at w, f kw, with amplitudes 
varying according to the Bessel functions. The carrier amplitude is propor- 
tional to JO and thus starts at unity for zero modulation index and decreases 
as m increases. All the sidebands start at zero amplitude for m = 0 and at 
first increase, but later oscillate. Of course, for constant modulation index 
m, the amplitude of the sidelobes tends to decrease with distance from the 
carrier. As a rough estimate we can say that &(m) is close to zero for n > m, 
so that the number of significant sidebands is 2n and the bandwidth is given 
by BW z 2nw,. 
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EXERCISES 

18.4.1 Prove that equation (18.9) has extrema other than those of the carrier by 
differentiating and setting equal to zero. 

18.4.2 Diagram an analog transmitter and receiver for FM. 

18.4.3 Find the spectral representation of the PM signal. 

s(t) = A cos (w,t + m cos(w,t)) 

18.4.4 AM reception suffers from noise more than FM does, for the simple reason 
that additive wideband noise directly changes the received signal’s amplitude, 
while most noise does not masquerade as frequency or phase changes. This is 
the reason FM is commonly used for high quality music broadcasting. Explain 
why FM receivers use a hard-limiter before the demodulator. 

18.4.5 Communications-grade FM receivers come equipped with a squelch circuit 
that completely silences the receiver when no FM signal is present. Explain 
how this works and why such a circuit is not used in AM receivers. 

18.4.6 What happens when two AM signals transmit too close together in fre- 
quency? What happens with FM? 

18.5 Data Communications 

Communications systems tend to be extremely complex. For example, a 
phone call starts with someone picking up the receiver (i.e., the telephone 
goes of--hook). This causes current to flow thus informing the local Central 
Office (CO) that service has been requested. The CO responds by sending 
a signal composed of two sinusoids of 350 and 440 Hz called dial tone to 
the customer and starting up a rotary dialing pulse decoder and a DTMF 
receiver. The customer hears the dial tone and starts dialing. As soon as 
the CO notes activity it stops sending dial tone and starts decoding and 
collecting the digits. At some point the CO realizes that the entire number 
has been dialed and decides whether the call is local, long distance, overseas, 
etc. If the called party belongs to the same CO the appropriate line must 
be found, and whether it is presently in use must be checked. If it is in 
use a busy signal (480+620 Hz one half-second on and one half-second off) 
is returned to the calling party; if not, an AC ring voltage is placed on it, 
and a ring-back signal (440+480 Hz one second on and three seconds off) 
returned until someone answers by going off-hook. However, if the phone call 
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must be routed to another CO, complex optimization algorithms must be 
called up to quickly determine the least expensive available way to connect 
to the desired party. The calling CO then informs the called CO of the caller 
and callee phone numbers along a digital link using multifrequency tones or 
digital messages. The called CO then checks the called number’s line and 
either returns an indication of busy, or places ring voltage and returns an 
indication of ringing. Of course we haven’t mentioned caller identification, 
call waiting, billing, voicemail, etc. 

If making a telephone call is that complex behind the scenes, just think 
of what happens when you surf the Internet with a web browser! In order 
to facilitate comprehension of such complex systems, they are tradition- 
ally divided into layers. The popular Open Systems Interconnection (OSI) 
reference model delineates seven distinct layers for the most general data 
communications system, namely physical, datalink, network, transport, ses- 
sion, presentation, and application layers. At each layer the source can be 
considered to be communicating with the same layer of the destination via 
a protocol defined for that layer. In reality information is not transferred di- 
rectly between higher layers; rather it is passed down to the physical layer, 
sent over the communications channel, and then passed up through the lay- 
ers. Hence, each layer requires all the layers under it in order to function, 
directly accessing functions of the layer immediately beneath it and pro- 
viding functionality to the layer immediately above it. The physical layer 
contains specifications of the cables and connectors to be employed, the 
maximum allowed voltage levels, etc. It also defines the ‘line code’ (i.e., the 
modulation type that determines how the digital information influences the 
line voltage). The datalink layer specifications are responsible for detecting 
and correcting errors in the data over a link (between one node in a net- 
work and the next), while the network layer routes information from the 
point of origin through the network to the destination, and ensures that the 
network does not become congested. The transport layer guarantees reli- 
able source-to-destination transport through the network, while the session 
layer is where an entire dialog between the two sides is established (e.g., a 
user logs on to a computer) and maintained. The presentation layer trans- 
lates data formats and provides encryption-decryption services and, finally, 
the application (e.g., email, file transfer, remote log-on, etc.) is the most 
abstract layer, providing users with a comprehensible method of commu- 
nicating. Most of these layers do not require DSP. Their main function is 
packaging information into various-size ‘chunks’, tacking headers onto them, 
and figuring out where to send them. 
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EXERCISES 

18.5.1 Assume that someone uses a dial-up modem to connect to the World Wide 
Web. Try to identify as many communications protocols as you can, and at 
what OS1 layer(s) they operate. (Hint: The modem has connection, physi- 
cal layer transfer and perhaps error correction facilities. The application on 
the user’s computer uses a serial protocol to communicate with the service 
provider. The Internet is based on TCP/IP. The web sits above the Internet.) 

18.5.2 Do we really need to divide communications systems into layers? If not, what 
are there advantages and disadvantages? 

18.6 Information Theory 

Digital communications involves reliably sending information-bearing sig- 
nals from a source through a channel to a destination. Were there no chan- 
nel this would be a trivial task; the problem is that the channel distorts 
and adds noise to the signal, adversely affecting the reliability. Basic physics 
dictates the (usually negative) effects of the channel, and signal processing 
knowledge helps design signals that get through these channels with minimal 
damage. 

As anyone who has ever been on the Internet knows, we always want to 
send the information from source to destination as quickly as possible. In 
order to measure the speed of the information transfer we need to know how 
much information is in an arbitrary message. This is the job of information 
theory. 

The basic tenet of information theory is that information content can 
always be quantified. No matter what form the information takes, text, 
speech, images, or even thoughts, we can express the amount of information 
in a unique way. We will always measure information content in bits. The 
rate of information transfer is thus measured in bits per second. 

Suppose that I am thinking of a number II: between 0 and 255 (for def- 
initeness, z = 137); how much information is transferred when I tell you 
that number? You probably know the answer to that question, exactly eight 
bits of information. Formally, the reason that a number between 0 and 255 
contains eight bits of information is that in general eight individual yes-no 
questions must be asked in order to find the number. An optimal sequence 
of questions is as follows: 
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&I: Is the x1 = x greater than or equal to 128? Al: Yes (x1 = 137 2 128). 
Q2: Isx2=x1- 128 greater than or equal to 64? A2 No (x2 = 9 < 64). 
Q3: Is x3 = x2 greater than or equal to 32? As: No (x3 = 9 < 32). 
Q4: Is x4 = x3 greater than or equal to 16? Ad: No (x4 = 9 < 16). 
Q5: Is x5 = x4 greater than or equal to 8? As: Yes (xg = 9 2 8). 
Q6: Is x6 = x5- 8 greater than or equal to 4? As: No (zfj = 1 < 4). 
Q7: Is x7 = 26 greater than or equal to 2? A7: No (x7 = 1 < 2). 
Qs: Is xp, = x7 equal to l? As: Yes (x7 = 1). 

Only the number 137 will give this particular sequence of yes-no an- 
swers, and interpreting yes answers as 1 and no answers as 0 produces the 
binary representation of x from MSB to LSB. Similarly we can determine 
the number of bits of information in arbitrary messages by constructing a 
set of yes-no questions that uniquely determines that message. 

Let’s assume a source wishes to convey to the destination a message 
consisting of an integer between 0 and 255. The transmitter needn’t wait for 
the receiver to ask the questions, since the questioning tactic is known. All 
the transmitter needs to do is to transmit the answers Al through Ag. 

Signals that carry information appear to be random to some extent. This 
is because information is only conveyed by surprising its receiver. Constant 
signals, constant amplitude and frequency sinusoids or square waves, convey 
no information, since one can predict exactly what the signal’s value will be 
at any time. Yet consider a signal that can take only two values, say s = 0 
or s = 1, that can change in value every T seconds, but remains constant 
between kT and (k + l)T. Such a signal is often called a Non Return to Zero 
(NRZ) signal, for reasons that will become clear shortly. If the signal jumps 
in an apparently randomly fashion between its two values, one can interpret 
its behavior as a sequence of bits, from which text, sound, or images may 
be derived. If one bit is inferred every T seconds, the information transfer 
rate is $ bits per second. 

According to this point of view, the more random a signal is, the higher 
its information transfer rate. Longer T implies a lower information transfer 
rate since the signal is predictable for longer times. More complex predictable 
behavior also reduces the information transfer rate. For example, a Return 
to Zero (RZ) signal (see Figure 18.8.B) is similar to the NRZ signal described 
above, but always returns to s = 0 for odd k (we count from k = 0). Since an 
unpredictable signal value only appears every 2T seconds, the information 
is transferred at half the rate of the NRZ signal. Predictability may be even 
more subtle. For example, the Manchester signal used in Ethernet LANs 
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Figure 18.8: Comparison of (A) NRZ, (B) RZ, and (C) Manchester signals. The message 
is 11100101 and our channel bandwidth requires transitions to be spaced T seconds apart. 
Using NRZ this message requires 8T seconds. RZ and Manchester both require 16T seconds 
to transmit the same message. 

(see Figure l&&C) encodes a binary one by having s = 1 for even Ic and 
s = 0 for the subsequent Ic + 1 interval; a zero is encoded by s = 0 followed 
by s = 1. Once again the information transfer rate is only half that of the 
NRZ signal, although the lack of randomness is less obvious. Whereas the 
NRZ signal has no correlation between signal values spaced T seconds apart, 
the Manchester signal never allows odd k intervals to have the same value 
as the previous even k interval. 

The moral is that any correlation between signal values at different times 
reduces the amount of information carried. An infinite amount of informa- 
tion is carried by a signal with no correlation between different times (i.e., 
by white noise). Of course a true white noise signal, which has frequency 
components up to infinite frequency, cannot pass unaltered through a chan- 
nel with finite bandwidth. Thus for a finite bandwidth channel, the signal 
with maximal information content is one whose sole predictability is that 
caused by the bandwidth constraint. Such a signal has a spectrum that is 
flat in the allowed pass-band. 

We can similarly define the information transfer rate when the signal 
may take on many values (called symbols), not just zero and one. A signal 
that can jump randomly every T seconds, but that is a constant s = 0, 1,2, 
or 3 in between these jumps, obviously carries 2 bits every T seconds, or $ 
bits per second. 

What if the different symbols are not equally probable? For example, a 
signal that takes on 26 values corresponding to a message containing text 
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in English would use the symbol corresponding to ‘E’ much more frequently 
than that corresponding to ‘Q’. Information theory tells us that a consistent 
measure of information of a single symbol s is the entropy 

H(s) = - ( logzp(s)) = - x P(S) log2 P(S) 
9 

(18.15) 

where s represents the possible signal values, and the triangular brackets 
stand for the expected value (see Appendix A. 13). 

To understand this result let’s return to the simple case of a sending a 
message that consists of a number z between 0 and 255. Before transmission 
commences, the receiver has no information as to the value of x other than 
the fact that it is between 0 and 255. Thus the receiver assigns an equal 
probability of & to each of the integers 0 . . . 255. A priori the transmitter 
may send a first symbol of 0 or 1 with probability 3. In the previous example 
it would send a 1; immediately the receiver updates its probability estimates, 
now 0. . . 127 have zero probability and 128.. .255 have probability 1 in 128. 
The receiver’s uncertainty has been reduced by a factor of two, corresponding 
to a single bit of information. Now the second answer (in our example a zero) 
is sent. Since the second answer is independent of the first, the probability 
of both answers is the product of the individual probabilities i . i = 1. 

14 Similarly, the probability of any particular sequence of three answers is 2 . 
1 1 ‘z-g= 8. 1 In general it is clear that after each subsequent answer is received 
the probability of the message is halved, as is the uncertainty of the receiver. 
After eight answers have been received the probability of the message has 
been reduced to & and all uncertainty removed. 

Now we prefer to think of information as being added after each answer 
has been received, although the probabilities were multiplied. The only way 
of making an arbitrary multiplication into an addition is to employ a log- 
arithmic relation, such as (18.15). If we wish each reduction of probability 
by a factor of one half to correspond to the addition of a single bit, the 
base of the logarithm must be 2 and a minus sign must be appended (since 
- log, $ = + log, 2 = 1). Thus, for our simple example, each answer Ai 
contributes 

I(Ai) = - log, p(Ai) = log2 $ = 1 

bits of information. The information of the sequence of answers is 

8 8 
I(x) = c I(Ai) = - c log,p(Ai) = 8 

i=l 

bits, as we claimed. 

i=l 
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The guessing game with yes-no questions is not restricted to determining 
numbers; it can be played for other types of messages. For example, in trying 
to ascertain which person in a group is intended we could progressively ask 
‘male or female?‘, ‘tall or short?‘, ‘light or dark hair?‘, etc. until only one 
person remains. Indeed after a little thought you will become convinced that 
every well-defined message can be encoded as a series of answers to yes-no 
questions. The minimal number of such questions needed to unambiguously 
recover the message intended is defined to be the information content of that 
message in bits. In communications we are mostly interested in the rate at 
which information can be transferred from source to destination, specified 
in bits per second. 

EXERCISES 

18.6.1 Consider a signal that can take one of two values, s = 0 with probability 
p and s = 1 with probability 1 - p. Plot the entropy of a single value as a 
function of p. Explain the position and value of the extrema of this graph. 

18.6.2 Compute the entropy in bits per character of English text. Use the proba- 
bilities from exercise 18.1.1 or collect histograms using some suitably large 
on-line text to which you have access. Is a byte required to encode each letter? 

18.6.3 Use a file compression program to reduce the size of some English text. What 
is the connection between final file size and entropy? 

18.6.4 Repeat the previous two exercises for other languages that use the same 
alphabet (French, Spanish, Italian, German, etc.). Can these probabilities be 
used to discriminate between different languages? 

18.6.5 What are the most prevalent pairs of letters in English? How can letter pairs 
be used to aid text compression? To aid in language identification? 

18.6.6 Using Table 18.1 compute the time durations of Morse code letters and sort 
them in increasing order. Did Morse maximize the information transfer rate? 

18.7 Communications Theory 

We have seen that all information can be converted into bits (i.e., into dig- 
ital information). Thus all communications, including those of an analog 
nature, can be performed digitally. That does not imply that all communi- 
cations should be performed digitally, since perhaps the conversion of analog 
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Figure 18.9: The conversion of an analog communications system into digital one. In (A) 
we see the original analog system. In (B) we have performed the separation into source 
and channel coding guaranteed by Shannon’s theorem. In (C) we add line coding in order 
to utilize an analog channel (EC stands for error correction). 

information into digital data, its transmission, reception, and reconversion 
into analog data would lead to a loss in quality or efficiency. In previous sec- 
tions we learned how to transmit analog signals using AM, FM, and other 
forms of analog modulations. With such robust analog techniques at our dis- 
posal it does not seem likely that the conversion to digital communications 
would be useful. 

In the late 194Os, Claude Shannon laid the mathematical framework for 
digital communications. Logically the first result, already deep and perhaps 
surprising, is that digital communications can always be used without sac- 
rificing quality or efficiency. More precisely, Shannon showed that one could 
separate any communications problem, including an analog one, into two 
independent parts, without sacrificing quality. He called these parts source 
coding and channel coding. Source encoding refers to the process of efficiently 
converting the source message into digital data (i.e., representing the mes- 
sage as a bit stream with minimal number of bits). Channel encoding means 
the method of selecting signals to be sent over the communications channel. 
The inverse operations are channel decoding and source decoding, which 
convert the received signals back into digital data and convert the digi- 
tal data back into the original message, respectively. By using this model, 
rather than directly transmitting an analog signal over an analog channel 
(Figure 18.9.A), we can efficiently convert an analog signal into a digital one, 
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send this essentially without error over a digital channel, and then recover 
the original signal (Figure 18.9.B). 

It should be stressed that Shannon’s separation of communications into 
two parts is fundamentally different from the OS1 separation of communi- 
cations into seven layers. There is no theory stating that the division of the 
OS1 model does not impair the communications system; the layers are only 
separated in order to facilitate human comprehension. In a similar fashion 
the channel coding of Shannon’s theorem is often further divided into two 
separate parts, error correction coding and line coding. An error correction 
code converts digital data into protected digital data, which can be trans- 
mitted over a digital channel with less fear of corruption due to noise. Of 
course all real transmission channels are analog, and so digital channels are 
actually an abstraction. The conversion of the (protected) digital signal into 
an analog one suitable for the physical transmission line is called line coding. 
The entire process is thus that of Figure 18.9.C. The division of the channel 
code into error correction code and line code is performed solely as an aid to 
the designers (it’s hard to find one person expert in both fields!) but is not 
guaranteed to be conserve optimality. Indeed one can increase performance 
by combining the two (see Section 18.19). 

Shannon’s theorem, although in many ways satisfying, has not yet con- 
vinced us to convert over to digital communications systems. All we have 
seen is that we have nothing to lose by converting; we have yet to see that 
we have something to gain. Can digital systems actually increase band- 
width efficiency, improve the quality, reduce the cost, or provide any other 
measurable advantage as compared with analog communications? Shannon 
affirmatively answered these questions in a series of theorems about source 
and channel coding. Source coding theorems are beyond the scope of our 
present treatment, yet we can readily understand how proper source and 
channel coding can help us attain some of these goals. 

For maximal efficiency source coding should produce a bit stream with 
no more bits than absolutely needed. We know that the minimal number of 
bits required to encode a message is the information (entropy), and thus the 
ideal source coder produces no more bits than entropy requires. For example, 
speech can be source encoded into 8 Kb/s or less (see Chapter 19) and there 
are modems (line codes) of over 32 Kb/s; hence using digital techniques one 
can transfer four conversations over a single telephone line. Thus proper 
source encoding can increase bandwidth efficiency. 

Digital compact disks have replaced analog long playing records mainly 
due to their superior audio quality. This quality is obtained because of the 
use of digital error correcting channel codes that guarantee accurate re- 
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production of the original sound. Analog music signals that have become 
contaminated with noise cannot generally be corrected, and the noise man- 
ifests itself as various hisses and pops. Thus proper channel encoding can 
indeed increase signal quality. 

While we will not delve into all of Shannon’s theorems, there is one 
that will be essential for us. Before Shannon, engineers knew that noise and 
interference on digital channels cause errors in the reconstructed bit stream; 
and they thought that there was only one way of overcoming this problem, by 
increasing the power of the communications signal. The principle in which all 
designers believed was that no matter what the noise or interference is like, 
if we transmit a strong enough signal it will wipe them out. Then there was 
the separate issue of bandwidth; the higher the bandwidth the more data 
one could reliably transfer in a given time. Thus common wisdom stated 
that the probability of error for digital communications was a function of 
the SNR, while the speed was determined by the bandwidth. Shannon’s 
capacity theorem completely changed this picture; by explaining that the 
SNR and bandwidth establish a maximum transmission rate, under which 
information could be transferred with arbitrarily low error rate. This result 
will be the subject of the next section. 

EXERCISES 

18.7.1 Shannon introduced entropy (defined in the previous section) in connection 
with source coding. The ultimate purpose of source coding is to produce no 
more bits than required by the entropy content of the source. When is simple 
A/D conversion the optimal source coding for an analog signal? What should 
one do when this is not the case? 

18.7.2 In order to achieve the maximum efficiency predicted by Shannon, source 
coding is often required even for digital data. Explain and give several exam- 
ples. (Hint: Data compression, fax.) 

18.7.3 The Baudot code and ASCII are source codes that convert letters into bits. 
What are the essential differences between them? Which is more efficient for 
the transfer of plain text? How efficient is it? 

18.7.4 In today’s world of industrial espionage and computer hackers sensitive data 
is not safe unless encrypted. Augment the diagram of Figure 18.9.C to take 
encryption into account. 

18.7.5 We often want to simultaneously send multiple analog signals (for example, 
all the extensions of an office telephone system) over a single line. This process 
is called multiplexing and its inverse demultiplexing, Show how this fits into 
Figure 18.9.C. 
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18.8 Channel Capacity 

The main challenge in designing the physical layer of a digital communica- 
tions system is approaching the channel capacity. By channel capacity we 
mean the maximum number of information bits that can be reliably trans- 
ferred through that channel in a second. For example, the capacity of a 
modern telephone channel is about 35,000 bits per second (35 Kb/s); it is 
possible to transfer information at rates of up to 35 kilobits per second with- 
out error, but any attempt at perfectly transferring more data than that will 
surely fail. 

Why is there a maximal channel capacity? Why can’t we push data as 
fast as we wish through a digital link? One might perhaps believe that the 
faster data is transmitted, the more errors will be made by the receiver; 
instead we will show that data can be received essentially without error up 
to a certain rate, but thereafter errors invariably ensue. The maximal rate 
derives from two factors, noise and finite bandwidth. Were there to be no 
noise, or were the channel to have unlimited bandwidth, there would be 
unlimited capacity as well. Only when there are both noise and bandwidth 
constraints is the capacity finite. Let us see why this is the case. 

Assume there is absolutely no noise and that the channel can support 
some range of signal amplitudes. Were we to transmit a constant signal of 
some allowable amplitude into a nonattenuating noiseless channel, it would 
emerge at the receiver with precisely the same amplitude. An ideal receiver 
would be able measure this amplitude with arbitrary accuracy. Even if the 
channel does introduce attenuation, we can precisely compensate for it by 
a constant gain. There is also no fundamental physical reason that this 
measurement cannot be performed essentially instantaneously. Accordingly 
we can achieve errorless recovery of an infinite amount of information per 
second. For example, let’s assume that the allowable signal amplitudes are 
those between 0 and 1 and that we wish to transmit the four bits 0101. 
We simply define sixteen values in the permissable range of amplitudes, and 
map the sixteen possible combinations of four bits onto them. The simplest 
mapping method considers this string of bits as a value between 0 and 1, 
namely the binary fraction 0.01012. Since this amplitude may be precisely 
measured by the receiver in one second, we can transfer at least four bits 
per second through the channel. Now let’s try to transmit eight bits (e.g., 
01101001). w e now consider this as the binary fraction 0.01101001~ and 
transmit a constant signal of this amplitude. Once again this can be exactly 
retrieved in a second and thus the channel capacity is above eight bits per 
second. In similar fashion we could take the complete works of Shakespeare, 
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Figure 18.10: The effect of noise on amplitude resolution. The minimum possible spacing 
between quantization levels is the noise amplitude N, and the total spread of possible signal 
values is the peak-to-peak signal amplitude S plus the noise N. The number of levels is 
thus the ratio between the signal-plus-noise and the noise, and the number of bits is the 
base-two logarithm of this ratio. 

encode the characters as bytes, and represent the entire text as a single 
(rather lengthy) number. Normalizing this number to the interval between 
0 and 1 we could, in principle, send the entire text as a single voltage in one 
second through a noiseless channel. This demonstrates that the information- 
carrying capacity of a noiseless channel is infinite. 

What happens when there is noise? The precision to which the amplitude 
can be reliably measured at the receiver is now limited by the noise. We can’t 
place quantization levels closer than the noise amplitude, since the observed 
signals would not be reliably distinguishable. As is clarified by Figure 18.10 
the noise limits the number of bits to the base-two logarithm of the signal- 
plus-noise-to-noise ratio, SNNR = SNR + 1. 

Of course, even if the noise limits us to sending b bits at a time, we can 
always transmit more bits by using a time varying signal. We first send b 
bits, and afterwards another b bits, then yet another b, and so on. Were 
the channel to be of unlimited bandwidth we could abruptly change the 
signal amplitude as rapidly as we wish. The transmitted waveform would 
be piecewise constant with sharp jumps at the transitions. The spectral 
content of such jump discontinuities extends to infinite frequency, but since 
our channel has infinite bandwidth the waveform is received unaltered at the 
receiver, and once again there is no fundamental limitation that hinders our 
receiver from recovering all the information. So even in the presence of noise, 
with no bandwidth limitation the channel capacity is effectively infinite. 

Signals that fluctuate rapidly cannot traverse a channel with finite band- 
width without suffering the consequences. The amount of time a signal must 
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remain relatively constant is inversely proportional to the channel band- 
width, and so when the bandwidth is BW our piecewise constant signal 
cannot vary faster than BW times per second. Were we to transfer an NRZ 
signal through a noisy finite-bandwidth channel we would transfer BW bits 
per second. By using the maximum number of levels the noise allows, we 
find that we can send BW loga SNNR bits per second. Slightly tightening 
up our arguments (see the exercises at the end of this section) leads us to 
Shannon’s celebrated channel capacity theorem. 

Theorem: The Channel Capacity Theorem 
Given a transmission channel bandlimited to BW by an ideal band-pass 
filter, and with signal-to-noise ratio SNR due to additive white noise: 

l there is a way of transmitting digital information through this channel 
at a rate up to 

C = BW log,(SNR + 1) (18.16) 

bits per second, which allows the receiver to recover the information with 
negligible error; 

l at any transmission rate above C bits per second rate no transmission 
method can be devised that will eliminate all errors; 

l the signal that attains the maximum information transfer rate is in- 
distinguishable from white noise filtered by the channel band-pass filter. H 

As an example of the use of the capacity theorem, consider a telephone 
line. The SNR is about 30 dB and the bandwidth approximately 3.5 KHz. 
Since SNR >> 1 we can approximate 

c = BW log,(SNR + 1) * BWlog, SNR = BW SNRm 
10 log,, 2 

,BW%$!z? 

and so C is about 35 Kb/s. 
What the channel theorem tells us is that under about 35 Kb/s there 

is some combination of modulation and error correcting techniques that 
can transfer information essentially error-free over telephone lines. We will 
see later that V.34 modems presently attain 33.6 Kb/s, quite close to the 
theoretical limit. There will occasionally be errors even with the best modem, 
but these are caused by deviations of the channel from the conditions of 
the theorem, for example, by short non-white noise spikes. The reader who 
presently uses 56 Kb/s modems or perhaps DSL modems that transmit over 
telephone lines at rates of over 1 Mb/s can rest assured these modems exploit 
more bandwidth than 3.5 KHz. 
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The last part of the capacity theorem tells us that a signal that optimally 
fills the channel has no structure other than that imposed by the channel. 
This condition derives from the inverse relation between predictability and 
information. Recall from Section 5.2 that white noise is completely unpre- 
dictable. Any deviation of the signal from whiteness would imply some pre- 
dictability, and thus a reduction in information capacity. Were the signal to 
be of slightly narrower bandwidth, this would mean that it obeys the differ- 
ence equation of a band-pass filter that filters it to this shape, an algebraic 
connection between sample values that needlessly constrains its freedom to 
carry information. 

The channel capacity theorem as expressed above is limited by two con- 
ditions, namely that the bandwidth is filtered by an ideal band-pass filter, 
and that the noise is completely white. However, the extension to arbitrary 
channels with arbitrary stationary noise is (at least in principle) quite sim- 
ple. Zoom in on some very small region of the channel’s spectrum; for a small 
enough region the attenuation as a function of frequency will be approxi- 
mately constant and likewise the noise spectrum will be approximately flat. 
Hence for this small spectral interval the channel capacity theorem holds and 
we can compute the number of bits per second that could be transferred us- 
ing only this part of the total spectrum. Identical considerations lead us to 
conclude that we can find the capacities of all other small spectral intervals. 
In principle we could operate independent modems at each of these spectral 
regions, dividing the original stream of bits to be transmitted between the 
different modems. Hence we can add the information rates predicted by the 
capacity theorem for all the regions to reach an approximate prediction for 
the entire spectrum. Let’s call the bandwidth of each spectral interval Sf, 
and the signal-to-noise ratio in the vicinity of frequency f we shall denote 
SNR(f). Then 

.- r 

C = xlog,(SNR(f) + 1) Sf 
s 

and for this approximation to become exact we need only make the regions 
infinitesimally small and integrate instead of adding. 

C= 
s 1%2(swf) + 1) df (18.17) 

We see that for the general case the channel capacity depends solely on the 
frequency-dependent signal-to-noise ratio. 

From the arguments that lead up to the capacity theorem it is obvious 
that the SNR mentioned in the theorem is to be measured at the receiver, 
where the decisions must be made. It is not enough to specify the transmitted 
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power at the frequency of interest P( f ) (measured in watts per Hz), since 
for each small spectral region it is this transmitted power times the line 
attenuation A(t) that must be compared to the noise power N(t) (also in 
watts per Hz) at that frequency. In other words, the SNR is P(f)A(t)/N(f), 
and the total information rate to be given by the following integral. 

c = log, 
I ( 

Kf M(t) 
N(f) + l df > 

(18.18) 

Unfortunately, equation (18.18) is not directly useful for finding the max- 
imal information capacity for the common case where we are given the line 
attenuation A(t), the noise power distribution N(f) and the total transmit- 
ted power P. r 

(18.19) 

In order to find the maximal capacity we have to know the optimal trans- 
mitter power distribution P(f). Should we simply take the entire power at 
the transmitter’s disposal and spread it equally across the entire spectrum? 
Or can we maximize the information rate of an arbitrary channel by trans- 
mitting more power where the attenuation and noise are greater? A little 
thought leads us to the conclusion that the relevant quantity is the noise- 
to-attenuation ratio N(f)/A(f). I n re g ions where this ratio is too high we 
shouldn’t bother wasting transmitted power since the receiver SNR will end 
up being low anyway and the contribution to the capacity minimal. We 
should start spending power where the N/A ratio is lower, and expend the 
greatest amount of power where the ratio is lowest and thus the received 
SNR highest. 

In other words, we should distribute the power according to 

(18.20) 

where the value of 0 is determined by the requirement (18.19) that the total 
Power should equal P. Gallager called this the ‘water pouring criterion’. To 
understand this name, picture the attenuation to noise distribution ratio as 
an irregularly shaped bowl, and the total amount of power to be transmit- 
ted as the amount of water in a pitcher (Figure 18.11). Maximizing signal 
capacity is analogous to pouring the water from the pitcher into the bowl. 
Where the bowl’s bottom is too high no water remains, where the bowl is 
low the height of water is maximal. 
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Figure 18.11: The water pouring criterion states that the information rate is maximized 
when the amount of power available to be transmitted is distributed in a channel in the 
same way as water fills an irregularly shaped bowl. 

With the water pouring criterion the generalized capacity theorem is 
complete. Given the total power and the attenuation-to-noise ratio, we ‘pour 
water’ using equation (18.20) to find the power distribution of the signal with 
the highest information transfer rate. We can then find the capacity using the 
capacity integral (18.18). Modern modems exploit this generalized capacity 
theorem in the following way. During an initialization phase they probe the 
channel, measuring the attenuation-to-noise ratio as a function of frequency. 
One way of doing this is to transmit a set of equal amplitude, equally spaced 
carriers and measuring the received SNR for each. This information can 
then be used to tailor the signal parameters so that the power distribution 
approximates water pouring. 

EXERCISES 

188.1 SNR always refers to the power ratio, not the signal value ratio. Show that 
assuming the noise is uncorrelated with the signal, the capacity should be 
proportional to a log, SNR. 

18.8.2 Using the sampling theorem, show that if the bandwidth is W we can trans- 
mit 2W pulses of information per second. Jump discontinuities will not be 
passed by a finite bandwidth channel. Why does this not affect the result? 

18.83 Put the results of the previous examples together and prove Shannon’s the- 
orem. 

18.8.4 When the channel noise is white its power can be expressed as a noise power 
density No in watts per Hz. Write the information capacity in terms of BW 
and NO. 
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18.8.5 

18.8.6 

Early calculations based on Shannon’s theorem set the maximum rate of 
information transfer lower than that which is now achieved. The resolution 
of this paradox is the improvement of SNR and methods to exploit more of 
the bandwidth. Calculate the channel capacity of a telephone line that passes 
from 200 Hz to 3400 Hz and has a signal-to-noise ratio of about 20-25 dB. 
Calculate the capacity for a digital telephone line that passes from 200 Hz to 
3800 Hz and encodes using logarithmic PCM (12-13 bits). 

The ‘maximum reach’ of a DSL modem is defined to be the distance over 
which it can function when the only source of interference is thermal white 
noise. The attenuation of a twisted pair of telephone wires for frequencies 
over 250 KHz can be approximated by 

A(f) = e -s(nq/7+nsf)L 

where L is the cable length in Km. For 24-gauge wire ~1 = 2.36. 10s3, K,Z = 
-0.34.10-8 and for thinner 26-gauge wire i~r = 2.98e10-3, ~2 = -1.06~10-8. 
Assume that the transmitter can transmit 13 dBm between 250 KHz and 5 
MHz and that the thermal noise power is -140 dBm per Hz. Write a program 
to determine the optimal transmitter power distribution and the capacity for 
lengths of 1, 2, 3, 4, and 5 Km. 

18.9 Error Correcting Codes 

In order to approach the error-free information rate guaranteed by Shannon, 
modem signals and demodulators have become extremely sophisticated; but 
we have to face up to the fact that no matter how optimally designed the 
demodulator, it will still sometimes err. A short burst of noise caused by a 
passing car, a tone leaking through from another channel, changes in channel 
frequency characteristics due to rain or wind on a cable, interference from 
radio transmitters, all of these can cause the demodulator to produce a bit 
stream that is not identical to that intended. Errors in the reconstructed 
bit stream can be catastrophic, generating annoying clicks in music, causing 
transferred programs to malfunction, producing unrecoverable compressed 
files, and firing missile banks when not intended. In order to reduce the 
probability of such events, an error correcting code (ECC) may be used. 

Using the terminology of Section 18.7, an ECC is a method of channel 
encoding designed to increase reliability. Error correcting codes are indepen- 
dent of the signal processing aspects of the bit transfer (line coding); they 
are purely mathematical mechanisms that detect whether bits have become 
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corrupted and how to recover the intended information. How can bit errors 
be detected? Were we to send 00011011 and 01011010 was received instead, 
how could this possibly be discovered? The strategy is that after optimizing 
the source coding to use the minimal number of bits possible, the channel 
coding adds new bits in order to be able to detect errors. A parity bit is 
a simple case of this; to seven data bits we can add an eighth bit that en- 
sures that the number of ones is even. Any single-bit error will be detected 
because there will be an odd number of ones, but we will not know which 
bit is in error. A simplistic error correction scheme could send each bit three 
times in succession (e.g., send 000000000111111000111111 rather than di- 
rectly sending the message 00011011). Were any single bit to be incorrectly 
received (e.g. 000010000111111000111111), we could immediately detect this 
and correct it. The same is true for most combinations of two bit errors, but 
if the two errors happen to be the same bit triplet, we would be able to 
detect the error but not to correctly correct it. 

The error detection and correction method we just suggested is able 
to correct single-bit errors, but requires tripling the information rate. It 
turns out that we can do much better than that. There is a well-developed, 
mathematically sophisticated theory of ECCs that we will not be able to 
fully cover. This and the next two sections are devoted to presentation of 
concepts of this theory that we will need. 

All ECCs work by allowing only certain bit combinations, known as 
codewords. The parity code only permits codewords with an even number of 
ones; thus only half the possible bitvectors are codewords. The bit tripling 
ECC works because only two of the eight possible bit triplets are allowed; 
thus of the 2 31c bitvectors of length 3k, only one out of every eight are 
codewords. 

The second essential concept is that of distance between bitvectors. The 
most commonly used distance measure is the Humming distance cl&, b2). 
(the same Hamming as the window). The Hamming distance is defined as the 
number of positions in which two bitvectors disagree (e.g., d(0011,0010) = 
1). For bitvectors of length N, 0 5 d(bl, bz) 5 N and d(bl, b2) = 0 if and 
only if br = bf2. 

If we choose codewords such that the minimum Hamming distance dmin 
between any two is M, then the code will be able to detect up to M-l errors. 
Only if M errors occur will the error go unnoticed. Similarly, a code with 
minimum Hamming distance M will be able to correct less than i M errors. 
Only if there are enough errors to move the received bitvector closer to 
another codeword (i.e., half the minimum Hamming distance) will choosing 
the closest codeword lead to an incorrect result. 
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How do we protect a message using an error correcting code? One way 
is to break the bits of information into blocks of length k. We then change 
this k-dimensional bitvector into a codeword in n-dimensional space, where 
n > k. Such a code is called an n/k rate block code (e.g., parity is a 8/7 block 
code while the bit tripling code is a 3/l block code). The codewords are sent 
over the channel and decoded back into the original k bits at the receiver. 
The processing is similar to performing FFTs on nonoverlapping blocks. 
Sometimes we need to operate in real-time and can’t afford to wait for a 
block to fill up before processing. In such cases we use a convolutional code 
that is reminiscent of a set of n FIR filters. Each clock period k new bits are 
shifted into a FIFO buffer that contains previously seen bits, the k oldest bits 
are shifted out, and then n bit-convolution computations produce n output 
bits to be sent over the channel. The buffer is called a shift register since the 
elements into and from which bits are shifted are single-bit registers. 

We can now formulate the ECC design task. First, we decide whether 
a block or convolutional code is to be used. Next, the number of errors 
that must be detected and the number that must be corrected are specified. 
Finally, we find a code with minimal rate increase factor n/k that detects 
and corrects as required. 

At first glance finding such codes seems easy. Consider a block code 
with given k. From the requirements we can derive the minimal Hamming 
distance between codewords, and we need only find a set of 2’ codewords 
with that minimal distance. We start with some guess for n and if we can’t 
find 2’ codewords (e.g., by random search) that obey the constraint we 
increase n and try again. For large block lengths k the search may take a 
long time, but it need be performed only once. We can now randomly map 
all the possible k-dimensional bitvectors onto the codewords and can start 
encoding. Since the encoding process is a simple table lookup it is very fast. 
The problem is with decoding such a code. Once we have received an n- 
dimensional bitvector we need to compute the Hamming distances to each 
of the 2k codewords and then pick the closest. This is a tremendous amount 
of work even for small k and completely out of the question for larger block 
lengths. 

Accordingly we will tighten up our definition of the ECC design problem. 
Our task is to find a code with minimal n/k that can be eficiently decoded. 
Randomly chosen codes will always require brute force comparisons. In order 
to reduce the computational complexity of the decoding we have to add 
structure to the code. This is done using algebra. 
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EXERCISES 

18.9.1 Consider the bit-tripling code. Assume the channel is such that the probabil- 
ity of an error is p (and thus the probability of a bit being correctly detected 
is 1 -p). Show that the average probability of error of the original bit stream 
is Per, = 3p2 (1 - p) + p3. Obviously, Per,. = p for p = 0 and p = 1. What is 
P,,,. for p = i? Graph Per,. as a function of p. For i < p < 1 we see that 
P,,,. > p, that is, our error correction method increases the probability of 
error. Explain. 

18.9.2 The bit-tripling code can correct all single-bit errors, and most two-bit errors. 
Starting with eight information bits, what percentage of the two-bit errors 
can be corrected? What percentage of three-bit errors can be detected? 

18.9.3 A common error detection method is the checksum. A checksum-byte is gen- 
erated by adding up all the bytes of the message modulo 256. This sum is then 
appended to the message and checked upon reception. How many incorrectly 
received bytes can a ‘checkbyte’ detect? How can this be improved? 

18.10 Block Codes 

About a year after Shannon’s publication of the importance of channel codes, 
Hamming actually came up with an efficiently decodable ECC. To demon- 
strate the principle, let’s divide the information to be encoded into four-bit 
blocks d&&do. Hamming suggested adding three additional bits in order 
to form a 7/4 code. A code like this that contains the original k informa- 
tion bits unchanged and simply adds n - k checkbits is called a systematic 
code. In the communications profession it is canonical to send the data first, 
from least to most significant bits and the checkbits afterward, thus the 
seven-dimensional codewords to be sent over the channel are the vectors 

(aOala2a3a4a5a6) = (&I!~&~~coc~c~). The checkbits are computed as linear 
combinations of the information bits 

CO = do + dl + d3 

Cl = dl+ d2 +d3 (18.21) 

c2 = do + d2 + d3 

where the addition is performed modulo 2 (i.e., using xor). If information 
bit do is received incorrectly then checkbits CO and cl will not check out. 
Similarly, an incorrectly received dr causes problems with co and ~2, a flipped 
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d2 means cl and c2 will not sum correctly, and finally a mistaken d3 causes 
all three checkbits to come out wrong. What if a checkbit is incorrectly 
received? Then, and only then, a single ci will not check out. If no checkbits 
are incorrect the bitvector has been correctly received (unless a few errors 
happened at once). 

The Hamming code is a linear code; it doesn’t matter if you sum (xor) 
two messages and then encode them or encode the two messages and then 
sum them. It is thus not surprising that the relationship between the Ic- 
dimensional information bitvector d and the n-dimensional codeword a can 
be expressed in a more compact fGhion using matrices, a = Gd - - -- - 

where all the operations are to be understood modulo 2. The n-by-k matrix 
G is called the generator matrix since it generates the codeword from the 
= 
information bits. All linear ECCs can be generated using a generator matrix; 
all systematic codes have the Ic-by-lc identity matrix as the top IG rows of G. 

The Hamming 7/4 code can correct all single-bit errors, and it is optim% 
since there are no 6/4 codes with this characteristic. Although it does make 
the job of locating the bit in error simpler than checking all codewords, Ham- 
ming found a trick that makes the job easier still. He suggested sending the 
bits in a different order, d3d2dlcldocpzo and calling them h7h&&&3h&. 
Now hr, h2 and h4 are both received and computed, and the correction pro- 
cess is reduced to simply adding the indices of the incorrect checkbits. For 
example, if hl and h2 don’t check out then h1+2 = h3 should be corrected. 

Hamming’s code avoids searching all the codewords by adding algebraic 
structure to the code. To see this more clearly let’s look at all the codewords 
(in the original order) 

0000000 1000101 0010110 1010011 
0001011 1001110 0011101 1011000 
0100111 1100010 0110001 1110100 

(18.22) 

0101100 1101001 0111010 1111111 

and note the following facts. Zero is a codeword and the sum (modulo 2) of 
every two codewords is a codeword. Since every bitvector is its own additive 
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inverse under modulo 2 arithmetic we needn’t state that additive inverses 
exist for every codeword. Thus the codewords form a four-dimensional sub- 
space of the seven-dimensional space of all bitvectors. Also note that the 
circular rotation of a codeword is a codeword as well, such a code being 
called a cyclic code. 

The weight of a bitvector is defined as the number of ones it contains. 
Only the zero vector can have weight 0. For the Hamming 7/4 code the min- 
imal weight of a nonzero codeword is 3 (there are seven such codewords); 
then there are seven codewords of weight 4, and one codeword of weight 7. 
If the zero codeword is received with a single-bit error the resulting bitvec- 
tor has weight 1, while two errors create bitvectors of weight 2. One can 
systematically place all possible bitvectors into a square array based on the 
code and weight. The first row contains the codewords, starting with the 
zero codeword at the left. The first column of the second row contains a 
bitvector of weight 1, (a bitvector that could have been received instead of 
the zero codeword were a single-bit error to have taken place). The rest of 
the row is generated by adding this bitvector to the codeword at the top of 
the column. The next row is generated the same way, starting with a dif- 
ferent bitvector of weight 1. After all weight 1 vectors have been exhausted 
we continue with vectors of weight 2. For the 7/4 Hamming code this array 
has eight rows of 16 columns each: 

0000000 
1000000 
0100000 
0010000 
0001000 
0000100 
0000010 
0000001 

1000101 
0000101 
1100101 
1010101 
1001101 
1000001 
1000111 
1000100 

0100110 
1100110 
0000110 
0110110 
0101110 
0100010 
0100100 
0100111 

. . . 1011001 0111010 

. . . 0011001 1111010 

. . . 1111001 0011010 

. . . 1001001 0101010 

. . . 1010001 0110010 

. . . 1011101 0111110 

. . . 1011011 0111000 

. . . 1011000 0111011 

1111111 
0111111 
1011111 
1101111 
1110111 
1111011 
1111101 
1111110 

In error correcting code terminology the rows are called cosets, and the 
leftmost element of each row the coset leader. Each coset consists of all the 
bitvectors that could arise from a particular error (coset leader). You can 
think of this array as a sort of addition table; an arbitrary element v is 
obtained by adding (modulo 2) the codeword at the top of its column a to - 
the coset leader at the left of its row e (i.e., v = a + e). 

The brute force method of decoding is now e&y to formulate. When a 
particular bitvector v is received, one searches for it in the array. If it is in 
the first row, then we conclude that there were no errors. If it is not, then 
the codeword at the top of its column is the most probable codeword and 



686 COMMUNICATIONS SIGNAL PROCESSING 

the coset leader is the error. This decoding strategy is too computationally 
complex to actually carry out for large codes, so we add a mechanism for 
algebraically locating the coset leader. Once the coset leader has been found, 
subtracting it (which for binary arithmetic is the same as adding) from the 
received bitvector recovers the most probable original codeword. 

In order to efficiently find the coset leader we need to introduce two 
more algebraic concepts, the parity check matrix and the syndrome. The 
codewords form a k-dimensional subspace of n space; from standard linear 
algebra we know that there must be an (n - k)-dimensional subspace of 
vectors all of which are orthogonal to all the codewords. Therefore there is 
an (n - k)-by-n matrix H called the parity check matrix, such that Ha = 0 -- 
for every codeword a. ItTactually easy to find H from the generatormatrix 

G since we require % Gd = 0 for all possible information vectors d, which 
= --- -- 
means the (n - k)-by-k matrix H G must be all zeros. Hence the parity check -- -- 
matrix for the 7/4 Hamming code is 

1101100 
H= 0111010 
= 

1011001 

as can be easily verified. The parity check matrix of a systematic n/k code 
has the (n - k)-by-(n - k) identity matrix as its rightmost n - k columns, 
and the rest is the transpose of the nonidentity part of the generator matrix. 

What happens when the parity check matrix operates on an arbitrary 
n-dimensional bitvector v = a + e? By definition the codeword does not 
contribute, hence H v = He the right-hand side being a (n - k)-dimensional -- -- 
vector called the syndro6. The syndrome is thus zero for every codeword, 
and is a unique indicator of the coset leader. Subtracting (adding) the coset 
from the bitvector gives the codeword. So our efficient method of decoding a 
linear code is simply to multiply the incoming bitvector by the parity check 
matrix to obtain the syndrome, and then adding the coset leader with that 
syndrome to the incoming bitvector to get the codeword. 

By mapping the encoding and decoding of linear ECCs onto operations 
of linear algebra we have significantly reduced their computational load. 
But there is an even more sophisticated algebraic approach to ECCs, one 
that not only helps in encoding and decoding, but in finding, analyzing, 
and describing codes as well. This time rather than looking at bitstreams 
as vectors we prefer to think of them as polynomials! If that seems rat her 
abstract, just remember that the general digital signal can be expanded as 
a sum over shifted unit impulses, which is the same as a polynomial in the 
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time delay operator x -l. The idea here is the same, only we call the dummy 
variable x rather than z-l, and the powers of x act as place keepers. The 
k bits of a message (d&r&~& . . . &-r) are represented by the polynomial 
d(x) = de + drx + d2x2 + d3x3 + . . . + dk-lx”-‘; were we to take x = 2 this 
would simply be the bits understood as a binary number. 

The polynomial representation has several advantages. Bit-by-bit addi- 
tion (xor) of two messages naturally corresponds to the addition (modulo 
2) of the two polynomials (not to the addition of the two binary numbers). 
Shifting the components of a bitvector to the left by r bits corresponds to 
multiplying the polynomial by xr. Hence a s.ystematic n/k code that encodes 
a k-bit message d into an n-bit codeword a by shifting it (n - k) bits to the 
left and adding (n - k) checkbits c, can be thought of as a transforming of a 
(k - l)-degree polynomial d(x) into a code polynomial a(x) of degree (n - 1) 
by multiplying it by the appropriate power of x and then adding the degree 
(n. - k - 1) polynomial c(x). 

a(x) = xn+d(x) + c(x) (18.23) 

Of course multiplication and division are defined over the polynomials, 
and these will turn out to be useful operations-operations not defined in 
the vector representation. In particular, we can define a code as the set of 
all the polynomials that are multiples of a particular generator polynomial 
g(x). The encoding operation then consists of finding a c(x) such that a(x) 
in equation (18.23) is a multiple of g(x). 

Becoming proficient in handling polynomials over the binary field takes 
some practice. For example, twice anything is zero, since anything xored with 
itself gives zero, and thus everything equals its own negative. In particular, 
x+x = 0 and thus x2 + 1 = x2 + (x + x) + 1 = (x + l)2; alternatively, 
we could prove this by x2 + 1 = (x + 1) (x - 1) which is the same since 
-1x 1. How can we factor x4 + l? x4 + 1 = x4 - 1 = (x2 + 1)(x2 - 1) = 
(x2 + 1)2 = (x + l)4. As a last multiplication example, it’s easy to show 
that (x3 + x2 + 1)(x2 + x + 1) = x5 + x + 1. Division is similar to the usual 
long division of polynomials, but easier. For example, dividing x5 + x + 1 
by x2 + x + 1 is performed as follows. First x5 divided by x2 gives x3, so 
we multiply x3 (x2 + x + 1) = x5 + x4 + x3. Adding this (which is the same 
as subtracting) leaves us with x4 + x3 + x + 1 into which x2 goes x2 times. 
This time we add x4 + x3 + x2 and are left with x2 + x + 1, and therefore 
the answer is x3 + x2 + 1 as expected, 

With this understanding of binary polynomial division we can now de- 
scribe how c(x) is found, given the generator polynomial g(x) and the mes- 
sage polynomial d(x). We multiply d(x) by xn-lc and then divide by g(x), the 
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remainder being taken to be c(z). This works since dividing x~-“~(x) + c(z) 
by g(x) will now leave a remainder 2c(z) = 0. For example, the 23/12 Golay 
code has the generator polynomial g(x) = 1+z+25+Z6+57+Zg+511; in 
order to use it we must take in 12 bits at a time, building a polynomial of 
degree 22 with the message bits as coefficients of the 12 highest powers, and 
zero coefficients for the 11 lowest powers. We then divide this polynomial 
by g(x) and obtain a remainder of degree 10, which we then place in the 
positions previously occupied by zeros. 

The polynomial representation is especially interesting for cyclic codes 
due to an algebraic relationship between the polynomials corresponding to 
codewords related by circular shifts. A circular shift by m bits of the bitvec- 
tor (aoal . . . a,-~) corresponds to the modulo n addition of r-n to all the 
powers of z in the corresponding polynomial. 

aox O+m mod n 
+ a12 

l+mmodn+ 
. . . + un-lx(n-l)+m mod n 

This in turn is equivalent to multiplication of the polynomial by xm modulo 
xn + 1. To see this consider multiplying a polynomial u(x) by x to form 
xu(x) = U()X+U1X2+...+Un-lXn. In general, this polynomial is of degree n 
and thus has too many bits to be a codeword, but by direct division we see 
that xn + 1 goes into it an-1 times with a remainder G(x) = an-1 + uex + 
C&1X2 + . . . + Un-2Xnw1. Looking carefully at G(Z) we see that it corresponds 
to the circular shift of the bits of u(x). We can write 

xu(x) = Un-l(Xn + 1) + C(X) 

and thus say that xu(x) and G(x) are the same modulo xn + 1. Simi- 
larly, (x2u(x)) mod (xn + 1) corresponds to a circular shift of two bits, 
and (xmu(z)) mod (xn + 1) to a circular shift of m bits. Thus cyclic codes 
have the property that if u(x) corresponds to a codeword, then so does 
(x%(x)) mod (xn + 1). 

In 1960, two MIT researchers, Irving Reed and Gustave Solomon, realized 
that encoding bit by bit is not always the best approach to error detection 
and correction. Errors often come in bursts, and a burst of eight consecutive 
bit errors would necessitate an extremely strong ECC that could correct 
any eight-bit errors; but eight consecutive bit errors are contained in at 
most two bytes, thus if we could work at the byte level, we would only need 
a two-byte correcting ECC. The simplest byte-oriented code adds a single 
checkbyte that equals the bit-by-bit xor of all the data bytes to a block of 
byte-oriented data. This is equivalent to eight interleaved parity checks and 
can detect any single byte error and many multibyte ones, but cannot correct 
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any errors. What Reed and Solomon discovered is that by using r checkbytes 
one can detect any T errors and correct half as many errors. Discussing the 
theory of Reed-Solomon codes would take us too far astray, but the basic 
idea is to think of the bytes as polynomials with bits as coefficients 

B(x) = b7x7 + b6x6 + b5x5 + b4x4 + b3x3 + b2x2 + blx + bo 

where the b, are bits. Dividing the bit stream into TI bytes and adding all 
these bytes together as polynomials 

co = Be(x) + Bl(X) + B2(x) + * * l + &-1 

results in the checkbyte mentioned above. Additional checkbytes can be 
generated that allow detection of the position of the error. 

EXERCISES 

18.10.1 A systematic code adds r = n - k checkbits and thus allows for 2r - 1 
different errors to be corrected. So for all single-bit errors (including errors 
of the checkbits themselves) to be corrected we require 2’ - 1 2 n = k + r. 
For k = 4 we require at least r = 3, i.e., a 7/4 code. What does this bound 
predict for the minimum sizes of systematic codes for k = 3,5,8,11,12,16? 

18.10.2 Find the codewords of the 7/4 Hamming code in Hamming’s order. Show that 
the inverse of every Hamming 7/4 codeword is a code word. Show that the 
sum (modulo 2) of every two codewords is a codeword. What is the minimum 
Hamming distance dmin ? Show that the code is not cyclic but that the code 
in the original order (as given in the text) is. 

18.10.3 In the 7/4 Hamming code the inverse of every codeword (i.e., with ones and 
zeros interchanged) is a codeword as well. Why? 

18.10.4 Why are systematic codes often preferred when the error rate is high? 

18.10.5 Find equations for the checkbits of the 9/5 Hamming code. How can the bits 
be arranged for the sum of checkbit indices to point to the error? How should 
the bits be arranged for the code to be cyclic? 

18.10.6 Show that over the binary field xn + 1 = (x + l)(xnwl + xnw2 + . . . + 1). 

18.10.7 The 16-bit cyclic redundancy check (CRC) error detection code uses the 
polynomial 1 + x5 + x12 + x l6 Write a routine that appends a CRC word . 
to a block of data, and one that tests a block with appended CRC. How can 
the encoding and decoding be made computationally efficient? Test these 
routines by adding errors and verifying that the CRC is incorrect. 
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18.10.8 To learn more about block codes write four programs. The first bencode 
inputs a file and encodes it using a Hamming code; the second channel inputs 
the output of the first and flips bits with probability p (a parameter); the third 
bdecode decodes the file with errors; the last compare compares the original 
and decoded files and reports on the average error Per,.. Experiment with 
binary files and plot the empirical P e,-,. as a function of p. Experiment with 
text files and discover how high p can be for the output to be decipherable. 

18.11 Convolutional Codes 

The codes we discussed in the previous section are typically used when 
the bits come in natural blocks, but become somewhat constraining when 
bits are part of real-time ‘bit signals’. The reader who prefers filtering by 
convolution rather than via the FFT (Section 15.2) will be happy to learn 
that convolutional codes can be used instead of block codes. Convolutional 
encoders are actually analogous to several simultaneous convolutions; for 
each time step we shift a bit (or more generally k bits) into a static bit 
buffer, and then output n bits that depend on the K bits in this buffer. We 
have already mentioned that in ECC terminology the static buffer is called 
a shift register, since each time a new bit arrives the oldest bit in the shift 
register is discarded, while all the other bits in the registers are shifted over, 
making room for the new bit. 

The precise operation of a convolutional encoder is as follows. First the 
new bit is pushed into the shift register, then all n convolutions are computed 
(using modulo two arithmetic), and finally these bits are interleaved into a 
new bit stream. If n convolutions are computed for each input bit the code’s 
rate is n/l. Since this isn’t flexible enough, we allow k bits to be shifted into 
the register before the n outputs bits are computed, and obtain an n/k rate 
code. 

The simplest possible convolutional code consists of a two-bit shift reg- 
ister and no nontrivial arithmetic operations. Each time a new bit is shifted 
into the shift register the bit left in the register and the new bit are out- 
put; In other words, denoting the input bits x~, the outputs bits at time n 
are x, and ~~-2. If the input bit signal is 1110101000 the output pn will 
be 11111100110011000000. A shift register diagram of the type common in 
the ECC world and the equivalent DSP flow diagram are depicted in Fig- 
ure 18.12. 
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Figure 18.12: A trivial convolutional code. In (A) we see the type of diagram used in 
error correcting code texts, while in (B) we have the conventional DSP flow diagram 
equivalent. The output bit signal is formed by interleaving the two outputs into a single 
bit stream, although this parallel to serial conversion is not explicitly shown. 

Why does this code work? As for block codes the idea is that not every 
combination of bits is a valid output sequence. We cannot say that given a 
bit the next bit must be the same, since we do not know whether the present 
bit is already the replica of the previous one. However, an isolated zero or 
one, as in the bit triplets 010 and 101, can never appear. This fact can be 
used to detect a single-bit error and even some double-bit errors (e.g., the 
two middle bits of 00001111). Actually all single-bit errors can be corrected, 
since with few errors we can easily locate the transitions from 1 to 0 and 
back and hence deduce the proper phase. 

In Figure 18.13 we see a somewhat more complex convolutional code. 
This code is universally the first presented in textbooks to demonstrate the 

A 

X,--t- Xn Xn-1 G-2 x:I...y: Y2n 

llY2n+ 1 

Figure 18.13: A simple convolutional code (the one universally presented in ECC texts). 
In (A) we see the ECC style diagram, while in (B) we have the conventional DSP flow 
diagram equivalent. Note that the addition in the latter diagram is modulo 2 (xor). 
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state input output new state 
O(O0) 0 WO) NW 
O(O0) 1 301) WO) 
l(O1) 0 Vl) ww 
l(O1) 1 w4 2w 
2(10) 0 Vl) Vl) 
2(10) 1 2(10) W) 
3(11) 0 2w ww 
3(H) 1 ml) 3(11) 

Figure 18.14: The function table and diagram for the simple convolutional code. There 
are four states and both the output and the new state are dependent on the state and 
the input bit. The new state is obtained by shifting the present state to the right and 
placing the input bit into the two’s place. In the diagram each arc is labeled by two binary 
numbers, input/output. 

principles of convolutional codes, and we present it in order not to balk 
tradition. Since there are two delay elements and at each time two bits are 
output, any input bit can only influence six output bits. We would like to 
call this number the ‘influence time’, but ECC terminology constrains us 
to call it the ‘constraint length’. Since the constraint length is six, not all 
combinations of seven or more consecutive bits are possible. For example, 
the sequence 00000010 is not a possible output, since six consecutive OS 
imply that the shift register now contains OS, and inputting a 1 now causes 
two 1s to be output. 

We have specified the output of a convolutional encoder in terms of the 
present and past input bits, just as we specify the output of an FIR filter in 
terms of the present and past input values. The conventional methodology 
in the ECC literature prefers the state-space description (see Section 6.3) 
where the present output bits are computed based on the present input and 
the internal state of the encoder. The natural way to define the internal 
state of the encoder is via the two bits x,-r and x,-2, or by combining 
these two bits into s = 2x,-r +x,+2 which can take on values 0, 1, 2, and 3. 
The encoder output can now be described as a function of the present input 
and the value of the internal state s. We tabulate this function and depict 
it graphically in Figure 18.14. In the figure each arc is labeled by a pair of 
numbers in binary notation. The first number is the input required to cause 
the transition from the pre-arc state to the post-arc one; the second number 
is the output emitted during such a transition. 
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n=O n=l n=2 n=3 n=4 n=5 n=6 

Figure 18.15: Trellis diagram for the simple convolutional code. We draw all the paths 
from state zero at n = 0 that return to state zero at time n = 6. 

Accepting the state-space philosophy, our main focus of interest shifts 
from following the output bits to following the behavior of the encoder’s 
internal state as a function of time. The main purpose of the encoder is to 
move about in state-space under the influence of the input bits; the output 
bits are only incidentally generated by the transitions from one state to 
another. We can capture this behavior best using a trellis, an example of 
which is given in Figure 18.15. A trellis is a graph with time advancing from 
left to right and the encoder states from top to bottom. Each node represents 
a state at a given time. In the figure we have drawn lines to represent all 
the possible paths of the encoder through the trellis that start from state 0 
and end up back in state 0 after six time steps. Each transition should be 
labeled with input and output bits as in Figure 18.14, but these labels have 
been hidden for the sake of clarity. 

How are convolutional codes decoded? The most straightforward way is 
by exhaustive search, that is, by trying all possible inputs to the encoder, 
generating the resulting outputs, and comparing these outputs with the 
received bit signal. The decoder selects the output bit sequence that is closest 
(in Hamming distance) to the bit signal, and outputs the corresponding 
input. In Table 18.2 we tabulate the output of the traditional convolutional 
code of Figure 18.13 for all possible six-bit inputs. Upon receiving twelve 
bits that are claimed to be the output of this coder from the all-zero initial 
state, we compare them to the right-hand column, select the row closest 
in the Hamming sense, and output the corresponding left-hand entry. This 
exhaustive decoding strategy rapidly gets out of hand since the number of 
input signals that must be tried increases exponentially with the number of 
bits received. We need to find a more manageable algorithm. 

The most commonly employed decoding method is the Viterbi algorithm, 
which is a dynamic programming algorithm, like the DTW algorithm of 
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000010 000000001110 000001 000000000011 ~~~~1 
010000 001110110000 010010 001110111110 

001000 000011101100 001010 000011100010 001001 000011101111 

~~~~~~ 
000101 000000111000 000111 000000110110 

010101 001110001000 010111 001110000110 

~~~~~‘~1 
011101 001101100100 011111 001101101010 
111101 110110100100 111111 110110101010 

Table 18.2: Exhaustive enumeration of the simple convolutional code (the one universally 
presented in ECC texts). We input all possible input sequences of six bits and generate 
the outputs (assuming the shift register is reset to all zeros each time). These outputs can 
be compared with received bit signal. 

Section 8.7. To understand this algorithm consider first the following related 
problem. You are given written directions to go from your house to the 
house of a fellow DSP enthusiast in the next town. A typical portion of the 
directions reads something like ‘take the third right turn and proceed three 
blocks to the stop sign; make a left and after two kilometers you see a bank 
on you right’. Unfortunately, the directions are handwritten on dirty paper 
and you are not sure whether you can read them accurately. Was that the 
third right or the first? Does it say three blocks or two blocks? One method 
to proceed is to follow your best bet at each step, but to keep careful track of 
all supplied information. If you make an error then at some point afterward 
the directions no longer make any sense. There was supposed to be a bank 
on the right but there isn’t any, or there should have been a stop sign after 
3 blocks but you travel 5 and don’t see one. The logical thing to do is to 
backtrack to the last instruction in doubt and to try something else. This 
may help, but you might find that the error occurred even earlier and there 
just happened to be a stop sign after three blocks in the incorrect scenario. 

This kind of problem is well known in computer science, where it goes 
under the name of the ‘directed search’ problem. Search problems can be 
represented as trees. The root of the tree is the starting point (your home) 
and each point of decision is a node. Solving a search problem consists of 
going from node to node until the goal is reached (you get to the DSP 
enthusiast’s house). A search problem is ‘directed’ when each node can be 
assigned a cost that quantifies its consistency with the problem specification 
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(how well it matches the directions so far). Directed search can be solved 
more systematically than arbitrary search problems since choosing nodes 
with lower cost brings us closer to the goal. 

There are two main approaches to solving search problems. ‘Depth-first’ 
solution, such as that we suggested above, requires continuing along a path 
until it is obviously wrong, and then backtracking to the point of the last 
decision. One then continues along another path until it becomes impossible. 
The other approach is ‘breadth-first’. Breadth-first solution visits all decision 
nodes of the same depth (the same distance from the starting node) before 
proceeding to deeper nodes. The breadth-first solution to the navigation 
problem tries every possible reading of the directions, going only one step. 
At each such step you assign a cost, but resist the temptation to make any 
decision even if one node has a low cost (i.e., matches the description well) 
since some other choice may later turn out to be better. 

The decoding of a convolutional code is similar to following directions. 
The algebraic connection between the bits constitute a consistency check 
very much like the stop sign after three blocks and the bank being on the 
right. The Viterbi algorithm is a breadth-first solution that exploits the 
state-space description of the encoder. Assume that we know that the en- 
coder is in state 0 at time n = 0 and start receiving the encoded (output) 
bits. Referring back to Figure 18.15, just as the decoder generated particular 
transitions based on the input bits (the first number of the input/output pair 
in Figure 18.14) the Viterbi decoder tries to guess which transition took place 
based on the output bits (the second number of the pair). Were the received 
bit signal error free, the task would be simple and uniquely defined. In the 
presence of bit errors sometimes we will make an improper transition, and 
sometimes we cannot figure out what to do at all. The breadth-first dynamic 
programming approach is to make all legal transitions, but to calculate the 
Hamming distance between the received bits and the encoder output bits 
that would actually have caused this transition. We store in each node of the 
trellis the minimal accumulated Hamming distance for paths that reach that 
node. We have thus calculated the minimal number of errors that need to 
have occurred for each possible internal state. We may guess that the path 
with minimal number of errors is the correct one, but this would be too 
hasty a decision. The proper way to identify the proper path in state-space 
is to have patience and watch it emerge. 

To see how this happens let’s work out an example, illustrated in Fig- 
ure 18.16. We’ll use as usual the simple convolutional code of Figure 18.13 
and assume that the true input to the encoder was all zeros. The encoder 
output was thus all zeros as well, but the received bit signal has an erroneous 
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n=O n=l n=2 n=3 n=4 n=S n=6 n=7 n=8 

00 01 00 00 00 00 00 00 

Figure 18.16: Viterbi decoding for the simple convolutional code. The bottom line con- 
tains the received bit signal, which contains a single bit error. The trellis nodes are labeled 
with the accumulated number of bit errors and the arcs with the output bits corresponding 
to the transition. Dash arcs are ones that do not survive because there is a path to the 
post-arc node that has fewer bit errors. The single bit error is corrected after 6 time steps. 

one due to noise. We assign costs to the nodes in the trellis starting from 
state zero at time n = 0. In the first time step we can reach state 0 if 00 were 
transmitted and state 2 were 11 transmitted. Since 00 is received, state 0 is 
labeled as being reachable without bit errors, while state 2 is labeled with 
a 2 representing two bit errors. In the next time step the bit error occurs. 
From the 0 state at n = 1 the code can transition either to itself or to state 
2, implying single-bit errors. From state 2 at n = 1 we would arrive at state 
1 assuming the 01 that was received was indeed transmitted, thus accruing 
no additional error; the state 1 node at n = 2 is thus labeled with total error 
2 since the entire path from state 0 at n = 0 was 1101 as compared with 
the 0001 that was received. From state 2 at n = 1 we could also arrive at 
state 3 at n = 2 were 10 to have been sent, resulting in the maximal total 
number of bit errors (1110 as compared to 0001). 

In this way we may continue to compute the total number of bit errors to 
reach a given state at a given time. In the next step we can reach the 0 state 
via two different paths. We can transition from state 0 at n = 2, implying 
that the total bit sequence transmitted was 000000, or we can get there from 
state 2 at n = 2 were the sequence transmitted to have been 110111. Which 
cost do we assign to the node? Viterbi’s insight (and the basis of all ‘dynamic 
programming’ algorithms) was that we need only assign the lower of the two 
costs. This reasoning is not hard to follow, since we are interested in finding 
the lowest-cost path (i.e., the path that assumes the fewest bit errors in the 
received bit signal). Suppose that later on we determine that the lowest-cost 
path went through this node, and we are interested in determining how the 
states evolved up to this point. It is obvious that the lowest-error path that 
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reaches this node must have taken the route from the 0 state at n = 2. So 
the global optimum is found by making the local decision to accept the cost 
that this transition implies. In the figure we draw the transition that was 
ruled out as a dashed line, signifying that the best path does not go through 
here. So at each time only four surviving paths must be considered. 

In general, at time step n we follow all legal transitions from nodes 0, I, 
2, and 3 at time n - 1, add the new Hamming distance to the cost already 
accrued in the pre-arc node, and choose the lower of the costs entering 
the post-arc node. In the figure the transitions that give minimal cost are 
depicted by solid lines. If two transitions give the same accumulated cost we 
show both as solid lines, although in practical implementations usually one 
is arbitrarily chosen. The reader should carefully follow the development of 
the trellis in the figure from left to right. 

Now that we have filled in the trellis diagram, how does this help us 
decode the bit signal? You might assume that at some point we must break 
down and choose the node with minimal cost. For example, by time n = 5 
the path containing only state 0 is clearly better than the other four paths, 
having only one error as compared with at least three errors for all other 
paths. However, there is no need to make such risky quantitative decisions. 
Continuing on until time n = 8 the truth regarding the error in the fourth 
bit finally comes to light. Backtracking through the chosen transitions (solid 
lines in the figure) shows that all the surviving paths converge on state 0 at 
time n = 6. So without quantitatively deciding between the different states 
at time n = 8 we still reach the conclusion that the most likely transmitted 
bit signal started 00000000, correcting the mistakenly received bit. It is easy 
to retrace the arcs of the selected path, but this time using the encoder 
input bits (the first number from Figure 18.13) to state that the uncoded 
information started 000. 

In a more general setting, the Viterbi decoder for a convolutional code 
which employs m delays (i.e., has s = 2” possible internal states), fills in a 
trellis of s vertical states. At each time step there will be s surviving paths, 
and each is assigned a cost that equals the minimal number of bit errors 
that must have occurred for the code to have reached this state. Backtrack- 
ing, we reach a time where all the surviving paths converge, and we accept 
the bits up to this point as being correct and output the original informa- 
tion corresponding to the transitions made. In order to save computational 
time most practical implementations do not actually check for convergence, 
but rather resume that all paths have converged some fixed time L in the 
past. The Viterbi decoder thus outputs predictions at each time step, these 
information bits being delayed by L. 
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EXERCISES 

18.11.1 In exercise 8.7.1 we introduced the games of doublets. What relationships 
exist between this game and the decoding of convolutional codes? 

18.11.2 Each of the convolutions that make up a convolutional code can be identified 
by its impulse response, called the generator sequence in coding theory. What 
is the duration of the impulse response if the shift register is of length K? 
The constraint length is defined to be the number of output bits that are 
influenced by an input bit. What is the constraint length if the shift register 
length is K, and each time instant Ic bits are shifted in and n are output? 

18.11.3 Which seven-tuples of bits never 
tional code given in the text? 

appear as outputs of the simple convolu- 

18.11.4 Repeat the last exercise of the previous section for convolutional codes. You 
need to replace the first program with cencode and the third with cdecode. 
Use the Viterbi algorithm. 

18.11.5 The convolutional code yzn = xn + x,,+1,~2~+1 = x, + x,+2 is even simpler 
than the simple code we discussed in the text, but is not to be used. To find 
out why, draw the trellis diagram for this code. Show that this code suffers 
from catastrophic error propagation, that is, misinterpreted bits can lead to 
the decoder making an unlimited number of errors. (Hint: Assume that all 
zeros are transmitted and that the decoder enters state 3.) 

18.12 PAM and FSK 

Shannon’s information capacity theorem is not constructive, that is, it tells 
us what information rate can be achieved, but does not actually supply us 
with a method for achieving this rate. In this section we will begin our quest 
for efficient transmission techniques, methods that will approach Shannon’s 
limit on real channels. 

Let’s try to design a modem. We assume that the input is a stream of 
bits and the output a single analog signal that must pass through a noisy 
band-limited channel. Our first attempt will be very simplistic. We will send 
a signal value of +l for every one in the input data stream, and a 0 for every 
zero bit. We previously called this signal NRZ, and we will see that it is the 
simplest type of Pulse Amplitude Modulation (PAM). As we know, the 
bandwidth limitation will limit the rate that our signal can change, and so 
we will have a finite (in fact rather low) information transmission rate. 
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Figure 18.17: NRZ signals and DC. In (A) we see a straight NRZ signal. For each 1 bit 
there is a positive voltage, while there is no voltage for a 0 bit. In (B) we see what happens 
to this NRZ signal when DC is blocked. The positive voltages tend to decay, wiping out 
the information in long runs of 1 bits. In (C) we see an attempt at removing DC from the 
NRZ signal. For each 1 there is a positive voltage, while for each 0 bit there is a negative 
voltage. 

NRZ has a major problem. Unless all the input bits happen to be zero, 
the NRZ signal will have a nonzero DC component. This is not desirable 
for an information transmission system. We want the transmitter to supply 
information to the receiver, not DC power! To ensure that DC power is not 
inadvertently transferred many channels block DC altogether. The telephone 
system supplies DC power for the telephone-set operation on the same pair 
of wires used by the signal, so low frequencies cannot be made available for 
the signal’s use. This restriction is enforced by filtering out all frequencies 
less than 200 Hz from the audio. Attempts at sending our simple NRZ 
signal through a channel that blocks DC will result in the signal decaying 
exponentially with time, as in Figure 18.17.B. We see that single 1 bits can 
be correctly interpreted, but long runs of 1s disappear. 

A simple correction that eliminates the major part of the DC is to send 
a signal value of + 3 for every one bit, and - % for every zero bit, as in 
Figure 18.17.C. However, there is no guarantee that the input bit stream 
will be precisely balanced, with the same number of ones and zeros. Even 
if this is true for long time averages, for short times there is still some DC 
(either positive or negative), and so the bits still decay. 

Encoding methods discussed in Section 18.6 such as RZ or Manchester 
coding completely remove DC, but at the price of doubling the bandwidth; 
this is a price Shannon doesn’t want us to pay. A better DC removing method 
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is Alternate Mark Inversion (AMI), where a binary zero is encoded as 0 but 
a binary one is alternately encoded as +i and - $. However, the decision 
levels for AM1 are closer together than those of NRZ, resulting in decreased 
noise robustness, once again paying a capacity theorem price. 

There are more sophisticated methods of eliminating the DC component. 
One way is to differentially encode the input bit stream before transmission. 
In differential coding a zero is encoded as no shift in output value and a one 
as a shift; and it is a simple matter to decode the differential coding at the 
demodulator. With differential coding a stretch of ones becomes 10101010 
with many more alternations (although stretches of zeros remain). A more 
general mechanism is the ‘bit scrambler’ to be discussed in further detail 
in Section 18.15. The scrambler transforms constant stretches into alternat- 
ing bits using a linear feedback shift register (LFSR), and the descrambler 
recovers the original bit stream from the scrambled bits. Although LFSR 
scramblers are often used they are not perfect. They are one-to-one trans- 
formations and so although common long constant stretches in the input 
are converted to outputs with lots of alternations, there must be inputs that 
cause the scrambler to output long streams of ones! 

Even assuming the DC has been completely removed there are still prob- 
lems with our simplest digital modem signal. One limitation is that it is only 
suitable for use in a baseband (DC to SW) channel (such as a pair of wires), 
and not in pass-band channels (like radio). The simplest ‘fix’ is to upmix 
NRZ to the desired frequency. The resultant signal will be either zero (corre- 
sponding to a 0 bit in the input) or a sinusoid of some single predetermined 
frequency f when we wish to send a 1 bit. This simple pass-band technique, 
depicted in Figure lB.lB.A, is called On Off Keying or OOK. 

Morse code was originally sent over cables using NRZ, using short and 
long periods of nonzero voltage. At the receiving end a relay would respond 
to this voltage, duplicating the motion of the sending key. This could be 
used to draw dashes and dots on paper, or the ‘clicks’ could be decoded by 
a human operator. In order to send Morse code over radio the OOK method 
was adopted. A carrier of constant frequency is sent and at the receiver 
IF mixed with a Beat Frequency Oscillator (BFO) to produce an audible 
difference frequency. Short intervals of tone are recognized by the receiving 
operator as ‘dits’ while tones of three times the duration are perceived as 
‘dahs’. 

In theory we could use OOK to send more complex signals, such as 
Baudot encoded text, but this is rarely done. The reason is that OOK signal 
reception is extremely susceptible to noise and interference. To understand 
why think of how to decide whether a 1 or a 0 was sent. You can do no better 



18.12. PAM AND FSK 701 

C 

1 1 1 0 0 1 0 1 

Figure 18.18: Simple digital communications signals. In (A) we see on-off keying (OOK), 
in (B) frequency shift keying (FSK), and in (C) phase shift keying (PSK). 

than to simply look for energy at the carrier frequency, probably by using a 
band-pass filter of some sort, and judge whether it has passed a threshold 
value. Passing merits a 1 bit, lower energy is taken as a 0. If noise appears in 
the area of the frequency of interest, an intended 0 will be wrongly classified 
as a 1, and negative noise values summing with the signal of interest can 
cause a 1 to masquerade as a 0. 

In order to ameliorate this problem noise should be explicitly taken into 
account, and this could be done in two nonexclusive ways. The first is based 
on the supposition that the noise is white and therefore its energy is the 
same over all frequencies. We can thus require that the energy at the output 
of a matched band-pass filter be much larger than the energy at nearby 
frequencies. The second way is based on the assumption that the noise is 
stationary and therefore its energy does not vary in time. We can thus 
monitor the energy when the signal is not active or sending zeros, and require 
that it pass a threshold set higher than this background energy. Such a 
threshold is often called a Noise Riding Threshold (NRT). 

While these mechanisms make our decision-making process more robust 
they are not immune to error. Impulse noise spikes still thwart NRTs and 
narrow-band noise overcomes a threshold based on nearby frequencies. In 
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addition, we have added the possibility of new error types (e.g., when the 
noise fluctuates at adjacent frequencies a perfectly good 1 can be discarded). 
While the effects of noise can never be entirely overcome, OOK does not give 
us very much to work with in our efforts to combat it. 

Perhaps the simplest method to combat noise at adjacent frequencies is 
to replace OOK with Frequency Shift Keying (FSK). Here we transmit a 
sinusoid of frequency fo when a 0 bit is intended and a sinusoid of frequency 
fl when we wish to send a 1 bit (see Figure 18.18.B). One can build an 
FSK demodulator by using two band-pass (matched) filters, one centered 
at fe and the other at f 1. Such a demodulator can be more robust in noise 
since two energies are taken into account. One decision method would be to 
output a 0 when threshold is exceeded at fo but not fr and a 1 when the 
reverse occurs. When neither energy is significant we conclude that there is 
no signal, and if both thresholds are surpassed we conclude that there must 
be some noise or interference. When such a demodulator does output a 0 
or 1 it is the result of two independent decisions, and we are thus twice as 
confident. An alternative to FSK is Phase Shift Keying (PSK), depicted 
in Figure 18.18.C. Here we employ a single frequency that can take on two 
different phases; a demodulator can operate by comparing the received signal 
with that of a sinusoid of constant phase. At first this seems no better than 
OOK, but we will see that PSK is a highly effective method. 

There are several ways of understanding why FSK is better than OOK. 
Our first interpretation consisted of treating FSK as OOK with ‘frequency 
diversity’ (i.e., two independent OOK signals carrying the same information 
but at different frequencies). Such diversity increases the robustness with 
which we can retrieve information at a given SNR. This is as useful since 
we can increase channel capacity by attacking either the bandwidth or the 
noise constraints. 

A second interpretation has to do with the orthogonality of sinusoids of 
different frequencies. An alternative to the dual band-pass filter FSK de- 
modulator multiplies the received signal by sinusoids of frequencies fo or fr 
and integrates the output over time. Since this is essentially downmixing 
and low-pass filtering, this demodulator is actually a specific implementa- 
tion of the dual band-pass filters, but we can give it a new interpretation. 
From equation (A.34) we know that sinusoids of different frequencies are 
orthogonal, so multiplication by one of the sinusoids and integrating leads 
to a positive indication if and only if this frequency is being transmitted. 
This exploitation of sinusoid orthogonality is a new feature relative to OOK. 

Were the component signals in FSK truly orthogonal then FSK would 
be the answer to all our wishes. The problem is that sinusoids are only 
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18.12. PAM AND FSK 

Figure 18.19: A four level PAM signal. Here the same information bits are transmitted 
as in the previous figures, but twice as many bits are sent in the same amount of time. 

orthogonal when integrated over all time. When only a short time duration 
AT is available, the uncertainty theorem puts a constraint on the accuracy 
of recognizing the difference between the two frequencies Af. 

For example, the telephone channel is less than 4 KHz wide, and so a rather 
large separation would be Af x 2 KHz. This implies that telephone line 
FSK information transfer rates will not exceed around 300 b/s. 

Of course the uncertainty theorem only directly limits the rate at which 
we can change between different frequencies. By using a repertoire of more 
than two frequencies we can increase the information transfer rate. Using 
four possible frequencies fo, fr , fi, or f3 we simultaneously transmit two 
bits of information at each time instant, doubling the information rate. This 
technique is not limited to FSK; simple NRZ can be extended to multilevel 
PAM by sending one of four different voltages, as in Figure 18.19. The 
signal sent at each time period is usually called a symbol or baud (after 
Emile Baudot), and the bit rate is double the symbol rate or baud rate. If 
we use symbols that can take on 2m possible values, the data rate in bits per 
second is m times the baud rate. Of course increasing the data rate in this 
way has its drawbacks. The demodulator becomes more complex, having to 
distinguish between many different levels. More significantly, if we compare 
two signals with the same transmission power, the one with more levels 
has these levels closer together. So we cannot increase the number of levels 
without incurring a higher probability of misdetection in noise. The eventual 
limit is when the level spacing is of the order of the noise intensity. This is 
the way Shannon limits the capacity of multilevel PAM and multifrequency 
FSK signals. 
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EXERCISES 

18.12.1 A differential encoder encodes a 1 bit as a change in the signal and a 0 bit as 
no change. Show how to transmit differential NRZ, FSK and PSK. For which 
of these three is the differential coding most useful? How does one make 
a decoder that reconstructs the original bit stream from the differentially 
encoded one? How is the ambiguity broken? What signal causes an output 
of all Is? All OS? 

18.12.2 If an FSK modulator employs two completely independent oscillators sr(t) = 
A sin(2rrfit) and sz(t) = Asin(2nfit) then at the instant of switching the 
signal will generally be discontinuous. Continuous Phase FSK (CPFSK) 
changes frequency without phase jumps. Why is CPFSK better than non- 
continuous phase FSK? Write a routine that inputs a bit stream and outputs 
a CPFSK signal. 

18.12.3 Program a multifrequency FSK modulator on a computer with an audio 
output or speaker. How high can the symbol rate be before your ear can no 
longer distinguish the individual tones? 

18.12.4 The fundamental limitation on the FSK symbol rate is due to the time- 
frequency uncertainty relation. There is no fundamental time-value uncer- 
tainty relationship, so what is the source of the limitation on PAM symbol 
rates? 

18.12.5 Figure 18.19 uses the natural encoding of the numbers from 0 to 2. The PAM 
signal called 2BlQ (used in ISDN and HDSL) uses the following mapping: 
-3 -+ 00, -1 --+ 01, +l + 11, +3 + 10. What is the advantage of this 2BlQ 
encoding, which is a special case of a Gray code? How can this be extended 
to eight-level PAM? 2m-level PAM? 

18.12.6 In the text we didn’t mention Amplitude Shift Keying (ASK). Draw a signal 
with four-level ASK. Why isn’t this signal popular? 

18.13 PSK 

FSK demodulation is based on the orthogonality of the signals representing 
the bit 0 and the bit 1; unfortunately, we have seen that this orthogonal- 
ity breaks down as we try to increase the information transfer rate. Over 
telephone lines FSK can be readily used for rates of 300-1200 b/s, but 
becomes increasing problematic thereafter. In the previous section we men- 
tioned PSK; here we will present it in more detail and show why it can carry 
information at higher rates. PSK is commonly used for 1200-2400 b/s over 
telephone lines. 
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so (t > = sin(27& t) 
Sl (t) = sin(2nf,t + ?J) 

where fc is the carrier frequency. We suggest using these two signals as our 
information carriers, transmitting se when a 0 bit is to sent, and si for a 
1 bit. We call this signal BPSK for Binary PSK. There are basically two 
methods of demodulating PSK signals. Coherent demodulators maintain a 
local oscillator of frequency fc and compare the frequency of incoming signals 
to this clock. Incoherent demodulators do not maintain a precise internal 
clock, but look for jumps in the incoming signal’s instantaneous phase. 

Both BPSK demodulators are more complex than those we have seen so 
far. Are BPSK’s advantages worth the extra complexity? Yes, since unlike 
FSK, where the two basic signals become orthogonal only after a relatively 
long time has elapsed, SO and si are already orthogonal over a half cycle. So 
we can transmit one of the signals SO or sr for as little as one-half of a cycle 
of the carrier, and still discriminate which was transmitted. This is a major 
step forward. 

Is this the best discrimination available? The coherent demodulator mul- 
tiplies the incoming signal by sin(27rf, t) and so after filtering out the com- 
ponent at twice fc its output is either 0 or 5. We can increase the phase 
difference by using the two signals 

so (t > = sin(27r&t - 5) 

Sl (t> = sin(27rf, t + 5) 

and the difference between the output signals is now maximal. It is not hard 
to see that sr = -se, so using a sinusoid and its inverse results in the best 
discrimination. Plotting multiple traces of the demodulator output results 
in an eye pattern, such as that of Figure 10.8. Using a phase difference of 7r 
opens the eye as much as is possible. 

We can now go to a multiphase signal in order to get more bits per 
symbol. QPSK uses four different phases 

so (t > = sin(2nf, t) 
Sl w = sin(27rf,t + 5) 

4 w = sin(2nf, t + 7r) 

S3 w = sin(27rht + 3;) 
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or equivalently any rigid rotation of these phases. Unfortunately, multiplying 
by sin(2nf, t) does not differentiate between the signals s&) = sin(2rf, t++) 
and s&) = sin(27rf,t + (7r - +)), so our coherent demodulator seems to have 
broken down; but if we multiply by cos(2rf,t) as well, we can discriminate 
between any two angles on the circle. This is not surprising since what we 
have done is to construct the instantaneous representation of Section 4.12. 
Calling the output of the sine mixer I and that of the cosine mixer Q, 
we can plot a two-dimensional representation of the analytic signal, called 
the ‘I-Q plot’. The four points in the plane corresponding to the QPSK 
signal values are on the unit circle and correspond to four distinct angles 
separated by 90”. The two points of BPSK or four points of QPSK are called 
the constellation, this name originating from their appearance as points of 
light on an oscilloscope displaying the I-Q plot. 

Let’s generalize our discussion to nPSK. An nPSK signal is of the form 

s(t) = e @t++(t)) (18.24) 

with all the information being carried by the phase. The phase is held con- 
stant for the baud duration tb, the reciprocal of which, fb, is the baud rate. 
For nPSK this phase can take one of n different discrete values, and usually 
n is chosen to be a power of two n = 2m. Hence the information rate in an 
nPSK signal is rnfb bits per second. 

What values should the phases take? We want the different values to be 
as far apart as possible, in order for the demodulator to be able to distinguish 
between them as easily as possible. One optimal way to choose the phases 
for nPSK is 

2n 2nk 
@po=O, f&y, . . . &=- 

27r 
’ l *’ 

<p n-l =-- 
n n 

for example, the BPSK constellation should consist of two points with an- 
gles 0, X, QPSK should have four points with angles multiples of 90”, and for 
8PSK we choose eight points with angles multiples of 45”. These choices are 
good, but any rigid rotation of the entire constellation is equally acceptable. 
For example, BPSK can have phases 0, r as suggested here, or “5 or 2, F. 
Actually, there is no real difference between the different choices; from equa- 
tion (18.24) it is obvious that an overall rotation of the phases is equivalent 
to resetting the clock (i.e., changing when t = 0 was). 

When receiving an nPSK signal we first find its I and Q components, and 
from these calculate its instantaneous phase. Figure 18.20 is an I-Q plot of a 
received QPSK signal. Because of additive channel noise, channel distortion, 
and various inadequacies of the demodulation process, the actual symbols 
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Figure 18.20: I-Q plot for a QPSK signal with noise. We see that the effect of additive 
channel noise is to replace the true constellation points with clouds centered at the original 
points. Although with this noise level we could still make accurate decisions, were we to 
add four more points to make 8PSK the clouds would touch and reception errors would 
be inevitable. 

detected are not exactly those transmitted. We see that the four points on 
the unit circle have been transformed into four small ‘clouds’ centered on the 
original points. In order to recover the original information we have to decide 
to which true constellation point each received point should be associated. 
The decision is performed by a slicer and will be discussed in Section 18.18. 
How much noise can be tolerated before the decisions become faulty? From 
the figure it is obvious that if the radius of the noise cloud is less than half 
the Euclidean distance between the constellation points, then most of the 
decisions will be correct. 

EXERCISES 

18.13.1 What is the Euclidean distance between constellation points of an nPSK 
signal? Why can’t we increase the distance between the constellation points 
by simply placing them on a larger circle? 

18.13.2 Simulate a baseband nPSK signal and find its empirical spectrum. Vary n. 
Do you see any change? Vary tb. What happens now? 

18.13.3 In exercise 18.12.5 we saw how to use a Gray code for multilevel PAM. What 
is the difference between a Gray code for PAM and one for nPSK? How is 
this related to the Hamiltonian cycles of Section 12.1? 

18.13.4 We saw that resetting of the clock rotates the nPSK constellation. How can 
we ever be sure that we are properly interpreting the data? 

18.13.5 Write programs that implement a QPSK modulator and demodulator. Try 
adding noise to the signal. What happens if the demodulator carrier frequency 
is slightly wrong? What if the baud rate is inaccurate? 
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18.14 Modem Spectra 

If the data is . . . 10101010.. . then the NRZ signal is a square wave .and 
its spectrum consists of discrete lines at odd harmonics of the baud rate. 
What is its spectrum when it carries random information? This spectrum 
is only defined in the sense of Section 5.7, and hence we should compute 
autocorrelations and use Wiener-Khintchine. Let’s assume that the bits are 
white (i.e., that there is no correlation between consecutive bits). Then the 
autocorrelation of the NRZ signal will be zero for lags greater (in absolute 
value) than the baud rate. It requires only slightly more thought to convince 
oneself that the autocorrelation decreases linearly from its maximum, form- 
ing a triangle, as in Figure 18.21.A. The FT of this, and hence the desired 
PSD, is a sine squared, depicted in Figure 18.21.B. The first zero is at fb, 
consistent with uncertainty theorem constraints. 

What is the PSD of a multilevel PAM signal? 
autocorrelation, but we can find the answer by a 

We could calculate the 
simpler argument. It is 

A 

Figure 18.21: PSD of digital communications signals. In (A) we see the autocorrelation 
of a NRZ signal carrying white random data. In (B) is depicted the PSD of this signal, 
a sine squared with its first null at the baud frequency. In (C) we present the PSD of a 
OOK signal with the same data. 
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obvious that a PAM signal with n levels can be thought of as the sum of n 
NRZ signals. From the linearity of the FT we can conclude that multilevel 
PAM has exactly the same spectrum as NRZ. In particular, the bandwidth 
of PAM is independent of the number of levels, but of course more levels 
with the same energy effects the noise sensitivity. Of course we have been 
comparing signals with the same baud rate; when we compare PAM signals 
with the same bit rate, the signal with more bits per symbol has a lower 
baud rate and hence a lower bandwidth. 

What about an OOK signal? We don’t have to recompute autocorre- 
lations since we know that OOK is simply NRZ upmixed by the carrier. 
Accordingly, we immediately conclude that its PSD is that depicted in Fig- 
ure 18.2X, centered on the carrier frequency and taking up double the 
bandwidth of the NRZ signal. This spectrum is shared by the multilevel 
ASK signal as well. In fact, it is a quite general result that only the carrier 
frequency and baud rate affect the spectrum. 

Why should the bandwidth have doubled for the same baud rate? This 
result hints that there is another degree of freedom that we are not ex- 
ploiting, but that would not change the PSD. This degree of freedom is the 
phase; by simultaneously modulating both the amplitude and the phase we 
can double the bit rate without increasing the bandwidth. We will return to 
this idea in Section 18.17. 

EXERCISES 

18.14.1 In our derivation of the PSD for the NRZ signal we didn’t dwell on the DC. 
What is the difference between the spectra of the NRZ and DC-removed NRZ 
signals? 

18.14.2 Derive the PSD of BPSK from that of DC-removed NRZ. Compare this 
spectrum with that of OOK. 

18.14.3 Summing n independent NRZ signals does not result in a nPAM signal with 
equally probable levels. Why does this not affect the conclusion regarding 
the PAM spectrum? 

18.14.4 Compare the PSDs for BPSK, QPSK, and 8PSK with the same information 
transfer rate. 

18.14.5 Create random data NRZ and BPSK signals and compute their periodogram 
using the FFT. Now use 01010101 input (‘alternations’). How is the spectrum 
qualitatively different? Starting from the deterministic input of alternations 
add progresively more randomness. How does the spectrum change? 
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18.15 Timing Recovery 

Anyone who has learned Morse code can tell you that sending it is much 
simpler than ‘reading’ it. This is quite a general phenomenon-digital de- 
modulators are always more complex than the corresponding modulators. 
One reason is the need to combat noise added by the communications chan- 
nel, but there are many others. Some of the most problematic involve syn- 
chronizing the modulator and demodulator time sources. 

We usually differentiate between two time sources. Baud rate recovery 
refers to synchronization of the demodulator’s baud clock with that of the 
modulator. Every digital communications system must perform some sort of 
timing recovery. Carrier recovery refers to recovery of the carrier frequency 
for those modulation types that use a carrier. Obviously NRZ and PAM do 
not need carrier recovery. Rotating the I-Q plot to correspond to the proper 
constellation can be considered to be carrier phase recovery. 

Consider, for example, a modulator with baud rate fb, nominally known 
to the intended demodulator. It sends a new symbol every tb = i sec- 
onds (i.e., the first symbol occupies time from t = 0 to t = tb, the second 
from t = tb to t = 2i& and so on). Although the demodulator expects this 
baud rate, its clock may differ slightly from that of the modulator, both in 
phase (i.e., precisely when t = 0 occurs) and in frequency (i.e., its i& may 
be slightly shorter or longer than the intended tb). Left uncorrected such 
slight frequency differences add up, and soon valid symbols will be missed 
or counted twice and the demodulator will attempt to decide on the symbol 
value based on observing the signal during a transition, as can be seen in 
Figure 18.22. Similarly, proper reception of a pass-band signal may require 
the demodulator to agree with the modulator as to the precise frequency 
and phase of the carrier. 

The simplest method for the demodulator to obtain the modulator’s 

i i i t Y I t ‘; 3 i, 

1 1 1 0 0 1 0 1 

Figure 18.22: The effect of improper baud rate recovery. In this example the demodulator - 
clock runs slightly faster than the modulator’s, so that bit insertions result. 
a symbol clock may fall directly on a transition , causing indefinite decisions. 

On occasion 
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clock is for it to be somehow delivered. For example, if the data-bearing 
signal is delivered on a pair of wires, then a second pair could be provided 
whose sole purpose is to carry the clock information. This information could 
be represented by pulses at precisely the moments transitions could take 
place, or by a sine wave with positive slope zero crossing at the moment 
of possible transition, or by any other previously agreed-upon method. The 
problem with this method is the need for an expensive second pair of wires, 
which could be more effectively used for carrying information. A slightly 
more efficient method would be to multiplex the clock signal onto the same 
pair of wires that carry the signal. For example, possible transition moments 
could be marked by pulses at some frequency not used by the data signal. 
This guarantees that the clock is delivered with the same delay as the signal, 
but of course wastes valuable bandwidth on the clock signal. These simple 
methods are attractive for systems that carry a large number of signals 
sharing the same clock, so that the overhead is small. In order not to waste 
wires or bandwidth the demodulator is often required to derive the clock 
from the information-bearing signal itself. 

To demonstrate how baud rate recovery may be accomplished we’ll dis- 
cuss a simple NRZ signal, although the basic ideas remain intact for other 
signals after appropriate preprocessing. We will take the two levels of the 
NRZ signal to be 43 so that transitions are zero crossings. When the SNR 
is good these zero crossings are easily observable, and by detecting them 
and measuring the time between them the baud rate can be recovered. The 
time between two successive transitions must be an integral multiple of tb, 
and this multiple is readily determined when the approximate tb is known. 
Using observed transitions in this fashion, both the frequency and absolute 
phase of the modulator’s clock can be recovered. 

The following simplistic algorithm for NRZ demodulation can be run in 
real-time. After running for some time T is the current estimate of tb and p 
is the time of the previous zero crossing. 

input the next signal value sn 
compute the time since the last transition d + n-p 
if d is ‘approximately half integer’ 

output sgn(s,) 
if sn. Spl < 0 

interpolate r t n - sn 91n_8n 
time between transitions r = r -p 
compute the multiple m=round$ 
update estimate T + aT + (1- CY)& 
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One could significantly improve this algorithm with little effort. It’s bet- 
ter to base the output decision on several successive sn, so some filtering 
or median filtering should be performed. If the signal has some residual DC 
(that may be time varying) it should be removed immediately after input 
of the signal. Also, the linear interpolation between sn and s+i can be im- 
proved. However, all such algorithms rapidly deteriorate in performance with 
SNR degradation. Noise pulses can look like transitions or alternatively hide 
true transitions, and even when a transition is properly identified its correct 
location becomes obscure. What we really need is a method that exploits 
the entire signal, not just those few signal values that straddle a transition; 
exploiting the entire signal in order to derive a frequency requires spectral 
analysis or narrow band-pass filtering. 

Were the data to alternate like 01010101, the transmitted signal would 
be a square wave, and its Fourier series would consist of a basic sinusoid at 
half the baud rate, and all odd harmonics thereof. Even in severe noise this 
harmonic structure would be easily discernible and by band-pass filtering 
a sinusoid related to the desired clock could be recovered. A more direct 
method would be to differentiate the signal (accenting the transitions), and 
to take the absolute value (removing the direction of the transition) thus 
creating a pulse train whose spectrum has a strong line at precisely the 
baud rate. Of course the differentiation operation is very sensitive to noise 
but the baud line will be strong enough to stand out. 

When the NRZ data is random the differentiation and absolute value 
operations produce a train of pulses similar to that of the alternations, but 
with many of the pulses missing. The basic frequency of this signal is still 
the baud rate, but the baud line in the spectrum is not as strong, However, 
as long as there are enough transitions the baud rate can still be determined. 
Using a PLL is helpful, since it is designed to lock onto approximately known 
frequencies in noisy signals. 

If there are long stretches of constant zeros or ones in the data the baud 
spectral line will tend to disappear, and no amount of filtering will be able to 
bring it back. We mentioned previously that by using a bit scrambler we can 
eliminate long runs of 1 bits. The most popular scrambler in use is the two- 
tap self-synchronizing LFSR scrambler, depicted in Figure 18.23.A. Why 
is this scrambler called self-synchronizing? Contrast it with the alternative 
method of running the LFSR locked upon itself (see Section 5.4) to create 
an LFSR sequence, and xoring the data with this sequence. That method 
also increases the number of alternations in sections where there are long 
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Figure 18.23: Two-tap scrambler and descrambler. In (A) we see the LFSR-based scram- 
bler. The output is composed of the xor of the input bit with two previous input bits. 
The length of the shift register equals the delay of the oldest bit required. In (B) we see 
the descrambler. Note that there is no feedback and hence bit errors do not propagate 
without limit. 

runs of either 1 or 0 bits, but in order to properly decode the sequence we 
have to use the proper phase of the LFSR sequence. The LFSR descrambler 
depicted in Figure 18.23.B correctly recovers the bits without the need for 
synchronizing an LFSR to an external clock. 

When the signal is PSK another trick is popular. Rather than basing the 
baud rate recovery on the phase demodulation, we base it on the received sig- 
nal’s amplitude. It may seem surprising that the AM demodulation of a PSK 
signal contains any information at all; doesn’t a PSK signal have constant 
amplitude? It does, but sharp phase transitions require wide bandwidth, and 
when a PSK signal is filtered to the channel bandwidth this high-frequency 
energy is lost, resulting in amplitude dips at the phase transitions. The am- 
plitude demodulation is thus constant except for at the phase transitions, 
and its dips provide a reliable indication of the phase transitions. 

We turn now to the recovery of the carrier frequency of a PSK signal. 
Were the data being transmitted to be constant (and no scrambler used), 
then the nPSK signal would be a sinusoid, and its spectrum would consist of 
a single discrete line the frequency of which is easily determined. However, 
in the more interesting case of a signal carrying information, the frequent 
phase jumps widen the spectral line into a broad (sine squared) band cen- 
tered around the carrier frequency. The precise carrier frequency is no longer 
evident. 

Assume for just a moment that the constellation is chosen so that the 

signal points are e irk (e.g., for BPSK f 1 and for QPSK f 1, &i). It is obvious 
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that these signal points are precisely the nth roots of unity, and so raising 
them to the nth power gives one. The usual convention is rotated by 45” 
with respect to this, (i.e., all the signal points are multiplied by &a). Hence 

in the usual convention all the signal points raised to the nth power still 
return the same value, only now that value is e’y . Thus for BPSK squaring 
the signal points at 45” and 225” gives i and for QPSK raising any of the 
points 45”, 135”) 225’, 315” to the fourth power gives -1. The important fact 
is that raising any of the constellation points to the n th power returns the 
same value. 

Now the signal in the time domain is sin(wt + &) , where the & are the 
n possible signal phases. It is clear from the result of the previous paragraph 
that raising the signal to the nth power on a sample-by-sample basis will 
wipe out the & dependence; and so the nth root of this will be a simple 
sine of constant phase at the carrier frequency. 

EXERCISES 

18.15.1 Assume that a signal contains no runs of single bits, but only runs of two, 
three and longer. Can the baud rate be recovered? Suggest a method. 

18.15.2 Generate a PSK signal with random data, limit its bandwidth by FIR low- 
pass filtering, and perform amplitude demodulation. Do you see the AM 
dips? Now filter the AM using a narrow IIR filter centered at the nominal 
baud rate. Empirically determine the delay between the zero crossings of the 
sinusoidal output of this filter and the center of the symbols. Does this system 
give accurate baud rate recovery? 

18.15.3 Can baud or carrier recovery be performed on signals attaining the Shannon 
capacity? 

18.15.4 In systems with very high baud rate there can be a problem in providing the 
timing on a second pair of wires. What is this problem and how can it be 
overcome? 

18.16 Equalization 

We discussed adaptive modem equalizers in Section 10.3. The problem with 
standard (linear) equalizers for telephone modems is that near the band 
edges (under 400 Hz or above 3600 Hz) there can be 10 to 20 dB of attenu- 
ation. In DSL modems the higher frequency ranges can be attenuated by 50 
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Figure 18.24: Decision feedback equalizer. The DFE consists of two FIR filters, one in 
the feedforward path and one in the feedback path. The slicer becomes an integral part 
of the equalizer. 

dB or more! In order to compensate for this loss, an equalizer at the input 
of the demodulator must provide that much gain. Unfortunately, this gain 
is applied not only to the desired signal, but to the noise as well, causing 
significant noise enhancement. No filter is able to overcome this problem, 
since from linearity the sum of the signal and noise are filtered separately 
and identically; however, we may be able to build a nonlinear system that 
can apply gain to the signal without enhancing the noise too. 

In Figure 18.24 we see such a nonlinear system, its nonlinearity deriving 
from the slicer. It is easy to see why this system, called a Decision Feedback 
Equalizer (DFE), can effectively combat IS1 without appreciable noise en- 
hancement. Assuming the output of the slicer to be correct, it is essentially 
the signal that was originally transmitted. Based on this reconstructed sig- 
nal we can reproduce the intersymbol interference as caused by the channel 
response and subtract it from the signal. This is performed by the feedback 
equalizer in the figure. 

There are two problems with decision feedback equalizers. First, if the 
slicer does make mistakes, then (at least theoretically) the feedback can 
cause the system to deviate more and more from correct behavior. This lack 
of stability is rarely seen in practice for a DFE initially trained on known 
data and continuously updated. A more problematic aspect of placing the 
slicer into the equalization path is that its decisions do not take TCM (see 
Section 18.19) into account. A TCM modem does not have reliable decisions 
until much later, long after the DFE needed them. 

The Tomlinson equalizer explored in exercise 10.3.1 is another solution 
to the noise enhancement problem. By placing the inverse filter at the mod- 
ulator, before the noise is added, the whole problem becomes moot. 
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EXERCISES 

18.16.1 Taking the IS1 to be weak and from precisely one previous symbol, show that 
each constellation point splits into a small cluster of points that resembles the 
entire constellation. What happens if the IS1 is from two previous symbols? 
What happens when the IS1 is large and its duration long? 

18.16.2 Simulate a QPSK signal traversing a noisy channel sharply attenuated at its 
edges. Compare the optimal linear equalizer with the optimal DFE. 

18.16.3 An inverse filter at the modulator may cause the transmitted signal to reach 
values much larger than originally intended. The Tomlinson equalizer over- 
comes this by a modulo operation, and a compensating operation at the 
demodulator. Explain how this can be accomplished. 

18.17 QAM 

In Section 18.14 we saw that the bandwidth of an nPSK signal is not n 
dependent. Accordingly, we can achieve higher information transfer rates in 
a given bandwidth simply by increasing n. The problem is that for larger n 
the constellation points are closer together. Since channel noise causes the 
received signal phase to deviate from that transmitted, as depicted in the 
constellation plot of Figure 18.20, there is a limit on how close we can place 
constellation points. This is how the channel capacity theorem limits capac- 
ity for PSK signals. Were there to be no noise we could achieve arbitrarily 
large transfer rates by using large n; were there no bandwidth limitation we 
could use BPSK and arbitrarily large baud rates. 

Looking closely at the constellation plot of Figure 18.20 we can see a way 
out. The additive channel noise expands the constellation points into circular 
clouds in the I-Q plane, and our decision making is optimized by maximizing 
the Euclidean distance between constellation points. One way this can be 
done is by placing constellation points as shown in Figure 18.25. Here the 
symbols differ in both phase and amplitude. This type of signal (being simul- 
taneously PSK and ASK), is sometimes called names like APSK, but more 
usually goes under the name Quadrature Amplitude Modulation (QAM). 
Understanding the meaning of QAM requires thinking of the I and Q com- 
ponents as two independent PAM signals ‘in quadrature’. This is indeed 
another way of building a QAM signal; rather than altering the amplitude 
and phase of a single carrier, we can independently amplitude modulate a 
sine and its corresponding cosine and add the results. 
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Figure 18.25: Two-ring constellation and signal. From either representation it can be 
seen that the symbols differ in both amplitude and phase. The two-ring signal allows pre- 
cisely two different amplitudes. The phases are chosen to maximize the minimum distance 
between constellation points. 

Let’s calculate how much we gained by using QAM. The minimum dis- 
tance between points in the 8PSK constellation is 2 sin (3) x 0.765. The two- 
ring constellation consists of the symbols (1, l), (-1, l), (-1, -l), (1, -l), 

(3, o>, (0,3), (-TO), and (0, -3) and so its minimum distance is 2. However, 
this is not a fair comparison since the average energy of the two-ring con- 
stellation is higher than that of 8PSK. We can always increase the minimum 
distance by increasing the energy; were we to put the 8PSK on a circle of 
radius 4 the minimum distance would be 4 l 0.765 > 3! The proper way to 
compare two constellations is to first normalize their average energies. Every 
point of the 8PSK constellation has unit energy, so the average energy is ob- 
viously unity. The two-ring constellation’s energy can be easily calculated as 
follows. Their are four points with energy (& 1)2 + ( f 1)2 = 2 and four points 
with energy (~t3)~ + O2 = 9, hence the average energy is (402+4.9)/8 = 5$. 
In order to force the energy to unity we need only divide all the symbol 
coordinates by the square root of this energy, i.e. by about 2.345. Instead of 
doing this we can directly divide the minimum distance by this amount, and 
find that the normalized minimum distance is 2/2.345 = 0.852 > 0.765. This 
increase in minimum distance is due to better exploitation of the geometrical 
properties of two-dimensional space. 

The two-ring constellation managed to increase the minimal distance 
between constellation points without increasing the energy. In this way a 
demodulator will make fewer errors with the same SNR, or alternatively 
we can attain the same error rate with a lower SNR. This is the goal of 
a good constellation, to maximize the minimum two-dimensional Euclidean 
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distance between points for a constellation with given energy. The problem 
is thus purely a geometric one, and some of the solutions presently in use 
are shown in Figure 18.26. 

It has become conventional to use square constellations with odd inte- 
ger coordinates. For example, the 16QAM constellation consists of symbols 
(-3,3), (-1,3), . . . (1, -3), (3, -3). What is the energy of this constellation? 
It has four points with energy (zH)~ + (&1)2 = 2, eight with (zH)~ + 

(9 
2 = 10, and four with (~t3)~ + (&3)2 = 18, so that the average is 

(4.2 + 8.10 + 4.18)/16 = 10. Since the unnormalized minimum distance is 
2, the normalized minimum distance is 2/m M 0.632. This is lower than 
that of the previous constellations, but each symbol here contains 4 bits of 
information, one bit more than that of the eight-point constellations. 

We will see in the next section that it is easiest to build slicers for square 
constellations, but rectangular constellations have a drawback. The corners 
have high energy, and may even be illegal in channels with maximum power 
restrictions. The optimum constellation boundary would be a circle, and this 
is closely approximated by the V.34 constellation. The cross-shaped constel- 
lations are a compromise whereby the worst offenders are removed, the slicer 
remains relatively simple, and the number of points in the constellation re- 
mains a power of two. 

EXERCISES 

18.17.1 Why are cross constellations used for odd numbers of bits per symbol and 
square-shaped constellations for even numbers? 

1817.2 Write a program to compute the average energy and normalized minimum 
distance for all the constellations in Figure 18.26. 

1817.3 Can you write a program that outputs the points in the V.34 constellation? 
(Hint: There are 1664 odd-integer-coordinate points bounded by a circle.) 

18.17.4 Show that PAM constellations with m bits have average energy E = $(4m-l) 
and hence require about four times (6 dB) more energy to add a bit. Repeat 
the calculation for square QAM constellations. 

18.17.5 Square QAM constellations suffer from the same 90’ ambiguity as nPSK. 
Show how differential encoding can be combined with 16QAM. 

18.17.6 Some people have suggested using hexagonal constellations. What are these 
and why have they been suggested? 

18.17.7 Prove that by squaring a QAM signal one can recover the baud rate. Prove 
that taking the fourth power of a QAM signal enables carrier recovery. Show 
that the rounder the constellation the harder it is to recover the carrier. 
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BPSK QPSK 

. . . . . . I . I 
8PSK V.29 7200 bps Al&. 3 bit 

. . . . 
. t . 

f-hip “II- 
l-iQALl V.29 9600 bps 

V.32 9600 bps V.32 12000 bps V.32 14400 bps 

.................... ................ .......... 
V.34 33600 bps 

Figure 18.26: Some popular QAM constellations. The BPSK and QPSK constellations 
are used by the simplest modems (e.g., V22bis telephone-grade modem at 2400 b/s). The 
second row all have three bits per symbol, and the third row all four bits per symbol. The 
fourth row contains the constellations used by the V.32bis standard modem, with 5, 6, 
and 7 bits per symbol. The V.34 1664-point constellation has been magnified for clarity. 



720 COMMUNICATIONS SIGNAL PROCESSING 

18.18 QAM Slicers 

The slicer is the element in the QAM demodulator that is responsible for de- 
ciding which symbol was actually transmitted. The slicer comes after AGC, 
after carrier and symbol timing recovery, after equalization and after symbol 
rate resampling, although it is intimately related to all of these. Its input 
is a point in two-dimensional space (Figure 18.27 gives an example) and its 
output is a symbol label. 

Figure 18.27 demonstrates the difficulty of the slicer’s task. The trans- 
mitted constellation points have become contaminated by noise, distortion, 
and uncorrected IS1 from the channel, and possibly by nonoptimalities of 
the previous stages of the demodulator. The combined effect of all these 
disturbances is that the constellation points have expanded into ‘clouds’ 
centered on their original positions. If the residual noise is too large, the 
clouds join, the constellation becomes unrecognizable, and the demodulator 
can no longer reliably function. The obvious requirement for dependable de- 
modulation is for the radii of the noise clouds to be smaller than half the 
distance between constellation points. 

The noise clouds are not always circularly symmetric, for example, when 
the demodulator has not properly locked on to the carrier frequency rota- 

Figure 18.27: Input to the slicer. The input represents three seconds of received two- 
dimensional points from a V.32bis modem operating at 14.4 Kb/s. The constellation is 
readily recognizable to the eye, but the slicer’s decisions are not always clear cut. 
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Figure 18.28: Operation of slicer for 8PSK. In (A) we see that the eight Voronoy regions 
are pie-slice in shape, being only phase dependent. In (B) only the phase of the same 
constellation is depicted, and we see that the slicer has been reduced to a quantizer. 

tional smearing dominates. However, we’ll assume that the clouds are cir- 
cularly symmetric, as would be the case if the major contribution is from 
additive channel noise. Under this assumption the optimal operation of the 
slicer is to choose the constellation point that is closest to the received point. 
So a straightforward slicer algorithm loops on all the N constellation points 
and selects that constellation point with minimal distance to the received 
point. This algorithm thus requires N computations of Euclidean distance 
(sum of squares) and comparisons. Were the constellation points to be ran- 
domly chosen this complexity would perhaps be warranted, but for the types 
of constellation actually used in practice (see Figure 18.26) much more ef- 
fective algorithms are available. 

The principle behind all efficient slicers is 
symmetries. Given an ar bitrary collection of 

exploit 
points, 

ation of Voronoy region 
the Voronoy region as- 

sociated with the n th point is the set of all points closer to it than any 
of the other points; the collection of all the Voronoy regions tessellate the 
plane. For the nPSK modem, having all its constellation points on the unit 
circle, it is not hard to see that the Voronoy zones are ‘pie-slice’ in shape 
(see Figure 18.28.A). The optimal slicer will slice up space into these pie 
slices and determine into which slice a received point falls. In particular we 
needn’t consider the amplitude of the received point, and the optimal deci- 
sion involves only its phase (as was assumed when we originally discussed the 
nPSK demodulator). When depicted in one-dimensional (phase-only) space 
(see Figure 18.28.B) the decision regions are even simpler. Neglecting the 
wrapping around of the phase at the edges, the slicing is reduced to simple 
inequalities. By correctly choosing the scale* and offset, the slicing can even 
be reduced to simple quantizing! 
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Figure 18.29: The Voronoy regions for square QAM constellations are square. To show 
this we investigate the immediate vicinity of an arbitrary symbol point, and connect this 
point with all neighboring symbols (the gray lines). We cut these lines with perpendicular 
bisectors (the dark lines) in order to separate points closer to the center symbol from those 
closer to the neighboring symbol. We shade in gray the area containing all points closest 
to the center symbol. 

The slicer for nPSK was so simple that it could be reduced to a single 
quantization operation; but the more complex constellations are inherently 
two-dimensional. Many non-PSK constellations are based on square arrange- 
ments of symbol points, the Voronoy regions for which are themselves square, 
as can be seen from Figure 18.29. Square Voronoy regions are only slightly 
more complex to manipulate than their one-dimensional counterpart, evenly 
spaced points on the line. By properly choosing the scale and offsets the de- 
cision algorithm is reduced to independent quantizing along both axes. Of 
course some points quantize to grid points that are outside the constellation, 
and in such cases we need to project the decision back toward a constella- 
tion point. For cross-shaped constellations a slight generalization of this 
algorithm is required; for example, in Figure 18.27 we observe a point in the 
lower-left corner and another in the upper right that have to be specially 
handled. 

We have succeeded in simplifying the slicer from the straightforward 
algorithm that required N distance computations and comparisons to one 
or two quantizations and some auxiliary comparisons. These simplifications 
depend on the geometric structure of the constellation. Indeed the efficiency 
of the slicer is often taken as one of the major design considerations when 
choosing the constellation. 
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EXERCISES 

18.18.1 Write a routine that efficiently implements a slicer for square 16QAM. Be 
careful about how you handle inputs that quantize to grid points outside the 
constellation. Are divisions required? 

18.18.2 Write a routine that efficiently implements a slicer for the cross-shaped 128- 
point constellation used in V.32bis. Inputs that quantize to grid points in the 
corners should only require a single additional comparison. 

18.18.3 What are the Voronoy regions for the 16-point V29 constellation? 

18.18.4 What 
point 

are 
. . . 

‘..... . . . 

the Voronoy regions for a hexagonal constellation such 
? How can a slicer be efficiently implemented here? 

as the 12 

18.19 Trellis Coding 

In Figure 18.9.C we saw how the error correction encoder could be placed 
before the modulator and the error correction decoder after the demodula- 
tor in order to protect the transmitted information against errors. As was 
mentioned in Section 18.7 this separation of the error correcting code from 
the modulation is not guaranteed to be optimal. In our discussion of error 
correcting codes in Section 18.9, we saw how ECCs increase the number of 
bits that need be transferred. This increase directly conflicts with our at- 
tempt at transferring the original amount of information in minimum time, 
but is perhaps better than receiving the information with errors and having 
to send it again. 

Is there some better way of combining the ECC and modulation tech- 
niques? It is easy to see that the answer must be affirmative. As a simplistic 
example, consider a bilevel PAM signal protected by a parity check. Parity 
check of the demodulated bits can only be used to detect a single bit error, 
while if we observe the signal input to the demodulator we may be able to 
make a good guess as to which -bit is in error. For example, 

0.10 0.92 0.05 0.49 1.02 0.94 0.08 0.04 c- input signal 
0 1 0 0 1 1 0 0 c- demodulated bits 
0 1 0 1 1 1 0 0 c- corrected bits 

we have to correct a single demodulated bit and it is obvious which bit is 
the best candidate for correction. 
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So we believe that there is a way to combine error correction and mod- 
ulation, but the two disciplines are so different that it is not obvious what 
that way is. It was Gottfried Ungerboeck from IBM in Zurich who, in the 
early 198Os, came up with the key idea of combining convolutional (trellis) 
codes with set partitioning. Set partitioning refers to recursively dividing 
a constellation into subconstellations with larger distance between nearest 
neighbors. What does this accomplish? If we know which subconstellation is 
to be transmitted then it is easier to determine which point was transmitted 
even in the presence of significant noise. How do we know which subcon- 
stellation is to be transmitted? Ungerboeck’s suggestion was to divide the 
input bits to be transmitted into two groups, one group determining the 
subconstellation and the other the point in the subconstellation. If we err 
regarding which subconstellation was transmitted we are potentially worse 
off than before. So we protect the decision as to the subconstellation with 
an error correction code! 

We will demonstrate the basic idea with the simplest possible case. A 
QPSK system sends two bits per symbol (that we call A and B) and has a 
minimal distance of fi x 1.414. In the proposed TCM system we expand the 
constellation to 8PSK using a l/2 rate convolutional code. We will keep the 
same baud rate so that the bandwidth remains unchanged, but the minimum 
distance between constellation points is decreased to 2 sin(g) = 0.765. The 
set partitioning is performed as follows. First, as depicted in Figure 18.30.A, 
the eight points are partitioned into two QPSK subconstellations, named 0 
and 1. This particular way of partitioning is optimal since there is no other 
way to partition the eight points into two subconstellations that will give 

A o B oo c ooo 

Figure 18.30: Set partitioning for the simplest TCM system. In step (A) the eight points 
are partitioned into two QPSK subconstellations, named 0 and 1. In step (B) each of 
the QPSK subconstellations is partitioned into two BPSK subsubconstellations, the 0 
subconstellation into 00 and 01, and the 1 subconstellation into 10 and 11. In (C) the 
subsubconstellation points themselves are labeled. 
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B 

state 
C cbmOOO 

A = 

Figure 18.31: The modulator for the simplest TCM system. One of the input bits is 
passed directly to the 8PSK modulator, and the other is encoded by a trivial rate l/2 
convolutional code. The ‘state’ is the previous bit and the outputs are the present bit and 
the state. 

greater Euclidean separation. In the next step (Figure 18.30.B) we partition 
each QPSK subconstellation into two BPSK subsubconstellations. The four 
points of subconstellation 0 are divided into subsubconstellations 00 and 
01, and those of the 1 subconstellation into 10 and 11. In Figure 18.30.C 
we label the subsubconstellation points by suffixing the subsubconstellation 
label with a 0 or 1 bit. 

Now that we have completely partitioned the constellation, we can pro- 
ceed to build the modulator. Let’s name the two bits that were input to the 
uncoded QPSK constellation, A and B. In the TCM modulator, input bit A 
is passed directly to the 8PSK modulator (where is becomes a), and it will 
determine the point in the subsubconstellation. Bit B, which will determine 
the subsubconstellation, first enters a convolution encoder, which outputs 
two bits b and c. What ECC should we use? We need a convolutional ECC 
that inputs a single bit but outputs two bits, that is, a rate l/2 code. The 
simplest such code is the trivial code of Figure 18.12. Output bit b will sim- 
ply be B, while c will be precisely the internal state of the encoder (i.e., 
the previous value of B). The bits a, b, and c determine the constellation 
point transmitted, as can be seen in Figure 18.31. It’s easy to see that if 
the encoder is presently in state zero then only constellation points 0 = 000, 
2 = 010, 4 = 100 and 6 = 110 can be transmitted, while if the state equals 
one then only constellation points 1 = 001, 3 = 011, 5 = 101, and 7 = 111 
are available. 

Let’s draw the trellis diagram for this simple TCM modulator. It is 
conventional to draw the trellis taking all the inputs bits (in our case A and 
B) into account, although only some of them (B) enter the encoder and 
the others (A) do not. TCM trellis diagrams thus have ‘parallel transitions’, 
that is, multiple paths between the same states, For our encoder the new 
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state input (BA) output (cba) new state 
0 WO) 0(000) 0 
0 ml) l(OO1) 0 

I 

0 z(ioj z(oioj 1 
0 301) 3(011) 1 

1 1 1 1 oiooi 1 4iiooi I 0 \ 
1 l(oij 5(ioi j 0 
1 WO) 6(110) 1 
1 Wl) 7(111) 1 

Figure 18.32: The trellis table and diagram for the simplest TCM system. The table 
gives the output and new state given the present state and the input bits. The diagram 
depicts a single time step. Between each state and each new state there are two parallel 
transitions, labeled BA/cba. 

state will be whatever B is now. So assuming we are presently in state zero, 
we will remain in state zero if the input bits AB are either 0 = 00 or 2 = 10; 
however, if the inputs bits are 1 = 01 or 3 = 11 the state will change to one. 
It is straightforward to derive the table and diagram in Figure 18.32 which 
connect all the relevant quantities. 

Now let’s see if this TCM technique is truly more resistant to noise than 
the original QPSK. What we would really want to compare are the energies 
of noise that cause a given bit error rate (BER). However, it is easier to 
calculate the ratio of the noise energies that cause a minimal error event. 
For this type of calculation we can always assume that a continuous stream 
of zeros is to be transmitted. For the QPSK signal the minimal error is when 
the 00 constellation point is received as one of the two neighboring symbols 
(see Figure 18.33). This corresponds to a noise vector n of length 1.414 and 
of energy In 1 2 = 2. What is the minimal error for the TCM case? 

Figure 18.33: The minimal error event for uncoded QPSK. The symbol s was transmit- 

ted but the symbol s + n was received. The noise vector is of length fi and hence of - - 
energy 2. 
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Without error we would stay in state zero all the time and receive only 
the 0 constellation point. Since we are in state zero there is no way we 
could receive an odd-numbered constellation point, so an error must result 
in receiving one of the points 2, 4, or 6, with 2 and 6 being the closest. Both 
2 and 6 correspond to the same noise energy as in the QPSK case, but also 
switch the state to one, so that the next constellation point received will 
be odd numbered. The odd numbered points of minimal distance from the 
true point of zero are 1 and 7, both with distance about 0.765 and energy 
0.5858. Thereafter the state reverts to 0 and the proper constellation point 
may be received again. So the combined noise energy of the two errors that 
make up this error event is about 2.5858. If the constellation point labeled 
4 is mistakenly received the state does not change, but this corresponds to 
noise of energy 22 = 4. So the minimal noise energy is 2.5858 as compared 
with 2 for the uncoded case. This corresponds to an improvement of a little 
over 1.1 dB. 

By using more complex ECCs we can get more significant gains. For 
example, the four-state code of Figure 18.34 is described in Figure 18.35. 
It is not hard to see that the minimal energy error event occurs when we 
substitute the constellation point 001 for 000, taking the parallel transition 
and remaining in state 0. The energy of this event is 22 = 4 rather than 
2 for a coding gain of 3 dB. By using even more complex ECCs we can 
achieve further coding gains, although the returns on such computational 
investment decrease. 

The first standard modem to use TCM was the CCITT V.32 modem at 
9600 b/s. In order to make TCM practical, the trellis code must be made 

011 G 8PSK 010 
modulator 

101 110 

Figure 18.34: The modulator for a four-state 8PSK TCM system. One of the input bits 
is passed directly to the 8PSK modulator, and the other is encoded by a two state l/2 
convolutional code. The ‘state’ consists of the previous two bits and the outputs are formed 
by binary additions (xor) of the present bit and the state bits. 
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I I I 
I oiooj I 2iloj I silloj 1 2iioj I 

3(11) l(O1) 5(101) W) 
3(11) 2(10) 2(010) W) 

1 3(11) 1 3(11) 1 3(011) 1 3(11) 1 

Figure 18.35: The trellis table and diagram for the four-state 8PSK TCM system. Once 
again there are two parallel transitions between each two states, labeled by BA/cba. 

invariant to rotations by 90”. This feat was accomplished by Wei, although 
it required a nonlinear code. 

EXERCISES 

18.19.1 The simplest TCM described in the text uses the replicating convolutional 
code with a particular phase, outputting at a given time the present input 
bit and the previous one. What would happen if we output the present bit 
twice instead? 

18.19.2 Calculate the noise energies for the different possible error events for the 
four-state 8PSK TCM system and show that the minimal event is indeed 
that mentioned in the text. 

18.19.3 Devise a set partition for the 16 QAM constellation. To do this first partition 
the 16 points into two subconstellations of 8 points each, with each subcon- 
stellation having maximal minimal distance. What is this distance and how 
does it relate to the original minimal distance? Now continue recursively until 
each point is labeled by four bits. By how much does the minimal distance 
increase each time? 

18.19.4 Why does TCM simplify (or even eliminate the need for) the slicer? 
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18.20 Telephone-Grade Modems 

The history of telephone-grade modems is a story of rate doubling. The 
first telephone modem of interest was the Bell 103 and its internationally 
recognized standard version called V.21. This modem used FSK and allowed 
full-duplex operation of up to 300 b/s. The V.21 originating modem (called 
channel 1) uses frequencies 980 and 1180 Hz while the answering modem 
(channel 2) uses 1650 and 1850 Hz. V.21 channel 2 is still in widespread use 
today as the medium for negotiation between fax machines; such information 
as the maximum speed supported, the paper size, the station telephone 
numbers, and other identification are sent at 300 b/s before the higher- 
speed modem sends the image. This same FSK signal then cuts in again 
with ‘end of page’ and ‘end of transmission’ messages. You can recognize 
the V.21 as the ‘brrrr’ sound before and after the ‘pshhhhh’ sound of the 
higher-speed transmission. 

A breakthrough came with the introduction of the Bell 202 and its ITU 
version, V.23. The V.23 FSK modem attained full-duplex 600 b/s and 1.2 
Kb/s but only over special four-wire lines; on regular dial-up two-wire cir- 
cuits these rates were for half-duplex use only. The rate increase as compared 
to V.21 was due to the use of an equalizer, although it was a fixed compro- 
mise equalizer designed for a ‘typical line’ and implemented as an analog 
filter. It is an amazing statement about conservativeness that the Bell 202 
signal is still in common use. In many places it appears before the phone is 
picked up, carrying the number of the calling party for display to the called 
party. 

The Bell 201 modem came out in 1962, and was later standardized by 
the ITU as V.26. This modem was QPSK and could attain half-duplex 2.4 
Kb/s by using 1200 baud and 2 bits per symbol. The Bell 201 was the last 
of the modems built of analog components; it had a carrier of 1800 Hz and 
a fixed compromise equalizer. Its innovation was the use of carrier recovery. 

Logically, if not historically, the first of the new breed of DSP modems 
was the V.22 QPSK modem, which reached 1.2 Kb/s full-duplex over regular 
dial-up lines. By upgrading the constellation from QPSK to square 16QAM, 
V.22bis was able to reach 2.4 Kb/s. The baud rate for these modems is 600, 
with one side using a carrier of 1200 Hz and the other 2400 Hz. 

By using 8PSK, Milgo was able in 1967 to extend the half-duplex bit rate 
to 4.8 Kb/s. The baud rate was 1600, the carrier 1800 Hz, and the original 
version had an adjustable equalizer. Unfortunately, the adjusting had to be 
done by hand using a knob on the modem’s front panel. This modem was 
standardized in 1972 as V.27. 
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The next major breakthrough was the 1971 introduction by Co&x and 
the 1976 standardization of V.29. This modem achieved a half-duplex rate of 
up to 9.6 Kb/s by using an unusual 16-point QAM constellation with carrier 
1700 Hz and baud rate 2400. Another innovative aspect of this modem was 
its adaptive equalizer. This modem is still popular as the 9600 fax, where 
half-duplex operation is acceptable. 

Surprisingly, more than two decades after Shannon had predicted much 
higher rates, technology appeared to stop at 9.6 Kb/s. Popular wisdom be- 
lieved Shannon’s predictions to be overoptimistic, and efforts were devoted 
to implementational issues. Then in 1982, Ungerboeck published his paper 
revealing that an eight-state TCM code could provide a further 3.6 dB of 
gain, and the race toward higher rates was on again. The next step should 
have been to double the 9.6 Kb/s to 19.2 Kb/s, but that leap wasn’t achieved. 
At first the V.33 modem achieved 14.4 Kb/s full-duplex on a four-wire line, 
and its two-wire half-duplex version (V.17) is the standard 14.4 fax used to- 
day. Next, with the introduction of DSP echo cancelling techniques, V.32bis 
achieved that same rate for full-duplex on two wires. All of these modems 
use fc = 1800 Hz, fb = 2400 Hz and a 12%point cross-shaped constellation. 
Since one of the seven bits is used for the coding, the remaining six bits times 
2400 baud result in 14.4 Kb/s. These modems also provide 64-point square 
and 32-point cross constellations for 12 Kb/s and 9.6 Kb/s respectively. 

V.32bis had attained 14.4 Kb/s, so the next major challenge, dubbed 
V.fast, was to attempt to double this rate (i.e., to attain 288Kb/s). For 
several years different technologies and signal processing techniques were 
tried, until finally in 1994 the V.34 standard was born. V.34 was a quantum 
leap in signal processing sophistication, and we will only be able to mention 
its basic principles here. Due to the complexity of the signal processing, most 
V.34 modems are implemented using DSP processors, rather than special- 
purpose DSP hardware. 

The original ITU-T V.34 specification supported all data rates from 2.4 
Kb/s to 28.8 Kb/ s in increments of 2.4 Kb/s, and an updated version added 
two new rates of 31.2 and 33.6 Kb/s as well. Two V.34 modems negotiate 
between them and connect at the highest of these data rates that the channel 
can reliably provide. 

We have already seen in Figure 18.26 the constellation used by V.34 for 
33.6 Kb/s operation. For lower rates subconstellations of this one are used. 
This constellation is by far the most dense we have seen. 

Recall from equation (18.20) that the information transfer rate in any 
given channel is maximized by matching the PSD to the channel charac- 
teristics. One of the problems with the modems up to V.32bis is that they 
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baud rate (Hz) low carrier (Hz) high carrier (Hz) maximum data rate (Kb/s) 
2400 1600 1800 21.6 
2743* 1646 1829 26.4 
2800* 1680 1867 26.4 
3000 1800 2000 28.8 
3200 1829 1920 31.2 
3429* 1959 - 33.6 

Table 18.3: The basic parameters for V.34. The baud rates marked with an asterisk 
are optional. Each baud rate, except the highest, can work with two possible carrier 
frequencies. 

have a single predefined carrier and single baud rate, and hence their PSD is 
predetermined. The PSD of V.32bis stretches from 2400 - 1800 = 600 Hz to 
2400 + 1800 = 3000 Hz irrespective of the channel characteristics. V.34 pro- 
vides six possible baud rates (three mandatory and three optional) as well as 
nine carrier frequencies. A V.34 modem starts by probing the channel with a 
probe signal that creates the distinctive ‘bong’ noise you hear when trying to 
connect with a V.34 modem. This probe signal (see exercise 2.6.4) consists 
of a comb of sinusoids spaced 150 Hz apart from 150 Hz to 3750, except that 
the 900, 1200, 1800 and 2400 Hz tones have been removed. Using the probe 
signal the receiving modem can determine the frequency-dependent SNR, 
decide on the maximum data rate that can be supported with reasonably 
low bit error rate, and inform the transmitting modem which carrier and 
baud rate best match the channel. The possible baud rate and carriers are 
given in Table 18.3. 

The second half of the channel capacity theorem specifies how the signal 
that maximizes information transfer rate should look. It should appear as 
white noise other than the water-pouring filtering. The suboptimality of 
V.32bis can be easily ascertained by observing its spectrum. With V.34 
techniques were added to whiten the modem’s spectrum. 

Looking at Figure 18.3 we note that the data rate is not always an 
integer multiple of the baud rate (i.e., there is a noninteger number of bits 
per symbol). For example, the 33.6 Kb/s maximum bit rate requires 8.4 bits 
per symbol at 3429 baud. This feat is accomplished using a shell mapper. 

In ordinary QAM the constellation points are used with equal proba- 
bility, so that the received (imperfectly equalized) I-Q plot is homogeneous 
inside a disk. A noise signal would have its I-Q plot distribution decrease as 
a Gaussian function of the radius. We can imitate this behavior by divid- 
ing the constellation into concentric circles called shells, and, based on the 
data to be transmitted, first choose a shell and then the point within the 



732 COMMUNICATIONS SIGNAL PROCESSING 

shell. By using an algorithm that prefers interior shells we can transmit the 
constellation with a more Gaussian distribution. 

V.34 also uses more powerful TCM codes than the Wei code used in V.32. 
The standard specifies three codes, a 16-state code (also invented by Wei) 
with 4.2 dB gain, a 32-state code with 4.5 dB gain and a 64-state code with 
4.7 dB gain. All three of these codes are four-dimensional, meaning that they 
are based on four-dimensional symbols built up from two consecutive two- 
dimensional ones. Why should we want to group two transmitted symbols 
into a more complex one? The reason has to do with the geometry of n- 
dimensional space. Note that in one-dimensional space we can only place two 
points at unity distance from a given point, while in two-dimensional space 
there can be four such, and in n-dimensional space, 2n nearest neighbors. 
Thus for a given amount of energy, we can place more constellation points 
and thus carry more information, in higher-dimensional space. Of course the 
four-dimensional symbols are actually transmitted as two two-dimensional 
ones, but not every combination of consecutive two-dimensional symbols is 
possible. 

In order to widen the usable bandwidth V.34 uses a more powerful equal- 
ization technique. Although DFE is capable of attaining close to the Shannon 
capacity, it has several drawbacks, the most important being that it is hard 
to combine with TCM. For V.34 a Tomlinson type equalizer was chosen 
instead. During the initialization a DFE is trained and the feedback coef- 
ficients sent to the modulator, where they are used as a ‘precoder’. Taking 
the decision element out of the receive data path now makes integration 
of the equalizer with the TCM possible. A new mechanism called flexible 
preceding was invented to specifically integrate the precoder with the rest 
of the V.34 engine. 

The logarithmic encoding used in the digital telephone system (p-law 
or A-law) compresses the outer constellation points, making decisions diffi- 
cult. V.34 has an option called ‘nonlinear encoding’ or ‘warping’ designed 
to combat these distortions. When enabled, the constellation is distorted, 
increasing the distance between outer constellation points, at the expense of 
decreasing that of more interior points. 

The extremely sophisticated signal processing of the V.34 standard took 
years to develop and several years more to agree upon in standards com- 
mittees. Yet, paradoxically, although for all intents and purposes V.34 at 
last approached the Shannon limit, it reigned supreme for only about a 
year. The next step, the step that would once again double the transmission 
speed from 28K to 56K, was just around the corner. 
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EXERCISES 

18.20.1 Plot the PSDs of V.22bis, V.32, and the various modes of V.34 and compare 
spectral utilization. 

18.20.2 Obtain diagrams of th.e initialization phases of V.32bis and V.34. Can you 
explain what happens at each stage? 

18.21 Beyond the Shannon Limit 

Can we beat the Shannon limit? No, there is no way of reliably communicat- 
ing over an analog channel with the characteristics of the telephone channel 
at rates significantly higher than those of V.34. So how do V.90 (56Kb/s) 
modems work? What about G.lite (1 Mb/s), ADSL (8 Mb/s), and VDSL 
(52 Mb/s)? 

These modems do not exceed the Shannon limit; they simply use a dif- 
ferent channel. Even though they may be connected to the same phone lines 
that previously used a V.34 modem, what they see is different. 

All of the previous modems assumed that the telephone network is com- 
prised of (analog) twisted pairs of wire, with (analog) filters restricting the 
bandwidth. This was indeed once the case, but over the years more and more 
of the telephone system has become digital, transmitting conversations as 
8000 eight-bit samples per second. Of course at every stage of this transfor- 
mation of the telephone system the new equipment has emulated the old as 
closely as possible, so the new digital system looks very much like the old 
analog one; but in many places the only truly analog portion left is the ‘last 
mile’ of copper wire from the telephone office to the subscriber’s house. 

Were we able to transcend that last mile of copper we should be able 
to provide eight bits 8000 times per second, that is, an information transfer 
rate of 64 Kb/s. This is not surprising since this is the rate used internally 
by the telephone system for its own digital signals. The problem is that we 
are that mile or two away. 

What would happen if someone at the telephone central office (CO) were 
to send us digital data at 64 Kb/s ( i.e., a 256 level signal at 8000 samples 
per second)? Our telephone would interpret this PClM modem as a very loud 
noise, too loud in fact. In order to reduce crosstalk between neighboring 
cables, restrictions are placed on the average power that one can put onto 
the telephone wires. When voice is sent using these same 256 levels the 
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lower levels are more probable than the higher ones; when digital data is 
sent all levels are equally probable, resulting in a higher average power, 
There is another problem with this attempt at transmitting 64 Kb/s. In 
some parts of the world not all 8 bits are available. Every now and then 
the least significant bit is ‘robbed’ for other uses. This does not degrade 
voice quality very much, but would be most undesirable for data. In order 
to reduce the average power we can use shell mapping, and because of this, 
together with overcoming the robbed-bit phenomenon, we should not expect 
more than 7 bits 8000 times a second, for a grand total of 56 Kb/s. 

What would happen if someone at the CO were to send us digital data at 
56 Kb/s with an appropriate shell mapping? Would we be able to distinguish 
between these closely spaced levels? There would be ISI, but that could be 
overcome by an equalizer. We would need an echo canceller to remove our 
own transmission, but that too is well-known theory. It turns out that if we 
send digital levels directly on the pair of wires going to the other modem, 
then it is possible to recover the original levels. The data source need not 
sit physically in the telephone office, as long as its connection to that office 
is completely digital. 

This is how the V.90 56 Kb/s modem works. A V.34 modem is used in 
the upstream direction, that is, from the consumer to the service provider. 
In the downstream direction a shell-mapped digital signal of up to 56 Kb/s 
is sent. This asymmetry is acceptable for many applications (e.g., for In- 
ternet browsing where the downstream often consumes ten times the data 
rate as the upstream). In a newer version dubbed V.92 even the upsteam 
transmission tries to overcome the last mile and jump onto the digital link. 

V.90 exceeds Shannon by exploiting the fact that the telephone system 
is no longer a 4 KHz analog channel, and thus the maximum possible rate is 
the 64 Kb/s used by the telephone system itself. Getting even higher than 
64 Kb/s requires an even more radical departure from our model of the 
telephone system. 

We have mentioned that the telephone network remains analog only in 
the ‘last mile’ to the subscriber, more formally called the ‘subscriber line’. 
Now if we look at the frequency response of such subscriber lines, we find 
behaviors such as those of Figure 18.36. Although there is strong attenuation 
at high frequencies, the bandwidth is definitely higher than 4 KHz. 

The 4 KHz restriction is actually enforced by filters at the telephone 
office, in order to enable multiplexing of multiple telephone conversations 
on a single carrier. There is nothing inherent in the subscriber line that 
recognizes this bandwidth restriction. So if we can place our modem before 
the filters and are allowed to use the subscriber line as a general-purpose 
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Figure 18.36: The attenuation for unshielded twisted-pair lines. Depicted is the line 
attenuation in dB for one kilometer of standard telephone-grade 24.gauge (upper curve) 
and 26-gauge (lower curve) unshielded cable. For two kilometers of cable the attenuation 
in dB is doubled. 

cable, the so-called Digital Subscriber Line (DSL) modems can reach much 
higher capacities. Of course we may desire to continue to use the same 
subscriber line for our regular phone conversations, in which case a ‘splitter’ 
is placed at the end of the line. A splitter is simply a low-pass filter that 
passes the low frequencies to the phone, and a high-pass filter that delivers 
the high frequencies to the DSL modem. 

The longer the subscriber’s cable, the higher the attenuation and thus 
the lower the capacity. Long lengths can support G.lite or ADSL rates, 
short lengths VDSL rates. The maximum capacity can be estimated using 
water-pouring calculations. The strong difference in attenuation between low 
frequencies and higher ones can be compensated for by an equalizer. 

The DSL environment is more complex than we have described so far. In 
addition to the attenuation there is the acute problem of crosstalk. At high 
frequencies a significant portion of the signal energy leaks between adjacent 
cables, causing one DSL modem to interfere with another. The interferer 
may be located close by, as in the case of a bank of DSL modems at the 
telephone office, or remotely located but transmitting to a co-located DSL 
demodulator. The former case is called NEXT (Near End XTalk) and the 
latter FEXT (Far End XTalk). In addition, signals such as AM broadcast 
transmissions can be picked up by the subscriber line and cause narrow 
bands of frequencies to be unusable. DSL modems must be able to cope 
with all these types of interference. 
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Multicarrier modems were proposed, but not accepted, for Vfast. A mul- 
ticarrier scheme called Discrete MultiTone (DMT) has become the recog- 
nized standard for G.lite and ADSL. These modems transmit a large number 
of independent equally spaced carriers, each with an nPSK or QAM constel- 
lation, and all with the same baud rate. This baud rate is very low compared 
to the bit rate, and so each carrier has a narrow bandwidth. These narrow 
bandwidth transmissions remind us of those used in the proof of the second 
half of Shannon’s capacity theorem, and indeed the multicarrier approach is 
successful partly due to its ability to approach the water-pouring limit. Fur- 
thermore, we can assume that the channel attenuation and phase delay are 
approximately constant over the narrow bandwidth of these transmissions, 
hence equalization in the normal sense is not required. All that is needed 
is a single gain to compensate for the attenuation at the carrier frequency, 
and a single phase rotation to bring the constellation to the proper angle. 
This Frequency EQualizer (FEQ) can be performed by a single complex 
multiplication per carrier. The coefficient can be found as in exercise 6.148 

The narrow bandwidth and slow baud rate make the IS1 less important; 
however, if the carriers are close together we would expect InterChannel 
Interference (ICI) to become a problem. ICI is removed in DMT by choos- 
ing the intercarrier spacing to be precisely the baud rate. In this fashion 
each carrier sits on the zeros of its neighbor’s sines, and the ICI is negligi- 
ble. Multicarrier signals with this spacing are called Orthogonal Frequency 
Division Multiplexing (OFDM) signals, since the carriers are spaced to be 
orthogonal. 

How do we demodulate DMT signals? The straightforward method would 
be to use a bank of band-pass filters to separate the carriers, and then 
downmix each to zero and slice. However, it is obvious that this bank of 
filters and downmixers can be performed in parallel by using a single FFT 
algorithm, making the DMT demodulator computationally efficient. Indeed, 
the modulator can work the same way; after dividing the bit stream into 
groups, we create complex constellation points for each of the constellations, 
and then perform a single iFFT to create the signal to be transmitted! 

EXERCISES 

18.21.1 What is the SNR needed to achieve 56 Kb/s using every other PCM level 
and assuming 3.8 KHz of bandwidth and that the consumer’s modem has a 
16-bit linear A/D? Is this reasonable? Why is it harder to transmit 56 Kb/s 
upstream? 
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18.21.2 Why is the POTS splitter implemented using passive analog filters rather 
than digital filters? 

18.21.3 A DMT modem still has some IS1 from previous symbols. This IS1 is removed 
by using a cyclic prefix. Explain. The overhead of a long cyclic prefix can be 
reduced by using a Time EQualizer, which is a filter whose sole purpose is to 
decrease the length of the channel impulse response. What is the connection 
between the TEQ, FE&, and a regular equalizer? 

18.21.4 DMT modems suffer from high Peak to Average Ratio (PAR). Explain why. 
Why is this an undesirable feature? What can be done to lower the PAR? 

Bibliographical Notes 

The general theory and practice of digital communications systems is covered in 
many texts [242, 951, and modems in particular are the subject of [144, 1991. [262] 
covers real-time DSP programming (using a floating point processor) for communi- 
cations, including AM, FM, SSB, PAM, QAM, and echo cancellation for full-duplex 
modems. 

Harry Nyquist published in 1928 a precursor to information theory [183]. Shan- 
non’s separation theorems appear in [237], which later appeared as a book. The 
first part of the channel capacity theorem first appears in [238], an article that very 
much deserves reading even today. The water-pouring criterion is due to Gallager, 
and appears in his book [67]. 

A good modern textbook on information theory is [46], while error correcting 
codes are covered in many books, e.g., [194]. This latter is an updated version of 
one of the first texts on the subject. A fascinating mathematically oriented book 
on topics relevant to error correcting codes is [42]. Reed and Solomon published 
their code in [218]. Viterbi presented his algorithm for decoding convolution codes 
in [265], but the classic overview is [63]. 

A dated, but still useful, reference on constellation design is [119]. Multidimen- 
sional constellations are covered in [70]. 

Timing recovery is reviewed in [64] and a suggested original article is [76]. 
TCM was first presented by Ungerboeck in [263], and Wei [270] discovered how 

to make it rotationally invariant, leading to the trellis code used in V.32. For TCM 
in multidimensional constellations consult [271]. 

Since standard texts go only as far as V.32, it is worthwhile consulting the V.34 
review in [117]. Tomlinson and flexible preceding is explained in [118]. 

The classic, but dated, reference for multicarrier modulation is [18]. 
Readers interested in a nontechnical introduction to DSL modems should con- 

sult [82], while in-depth coverage is provided in [217, 36, 2511. 





19 

Speech Signal Processing 

In this chapter we treat of one of the most intricate and fascinating signals 
ever to be studied, human. speech. The reader has already been exposed 
to the basic models of speech generation and perception in Chapter 11. In 
this chapter we apply our knowledge of these mechanisms to the practical 
problem of speech modeling. 

Speech synthesis is the artificial generation of understandable, and (hope- 
fully) natural-sounding speech. If coupled with a set of rules for reading text, 
rules that in some languages are simple but in others quite complex, we get 
text-to-speech conversion. We introduce the reader to speech modeling by 
means of a naive, but functional, speech synthesis system. 

Speech recognition, also called speech-to-text conversion, seems at first to 
be a pattern recognition problem, but closer examination proves understand- 
ing speech to be much more complex due to time warping effects. Although 
a difficult task, the allure of a machine that converses with humans via natu- 
ral speech is so great that much research has been and is still being devoted 
to this subject. There are also many other applications-speaker verifica- 
tion, emotional content extraction (voice polygraph), blind voice separation 
(cocktail party effect), speech enhancement, and language identification, to 
name just a few. While the list of applications is endless many of the basic 
principles tend to be the same. We will focus on the deriving of ‘features’, 
i.e., sets of parameters that are believed to contain the information needed 
for the various tasks. 

Simplistic sampling and digitizing of speech requires a high information 
rate (in bits per second), meaning wide bandwidth and large storage re- 
quirements. More sophisticated methods have been developed that require 
a significantly lower information rate but introduce a tolerable amount of 
distortion to the original signal. These methods are called speech coding 
or speech compression techniques, and the main focus of this chapter is 
to follow the historical development of telephone-grade speech compression 
techniques that successively halved bit rates from 64 to below 8 Kb/s. 

739 
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19.1 LPC Speech Synthesis 

We discussed the biology of speech production in Section 11.3, and the 
LPC method of finding the coefficients of an all-pole filter in Section 9.9. 
The time has come to put the pieces together and build a simple model 
that approximates that biology and can be efficiently computed. This model 
is often called the LPC speech model, for reasons that will become clear 
shortly, and is extremely popular in speech analysis and synthesis. Many of 
the methods used for speech compression and feature extraction are based on 
the LPC model and/or attempts to capture the deviations from it. Despite 
its popularity we must remember that the LPC speech model is an attempt 
to mimic the speech production apparatus, and does not directly relate to 
the way we perceive speech. 

Recall the essential elements of the biological speech production system. 
For voiced speech the vocal chords produce a series of pulses at a frequency 
known as the pitch. This excitation enters the vocal tract, which resonates 
at certain frequencies known as formants, and hence amplifies the pitch 
harmonics that are near these frequencies. For unvoiced speech the vocal 
chords do not vibrate but the vocal tract remains unchanged. Since the 
vocal tract mainly emphasizes frequencies (we neglect zeros in the spectrum 
caused by the nasal tract) we can model it by an all-pole filter. The entire 
model system is depicted in Figure 19.1. 

Figure 19.1: LPC speech model. The U/V switch selaects one of two possible excitation 
signals, a pulse train created by the pitch generator, or white noise created by the noise 
generator. This excitation is input to an all-pole filter. 
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This extremely primitive model can already be used for speech synthesis 
systems, and indeed was the heart of a popular chip set as early as the 1970s. 
Let’s assume that speech can be assumed to be approximately stationary 
for at least T seconds (T is usually assumed to be in the range from 10 to 

100 milliseconds). Then in order to synthesize speech, we need to supply our 
model with the following information every T seconds. First, a single bit 
indicating whether the speech segment is voiced or unvoiced. If the speech 
is voiced we need to supply the pitch frequency as well (for convenience 
we sometimes combine the U/V bit with the pitch parameter, a zero pitch 
indicating unvoiced speech). Next, we need to specify the overall gain of 
the filter. Finally, we need to supply any set of parameters that completely 
specify the all-pole filter (e.g., pole locations, LPC coefficients, reflection 
coefficients, LSP frequencies). Since there are four to five formants, we expect 
the filter to have 8 to 10 complex poles. 

How do we know what filter coefficients to use to make a desired sound? 
What we need to do is to prepare a list of the coefficients for the various 
phonemes needed. Happily this type of data is readily available. For example, 
in Figure 19.2 we show a scatter plot of the first 
based on the famous Peterson-Barney data. 
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Figure 19.2: First two formants from Peterson-Barney vowel data. The horizontal axis 
represents the frequency of the first formant between 200 and 1250 Hz, while the vertical 
axis is the frequency of the second formant, between 500 and 3500 Hz. The data consists of 
each of ten vowel sounds pronounced twice by each of 76 speakers. The two letter notations 
are the so-called ARPABET symbols. IY stands for the vowel in heat, IH for that in hid, 
and likewise EH head, AE had, AH hut, AA hot, A0 fought, UH hood, UW hoot, ER 
heard. 
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Can we get a rough estimate of the information rate required to drive 
such a synthesis model? Taking T to be 32 milliseconds and quantizing the 
pitch, gain, and ten filter coefficients with eight bits apiece, we need 3 Kb/s. 
This may seem high compared to the information in the original text (even 
speaking at the rapid pace of three five-letter words per second, the text 
requires less than 150 b/s) but is amazingly frugal compared to the data 
rate required to transfer natural speech. 

The LPC speech model is a gross oversimplification of the true speech 
production mechanism, and when used without embellishment produces syn- 
thetic sounding speech. However, by properly modulating the pitch and gain, 
and using models for the short time behavior of the filter coefficients, the 
sound can be improved somewhat. 

EXERCISES 

19.1.1 The Peterson-Barney data is easily obtainable in computer-readable form. 
Generate vowels according to the formant parameters and listen to the result. 
Can you recognize the vowel? 

19.1.2 Source code for the Klatt formant synthesizer is in the public domain. Learn 
its parameters and experiment with putting phonemes together to make 
words. Get the synthesizer to say ‘digital signal processing’. How natural- 
sounding is it? 

19.1.3 Is the LPC model valid for a flute? What model is sensible for a guitar? What 
is the difference between the excitation of a guitar and that of a violin? 

19.2 LPC Speech Analysis 

The basic model of the previous section can be used for more than text-to- 
speech applications, and it can be used as the synthesis half of an LPC-based 
speech compression system. In order to build a complete compression system 
we need to solve the inverse problem, given samples of speech to determine 
whether the speech is voiced or not, if it is to find the pitch, to find the gain, 
and to find the filter coefficients that best match the input speech. This will 
allow us to build the analysis part of an LPC speech coding system. 

Actually, there is a problem that should be solved even before all the 
above, namely deciding whether there is any speech present at all. In most 
conversations each conversant tends to speak only about half of the time, and 
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there is no reason to try to model speech that doesn’t exist. Simple devices 
that trigger on speech go under the name of VOX, for Voice Operated 
X (X being a graphic abbreviation for the word ‘switch’), while the more 
sophisticated techniques are now called Voice Activity Detection. Simple 
VOXes may trigger just based on the appearance of energy, or may employ 
NRT mechanisms, or use gross spectral features to discriminate between 
speech and noise. The use of zero crossings is also popular as these can 
be computed with low complexity. Most VADs utilize parameters based on 
autocorrelation, and essentially perform the initial stages of a speech coder. 
When the decision has been made that no voice is present, older systems 
would simply not store or transfer any information, resulting in dead silence 
upon decoding. The modern approach is to extract some basic statistics of 
the noise (e.g., energy and bandwidth) in order to enable Comfort Noise 
Generation, (CNG). 

Once the VAD has decided that speech is present, determination of the 
voicing (U/V) must be made; and assuming the speech is voiced the next 
step will be pitch determination. Pitch tracking and voicing determination 
will be treated in Section 19.5. 

The finding of the filter coefficients is based on the principles of Sec- 
tion 9.9, but there are a few details we need to fill in. We know how to find 
LPC coefficients when there is no excitation, but here there is excitation. 
For voiced speech this excitation is nonzero only during the glottal pulse, 
and one strategy is to ignore it and live with the spikes of error. These spikes 
reinforce the pitch information and may be of no consequence in speech com- 
pression systems. In pitch synchronous systems we first identify the pitch 
pulse locations, and correctly evaluate the LPC coefficients for blocks start- 
ing with a pulse and ending before the next pulse. A more modern approach 
is to perform two separate LPC analyses. The one we have been discussing 
up to now, which models the vocal tract, is now called the short-term predic- 
tor. The new one, called the long-term predictor, estimates the pitch period 
and structure. It typically only has a few coefficients, but is updated at a 
higher rate. 

There is one final parameter we have neglected until now, the gain G. 
Of course if we assume the excitation to be zero our formalism cannot be 
expected to supply G. However, since G simply controls the overall volume, it 
carries little information and its adjustment is not critical. In speech coding 
it is typically set by requiring the energy of the predicted signal to equal the 
energy in the original signal. 
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EXERCISES 

19.2.1 Multipulse LPC uses an excitation with several pulses per pitch period. Ex- 
plain how this can improve LPC quality. 

19.2.2 Mixed Excitation Linear Prediction (MELP) does switch between periodic 
and noise excitation, rather uses an additive combination of the two. Why 
can this produce better quality speech than LPC? 

19.2.3 Record some speech and display its sonogram. Compute the LPC spectrum 
and find its major peaks. Overlay the peaks onto the sonogram. Can you 
recognize the formants? What about the pitch? 

19.2.4 Synthesize some LPC data using a certain number of LPC coefficients and 
try to analyze it using a different number of coefficients. What happens? How 
does the reconstruction SNR depend on the order mismatch? 

19.3 Cepstrum 

The LPC model is not the only framework for describing speech. Although 
it is currently the basis for much of speech compression, cepstral coefficients 
have proven to be superior for speech recognition and speaker identification. 

The first time you hear the word cepstrum you are convinced that the 
word was supposed to be spectrum and laugh at the speaker’s spoonerism. 
However, there really is something pronounced ‘cepstrum’ instead of ‘spec- 
trum’, as well as a ‘quefrency’ replacing ‘frequency’, and ‘liftering’ displacing 
‘filtering’. Several other purposefully distorted words have been suggested 
(e.g., ‘alanysis’ and ‘saphe’) but have not become as popular. 

To motivate the use of cepstrum in speech analysis, recall that voiced 
speech can be viewed as a periodic excitation signal passed through an all- 
pole filter. The excitation signal in the frequency domain is rich in harmonics, 
and can be modeled as a train of equally spaced discrete lines, separated by 
the pitch frequency. The amplitudes of these lines decreases rapidly with in- 
creasing frequency, with between 5 and 12 dB drop per octave being typical. 
The effect of the vocal tract filtering is to multiply this line spectrum by a 
window that has several pronounced peaks corresponding to the formants. 

Now if the spectrum is the product of the pitch train and the vocal tract 
window, then the logarithm of this spectrum is the sum of the logarithm of 
the pitch train and the logarithm of the vocal tract window. This logarithmic 
spectrum can be considered to be the spectrum of some new signal, and since 
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the FT is a linear operation, this new signal is the sum of two signals, one 
deriving from the pitch train and one from the vocal tract filter. This new 
signal, derived by logarithmically compressing the spectrum, is called the 
cepstrum of the original signal. It is actually a signal in the time domain, 
but since it is derived by distorting the frequency components its axis is 
referred to as qzlefrency. Remember, however, that the units of quefrency 
are seconds (or perhaps they should be called ‘cesonds’). 

We see that the cepstrum decouples the excitation signal from the vocal 
tract filter, changing a convolution into a sum. It can achieve this decou- 
pling not only for speech but for any excitation signal and filter, and is thus 
a general tool for deconvolution. It has therefore been applied to various 
other fields in DSP, where it is sometimes referred to as homomorphic de- 
convolution. This term originates in the idea that although the cepstrum is 
not a linear transform of the signal (the cepstrum of a sum is not the sum 
of the cepstra), it is a generalization of the idea of a linear transform (the 
cepstrum of the convolution is the sum of the cepstra). Such parallels are 
called ‘homomorphisms’ in algebra. 

The logarithmic spectrum of the excitation signal is an equally spaced 
train, but the logarithmic amplitudes are much less pronounced and decrease 
slowly and linearly while the lines themselves are much broader. Indeed 
the logarithmic spectrum of the excitation looks much more like a sinusoid 
than a train of impulses. Thus the pitch contribution is basically a line 
at a well defined quefrency corresponding to the basic pitch frequency. At 
lower quefrencies we find structure corresponding to the higher frequency 
formants, and in many cases high-pass liftering can thus furnish both a 
voiced/unvoiced indication and a pitch frequency estimate. 

Up to now our discussion has been purposefully vague, mainly because 
the cepstrum comes in several different flavors. One type is based on the 
z transform S(Z), which being complex valued, is composed of its absolute 
value R(z) and its angle 8(z). Now let’s take the complex logarithm of S(z) 
(equation (A.14)) and call the resulting function S(Z). 

S(z) = log S(Z) = log R(z) + iB(z) 

We assumed here the minimal phase value, although for some applications 
it may be more useful to unwrap the phase. Now S(Z) can be considered to 
be the zT of some signal sVn, this signal being the complex cepstrum of s,. 
To find the complex cepstrum in practice requires computation of the izT, 
a computationally arduous task; however, given the complex cepstrum the 
original signal may be recovered via the zT. 
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The power cepstrum, or real cepstrum, is defined as the signal whose PSD 
is the logarithm of the PSD of sn. The power cepstrum can be obtained as 
an iFT, or for digital signals an inverse DFT 

Y 1 = 
Sn =- J 27r -r 

log (S(w) leiwn dw 

and is related to the complex cepstrum. 

” 

Sn = $(Sn + S*-n) 

Although easier to compute, the power cepstrum doesn’t take the phase of 
S(w) into account, and hence does not enable unique recovery of the original 
signal. 

There is another variant of importance, called the LPC cepstrum. The 
LPC cepstrum, like the reflection coefficients, area ratios, and LSP coeffi- 
cients, is a set of coefficients ck that contains exactly the same information 
as the LPC coefficients. The LPC cepstral coefficients are defined as the 
coefficients of the zT expansion of the logarithm of the all-pole system func- 
tion. From the definition of the LPC coefficients in equation (9.21), we see 
that this can be expressed as follows: 

1% 
G 

l- c,M,1 b,rm = k c 
‘lcz 

-k (19.1) 

Given the LPC coefficients, the LPC cepstral coefficients can be computed 
by a recursion that can be derived by series expansion of the left-hand side 
(using equations (A.47) and (A.15)) and equating like terms. 

co = 1ogG 

cl = bl (19.2) 
1 k-l 

ck = bk -k x c mcmbk-m 

m=l 

This recursion can even be used for cI, coefficients for which k > M’by taking 
bk = 0 for such k. Of course, the recursion only works when the original LPC 
model was stable. 

LPC cepstral coefficients derived from this recursion only represent the 
true cepstrum when the signal is exactly described by an LPC model. For 
real speech the LPC model is only an approximation, and hence the LPC 
cepstrum deviates from the true cepstrum. In particular, for phonemes that 
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are not well represented by the LPC model (e.g., sounds like f, s, and sh that 
are produced at the lips with the vocal tract trapping energy and creating 
zeros), the LPC cepstrum bears little relationship to its namesakes. Nonethe- 
less, numerous comparisons have shown the LPC cepstral coefficients to be 
among the best features for both speech and speaker recognition. 

If the LPC cepstral coefficients contain precisely the same information 
as the LPC coefficients, how can it be that one set is superior to the other? 
The difference has to do with the other mechanisms used in a recognition 
system. It turns out that Euclidean distance in the space of LPC cepstral 
coefficients correlates well with the Itakuru-Saito distance, a measure of how 
close sounds actually sound. This relationship means that the interpretation 
of closeness in LPC cepstrum space is similar to that our own hearing system 
uses, a fact that aids the pattern recognition machinery. 

EXERCISES 

19.3.1 The signal z(t) is corrupted by a single echo to become y(t) = ~(t)+aa(t--7). 
Show that the log power spectrum of y is approximately that of x with an 
additional ripple. Find the parameters of this ripple. 

19.3.2 Complete the proof of equation (19.2). 

19.3.3 The reconstruction of a signal from its power cepstrum is not unique. When 
is it correct? 

19.3.4 Record some speech and plot its power cepstrum. Are the pitch and formants 
easily separable? 

19.3.5 Write a program to compute the LPC cepstrum. Produce artificial speech 
from an exact LPC model and compute its LPC cepstrum. 

19.4 Other Features 

The coefficients we have been discussing all describe the fine structure of 
the speech spectrum in some way. LPC coefficients are directly related to 
the all-pole spectrum by equation (13.24); the LSP frequencies are them- 
selves frequencies; and the cepstrum was derived in the previous section as 
a type of spectrum of (log) spectrum. Not all speech processing is based on 
LPC coefficients; bank-of-filter parameters, wavelets, mel- or Bark-warped 
spectrum, auditory nerve representations, and many more representations 
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are also used. It is obvious that all of these are spectral descriptions. The 
extensive use of these parameters is a strong indication of our belief that 
the information in speech is stored in its spectrum, more specifically in the 
position of the formants. 

We can test this premise by filtering some speech in such a way as to con- 
siderably whiten its spectrum for some sound or sounds. For example, we can 
create an inverse filter to the spectrum of a common vowel, such as the e in 
the word ‘feet’. The spectrum will be completely flat when this vowel sound 
is spoken, and will be considerably distorted during other vowel sounds. Yet 
this ‘inverse-E’ filtered speech turns out to be perfectly intelligible. Of course 
a speech recognition device based on one of the aforementioned parameter 
sets will utterly fail. 

So where is the information if not in the spectrum? A well-known fact 
regarding our senses is that they respond mainly to change and not to steady- 
state phenomena. Strong odors become unnoticeable after a short while, our 
eyes twitch in order to keep objects moving on our retina (animals without 
the eye twitch only see moving objects) and even a relatively loud stationary 
background noise seems to fade away. Although our speech generation sys- 
tem is efficient at creating formants, our hearing system is mainly sensitive 
to changes in these formants. 

One way this effect can be taken into account in speech recognition 
systems is to use derivative coefficients. For example, in addition to using 
LPC cepstral coefficients as features, some systems use the so-called delta 
cepstral coefficients, which capture the time variation of the cepstral coeffi- 
cients. Some researchers have suggested using the delta-delta coefficients as 
well, in order to capture second derivative effects. 

An alternative to this empirical addition of time-variant information is to 
use a set of parameters specifically built to emphasize the signal’s time varia- 
tion. One such set of parameters is called RASTA-PLP (Relative Spectra- 
Perceptual Linear Prediction). The basic PLP technique modifies the short 
time spectrum by several psychophysically motivated transformations, in- 
cluding resampling the spectrum into Bark segments, taking the logarithm 
of the spectral amplitude and weighting the spectrum by a simulation of the 
psychophysical equal-loudness curve, before fitting to an all-pole model. The 
RASTA technique suppresses steady state behavior by band-pass filtering 
each frequency channel, in this way removing DC and slowly varying terms. 
It has been found that RASTA parameters are less sensitive to artifacts; 
for example, LPC-based speech recognition systems trained on microphone- 
quality speech do not work well when presented with telephone speech. The 
performance of a RASTA-based system degrades much less. 
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Even more radical departures from LPC-type parameters are provided 
by cochlear models and auditory nerve parameters. Such parameter sets 
attempt to duplicate actual signals present in the biological hearing system 

(see Section 11.4). Although there is an obvious proof that such parameters 
can be effectively used for tasks such as speech recognition, their success to 
date has not been great. 

Another set of speech parameters that has been successful in varied tasks 
is the so-called ‘sinusoidal representation’. Rather than making a U/V deci- 
sion and modeling the excitation as a set of pulses, the sinusoidal represen- 
tation uses a sum of L sinusoids of arbitrary amplitudes, frequencies, and 
phases. This simplifies computations since the effect of the linear filter on 
sinusoids is elementary, the main problem being matching of the models at 
segment boundaries. A nice feature of the sinusoidal representation is that 
various transformations become relatively easy to perform. For example, 
changing the speed of articulation without varying the pitch, or conversely 
varying the pitch without changing rate of articulation, are easily accom- 
plished since the effect of speeding up or slowing down time on sinusoids is 
straightforward to compute. 

We finish off our discussion of speech features with a question. How many 
features are really needed? Many speech recognition systems use ten LPC or 
twelve LPC cepstrum coefficients, but to these we may need to add the delta 
coefficients as well. Even more common is the ‘play it safe’ approach where 
large numbers of features are used, in order not to discard any possibly 
relevant information. Yet these large feature sets contain a large amount of 
redundant information, and it would be useful, both theoretically and in 
practice, to have a minimal set of features. Such a set might be useful for 
speech compression as well, but not necessarily. Were these features to be 
of large range and very sensitive, each would require a large number of bits 
to accurately represent, and the total number of bits needed could exceed 
that of traditional methods. 

One way to answer the question is by empirically measuring the dimen- 
sionality of speech sounds. We won’t delve too deeply into the mechanics of 
how this is done, but it is possible to consider each set of N consecutive sam- 
ples as a vector in N-dimensional space, and observe how this N-dimensional 
speech vector moves. We may find that the local movement is constrained to 
M < N dimensions, like the movement of a dot on a piece of paper viewed 
at some arbitrary angle in three-dimensional space. Were this the case we 
would conclude that only M features are required to describe the speech sig- 
nal. Of course these M features will probably not be universal, like a piece 
of paper that twists and curves in three-dimensional space, its directions 
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changing from place to place. Yet as long as the paper is not crumpled into 
a three-dimensional ball, its local dimensionality remains two. Performing 
such experiments on vowel sounds has led several researchers to conclude 
that three to five local features are sufficient to describe speech. 

Of course this demonstration is not constructive and leaves us totally 
in the dark as to how to find such a small set of features. Attempts are 
being made to search for these features using learning algorithms and neural 
networks, but it is too early to hazard a guess as to success and possible 
impact of this line of inquiry. 

EXERCISES 

19.4.1 Speech has an overall spectral tilt of 5 to 12 dB per octave. Remove this tilt 
(a pre-emphasis filter of the form 1 - 0.99z-1 is often used) and listen to the 
speech. Is the speech intelligible? Does it sound natural? 

19.4.2 If speech information really lies in the changes, why don’t we differentiate 
the signal and then perform the analysis? 

19.5 Pitch Tracking and Voicing Determination 

The process of determining the pitch of a segment of voiced speech is usually 
called pitch trucking, since the determination must be updated for every 
segment. Pitch determination would seem to be a simple process, yet no-one 
has ever discovered an entirely reliable pitch tracking algorithm. Moreover, 
even extremely sophisticated pitch tracking algorithms do not usually suffer 
from minor accuracy problems; rather they tend to make gross errors, such as 
isolated reporting of double the pitch period. For this reason postprocessing 
stages are often used. 

The pitch is the fundamental frequency in voiced speech, and our ears are 
very sensitive to pitch changes, although in nontonal languages their content 
is limited to prosodic information. Filtering that removes the pitch frequency 
itself does not strongly impair our perception of pitch, although it would 
thwart any pitch tracking technique that relies on finding the pitch spectral 
line. Also, a single speaker’s pitch may vary over several octaves, for example, 
from 50 to 800 Hz, while low-frequency formants also occupy this range 
and may masquerade as pitch lines. Moreover, speech is neither periodic nor 
even stationary over even moderately long times, so that limiting ourselves to 
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times during which the signal is stationary would provide unacceptably large 
uncertainties in the pitch determination. Hoarse and high-pitched voices are 
particularly difficult in this regard. 

All this said, there are many pitch tracking algorithms available. One 
major class of algorithms is based on finding peaks in the empirical autocor- 
relation. A typical algorithm from this class starts by low-pass filtering the 
speech signal to eliminate frequency components above 800 or 900 Hz. The 
pitch should correspond to a peak in the autocorrelation of this signal, but 
there are still many peaks from which to choose. Choosing the largest peak 
sometimes works, but may result in a multiple of the pitch or in a formant 
frequency. Instead of immediately computing the autocorrelation we first 
center clip (see equation (8.7)) the signal, a process that tends to flatten out 
vocal tract autocorrelation peaks. The idea is that the formant periodicity 
should be riding on that of the pitch, even if its consistency results in a larger 
spectral peak. Accordingly, after center clipping we expect only pitch-related 
phenomena to remain. Of course the exact threshold for the center clipping 
must be properly set for this preprocessing to work, and various schemes 
have been developed. Most schemes first determine the highest sample in 
the segment and eliminate the middle third of the dynamic range. Now au- 
tocorrelation lags that correspond to valid pitch periods are computed. Once 
again we might naively expect the largest peak to correspond to the pitch 
period, but if filtering of the original signal removed or attenuated the pitch 
frequency this may not be the case. A better strategy is to look for con- 
sistency in the observed autocorrelation peaks, choosing a period that has 
the most energy in the peak and its multiples. This technique tends to work 
even for noisy speech, but requires postprocessing to correct random errors 
in isolated segments. 

A variant of the autocorrelation class computes the Average Magnitude 
Difference Function 

AMDF(m) = c lxn - zn+ml 
n 

(AMDF) rather than the autocorrelation. The AMDF is a nonnegative func- 
tion of the lag m that returns zero only when the speech is exactly periodic. 
For noisy nearly periodic signals the AMDF has a strong minimum at the 
best matching period. The nice thing about using a minimum rather than 
maximum is that we needn’t worry as much about the signal remaining sta- 
tionary. Indeed a single pitch period should be sufficient for AMDF-based 
pitch determination. 



752 SPEECH SIGNAL PROCESSING 

Another class of pitch trackers work in the frequency domain. It may 
not be possible to find the pitch line itself in the speech spectrum, but 
finding the frequency with maximal harmonic energy is viable. This may be 
accomplished in practice by compressing the power spectrum by factors of 
two, three, and four and adding these to the original PSD. The largest peak 
in the resulting ‘compressed spectrum’ is taken to be the pitch frequency. 

In Section 19.3 we mentioned the use of power cepstrum in determining 
the pitch. Assuming that the formant and pitch information is truly sep- 
arated in the cepstral domain, the task of finding the pitch is reduced to 
picking the strongest peak. While this technique may give the most accu- 
rate results for clean speech, and rarely outputs double pitch, it tends to 
deteriorate rapidly in noise. 

The determination of whether a segment of speech is voiced or not is 
also much more difficult than it appears. Actually, the issue needn’t even 
be clear cut; speech experts speak of the ‘degree of voicing’, meaning the 
percentage of the excitation energy in the pitch pulses as compared to the 
total excitation. The MELP and Multi-Band Exitation (MBE) speech com- 
pression methods abandon the whole idea of an unambiguous U/V decision, 
using mixtures or per-frequency- band decisions respectively. 

Voicing determination algorithms lie somewhere between VADs and pitch 
trackers. Some algorithms search separately for indications of pitch and noise 
excitation, declaring voiced or unvoiced when either is found, ‘silence’ when 
neither is found, and ‘mixed’ when both are. Other algorithms are integrated 
into pitch trackers, as in the case of the cepstral pitch tracker that returns 
‘unvoiced’ when no significant cepstral peak is found. 

In theory one can distinguish between voiced and unvoiced speech based 
on amplitude constancy. Voiced speech is only excited by the pitch pulse, 
and during much of the pitch period behaves as a exponentially decaying 
sinusoid. Unvoiced speech should look like the output of a continuously 
exited filter. The difference in these behaviors may be observable by taking 
the Hilbert transform and plotting the time evolution in the I-Q plane. Voice 
speech will tend to look like a spiral while unvoiced sections will appear as 
filled discs. For this technique to work the speech has to be relatively clean, 
and highly oversampled. 

The degree of periodicity of a signal should be measurable as the ratio 
of the maximum to minimum values of the autocorrelation (or AMDF). 
However, in practice this parameter too is overrated. Various techniques 
supplement this ratio with gross spectral features, zero crossing and delta 
zero crossing, and many other inputs. Together these features are input to a 
decision mechanism that may be hard-wired logic, or a trainable classifier. 
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EXERCISES 

19.5.1 In order to minimize time spent in computation of autocorrelation lags, one 
can replace the center clipping operation with a three-level slicing operation 
that only outputs -1, 0 or +l. How does this decrease complexity? Does this 
operation strongly affect the performance of the algorithm? 

19.5.2 Create a signal that is the weighted sum of a few sinusoids interrupted every 
now and then by short durations of white noise. You can probably easily 
separate the two signal types by eye in either time or frequency domains. 
Now do the same using any of the methods discussed above, or any algorithm 
of your own devising. 

19.5.3 Repeat the previous exercise with additive noise on the sinusoids and narrow 
band noise instead of white noise. How much noise can your algorithm toler- 
ate? How narrow-band can the ‘unvoiced’ sections be and still be identifiable? 
Can you do better ‘by eye’ than your algorithm? 

19.6 Speech Compression 

It is often necessary or desirable to compress digital signals. By compression 
we mean the representation of N signal values, each of which is quantized 
to b bits, in less than Nb bits. Two common situations that may require 
compression are transmission and storage. Transmission of an uncompressed 
digital music signal (sampled at 48 KHz, 16 bits per sample) requires at least 
a 768 Kb/s transmission medium, far exceeding the rates usually available 
for users connected via phone lines. Storage of this same signal requires 
almost 94 KB per second, thus gobbling up disk space at about 5; MB per 
minute. Even limiting the bandwidth to 4 KHz (commonly done to speech in 
the public telephone system) and sampling at 16 bits leads to 128 Kb/s, far 
exceeding our ability to send this same information over the same channel 
using a telephony-grade modem. This would lead us to believe that digital 
methods are less efficient than analog ones, yet there are methods of digitally 
sending multiple conversations over a single telephone line. 

Since further reduction in bandwidth or the number of quantization bits 
rapidly leads to severe quality degradation we must find a more sophisti- 
cated compression method. What about general-purpose data compression 
techniques? These may be able to contribute another factor-of-two improve- 
ment, but that is as far as they go. This is mainly because these methods 
are lossless, meaning they are required to reproduce the original bit stream 



754 SPEECH SIGNAL PROCESSING 

without error. Extending techniques that work on general bit streams to the 
lossy regime is fruitless. It does not really make sense to view the speech 
signal as a stream of bits and to minimize the number of bit errors in the 
reconstructed stream. This is because some bits are more significant than 
others-an error in the least significant bit is of much less effect than an 
error in a sign bit! 

It is less obvious that it is also not optimal to view the speech signal 
as a stream of sample values and compress it in such a fashion as to mini- 
mize the energy of error signal (reconstructed signal minus original signal). 
This is because two completely different signals may sound the same since 
hearing involves complex physiological and psychophysical processes (see 
Section 11.4). 

For example, by delaying the speech signal by two samples, we create a 
new signal completely indistinguishable to the ear but with a large ‘error 
signal’. The ear is insensitive to absolute time and thus would not be able 
to differentiate between these two ‘different’ signals. Of course simple cross 
correlation would home-in on the proper delay and once corrected the error 
would be zero again. But consider delaying the digital signal by half a sample 
(using an appropriate interpolation technique), producing a signal with com- 
pletely distinct sample values. Once again a knowledgeable signal processor 
would be able to discover this subterfuge and return a very small error. Sim- 
ilarly, the ear is insensitive to small changes in loudness and absolute phase. 
However, the ear is also insensitive to more exotic transformations such as 
small changes in pitch, formant location, and nonlinear warping of the time 
axis. 

Reversing our point-of-view we can say that speech-specific compression 
techniques work well for two related reasons. First, speech compression tech- 
niques are lossy (i.e., they strive to reproduce a signal that is similar but not 
necessarily identical to the original); significantly lower information rates can 
be achieved by introducing tolerable amounts of distortion. Second, once we 
have abandoned the ideal of precise reconstruction of the original signal, we 
can go a step further. The reconstructed signal needn’t really be similar to 
the original (e.g., have minimal mean square error); it should merely sound 
similar. Since the ear is insensitive to small changes in phase, timing, and 
pitch, much of the information in the original signal is unimportant and 
needn’t be encoded at all. 

It was once common to differentiate between two types of speech coders. 
‘Waveform coders’ exploit characteristics of the speech signal (e.g., energy 
concentration at low frequencies) to encode the speech samples in fewer bits 
than would be required for a completely random signal. The encoding is a 
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lossy transformation and hence the reconstructed signal is not identical to 
the original one. However, the encoder algorithm is built to minimize some 
distortion measure, such as the squared difference between the original and 
reconstructed signals. ‘Vocoders’ utilize speech synthesis models (e.g., the 
speech model discussed in Section 9.9) to encode the speech signal. Such a 
model is capable of producing speech that sounds very similar to the speech 
that we desire to encode, but requires the proper parameters as a function 
of time. A vocoder-type algorithm attempts to find these parameters and 
usually results in reconstructed speech that sounds similar to the original 
but as a signal may look quite different. The distinction between waveform 
encoders and vocoders has become extremely fuzzy. For example, the dis- 
tortion measure used in a waveform encoder may be perception-based and 
hence the reconstructed signal may be quite unlike the original. On the other 
hand, analysis by synthesis algorithms may find a vocoder’s parameters by 
minimizing the squared error of the synthesized speech. 

When comparing the many different speech compression methods that 
have been developed, there are four main parameters that should be taken 
into consideration, namely rate, quality, complexity, and delay. Obviously, 
there are trade-offs between these parameters, lowering of the bit rate re- 
quires higher computational complexity and/or lower perceived speech qual- 
ity; and constraining the algorithm’s delay while maintaining quality results 
in a considerable increase in complexity. For particular applications there 
may be further parameters of interest (e.g., the effect of background noise, 
degradation in the presence of bit errors). 

The perceived quality of a speech signal involves not only how under- 
standable it is, but other more elusive qualities such as how natural sounding 
the speech seems and how much of the speaker’s identity is preserved. It is 
not surprising that the most reliable and widely accepted measures of speech 
quality involve humans listening rather than pure signal analysis. In order 
to minimize the bias of a single listener, a psychophysical measure of speech 
quality called the Mean Opinion Score (MOS) has been developed. It is 
determined by having a group of seasoned listeners listen to the speech in 
question. Each listener gives it an opinion score: 1 for ‘bad’ (not understand- 
able), 2 for ‘poor’ (understandable only with considerable effort), 3 for ‘fair’ 
(understandable with moderate effort), 4 for ‘good’ (understandable with 
no apparent effort), and 5 for ‘excellent’. The mean score of all the listeners 
is the MOS. A complete description of the experimental procedure is given 
in ITU-T standard P.830. 

Speech heard directly from the speaker in a quiet room will receive a 
MOS ranking of 5.0, while good 4 KHz telephone-quality speech (termed 
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toll quality) is ranked 4.0. To the uninitiated telephone speech may seem 
almost the same as high-quality speech, however, this is in large part due 
to the brain compensating for the degradation in quality. In fact different 
phonemes may become acoustically indistinguishable after the band-pass 
filtering to 4 KHz (e.g. s and f), but this fact often goes unnoticed, just as 
the ‘blind spots’ in our eyes do. MOS ratings from 3.5 to 4 are sometimes 
called ‘communications quality’, and although lower than toll quality are 
acceptable for many applications. 

Usually MOS tests are performed along with calibration runs of known 
MOS, but there still are consistent discrepancies between the various labo- 
ratories that perform these measurements. The effort and expense required 
to obtain an MOS rating for a coder are so great that objective tests that 
correlate well with empirical MOS ratings have been developed. Perceptual 
Speech Quality Measure (PSQM) and Perceptual Evaluation of Speech 
Quality (PESQ) are two such which have been standardized by the ITU. 

EXERCISES 

19.6.1 Why can’t general-purpose data compression techniques be lossy? 

19.6.2 Assume a language with 64 different phonemes that can be spoken at the 
rate of eight phonemes per second. What is the minimal bit rate required? 

19.6.3 Try to compress a speech file with a general-purpose lossless data (file) com- 
pression program. What compression ratio do you get? 

19.6.4 Several lossy speech compression algorithms are readily available or in the 
public domain (e.g., LPC-lOe, CELP, GSM full-rate). Compress a file of 
speech using one or more of these compressions. Now listen to the ‘before’ and 
‘after’ files. Can you tell which is which? What artifacts are most noticeable 
in the compressed file? What happens when you compress a file that had 
been decompressed from a previous compression? 

19.6.5 What happens when the input to a speech compression algorithm is not 
speech? Try single tones or DTMF tones. Try music. What about ‘babble 
noise’ (multiple background voices)? 

19.6.6 Corrupt a file of linear 16-bit speech by randomly flipping a small percentage 
of the bits. What percentage is not noticed? What percentage is acceptable? 
Repeat the experiment by corrupting a file of compressed speech. What can 
you conclude about media for transmitting compressed speech? 
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19.7 PCM 

In order to record and/or process speech digitally one needs first to acquire 
it by an A/D. The digital signal obtained in this fashion is usually called 
‘linear PCM’ (recall the definition of PCM from Section 2.7). Speech con- 
tains significant frequency components up to about 20 KHz, and Nyquist 
would thus require a 40 KHz or higher sampling rate. From experimentation 
at that rate with various numbers of sample levels one can easily become 
convinced that using less than 12 to 14 bits per sample noticeably degrades 
the signal. Eight bits definitely delivers inferior quality, and since conven- 
tional hardware works in multiples of 8-bit bytes, we usually digitize speech 
using 16 bits per sample. Hence the simplistic approach to capturing speech 
digitally would be to sample at 40 KHz using 16 bits per sample for a total 
information rate of 640 Kb/s. A ssuming a properly designed microphone, 
speaker, A/D, D/A, and filters, 640 Kb/s digital speech is indeed close to 
being indistinguishable from the original. 

Our first step in reducing this bit rate is to sacrifice bandwidth by low- 
pass filtering the speech to 4 KHz, the bandwidth of a telephone channel. 
Although 4 KHz is not high fidelity it is sufficient to carry highly intelligible 
speech. At 4 KHz the Nyquist sampling rate is reduced to 8000 samples per 
second, or 128 Kb/s. 

From now on we will use more and more specific features of the speech 
signal to further reduce the information rate. The first step exploits the 
psychophysical laws of Weber and Fechner (see Section 11.2). We stated 
above that 8 bits were not sufficient for proper digitizing of speech. What we 
really meant is that 256 equally spaced quantization levels produces speech 
of low perceived quality. Our perception of acoustic amplitude is, however, 
logarithmic, with small changes at lower amplitudes more consequential than 
equal changes at high amplitudes. It is thus sensible to try unevenly spaced 
quantization levels, with high density of levels at low amplitudes and much 
fewer levels used at high amplitudes. The optimal spacing function will be 
logarithmic, as depicted in Figure 19.3 (which replaces Figure 2.25 for this 
case). Using logarithmically spaced levels 8 bits is indeed adequate for toll 
quality speech, and since we now use only 8000 eight-bit samples per second, 
our new rate is 64 Kb/s, half that of linear PCM. In order for a speech 
compression scheme to be used in a communications system the sender and 
receiver, who may be using completely different equipment, must agree as 
to its details. For this reason precise standards must be established that 
ensure that different implementations can interoperate. The ITU has defined 
a number of speech compression schemes. The G.711 standard defines two 
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Figure 19.3: Quantization noise created by logarithmically digitizing an analog signal. 
In (A) we see the output of the logarithmic digitizer as a function of its input. In (B) the 
noise is the rounding error, (i.e., the output minus the input). 

options for logarithmic quantization, known as p-law (pronounced mu-law) 
and A-law PCM respectively. Unqualified use of the term ‘PCM’ in the 
context of speech often refers to either of the options of this standard. 

p-law is used in the North American digital telephone system, while A- 
law serves the rest of the world. Both p-law and A-law are based on rational 
approximations to the logarithmic response of Figure 19.3, the idea being 
to minimize the computational complexity of the conversions from linear to 
logarithmic PCM and back. p-law is defined as 

s = en(s) Las: 1+&j& 
l+& 

(19.3) 

where smaz is the largest value the signal may attain, g,,, is the largest 
value we wish the compressed signal to attain, and p is a parameter that 
determines the nonlinearity of the transformation. The use of the absolute 
value and the sgn function allow a single expression to be utilized for both 
positive and negative Z. Obviously, p = 1 forces B = x: while larger p causes 
the output to be larger than the input for small input values, but much 
smaller for large s. In this way small values of s are emphasized before 
quantization at the expense of large values. The actual telephony standard 
uses ~1 = ‘255 and further reduces computation by approximating the above 
expression using 16 staircase segments, eight for positive signal values and 
eight for negative. Each speech sample is encoded as a sign bit, three segment 
bits and four bits representing the position on the line segment. 
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The theoretical A-law expression is given by 

and although it is hard to see this from the expression, its behavior is very 
similar to that of p-law. By convention we take A = 87.56 and as in the 
p-law case approximate the true form with 16 staircase line segments. It 
is interesting that the A-law staircase has a rising segment at the origin 
and thus fluctuates for near-zero inputs, while the approximated p-law has 
a horizontal segment at the origin and is thus relatively constant for very 
small inputs. 

EXERCISES 

19.7.1 Even 640 Kb/s does not capture the entire experience of listening to a speaker 
in the same room, since lip motion, facial expressions, hand gestures, and 
other body language are not recorded. How important is such auxiliary infor- 
mation? When do you expect this information to be most relevant? Estimate 
the information rates of these other signals. 

19.7.2 Explain the general form of 1-1 and A laws. Start with general logarithmic 
compression, extend it to handle negative signal values, and finally force it 
to go through the origin. 

19.7.3 Test the difference between high-quality and toll-quality speech by perform- 
ing a rhyme test. In a rhyme test one person speaks out-of-context words 
and a second records what was heard. By using carefully chosen words, such 
as lift-list, lore-more-nor, jeep-cheep, etc., you should be able to both esti- 
mate the difference in accuracy between the two cases and determine which 
phonemes are being confused in the toll-quality case. 

19.7.4 What does p-law (equation (19.3)) re t urn for zero input? For maximal input? 
When does y = Z? Plot p-law for 16-bit linear PCM, taking xmaZ = 215 = 
32768, for various p from 1 to 255. What is the qualitative difference between 
the small and large 1-1 cases? 

19.7.5 Plot the p-law (with p = 255) and A-law (with A = 87.56) responses on 
the same axes. By how much do they differ? Plot them together with true 
logarithmic response. How much error do they introduce? Research and plot 
the 16 line segment approximations. How much further error is introduced? 
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19.8 DPCM, DM, and ADPCM 

The next factor-of-two reduction in information rate exploits the fact that 
long time averaged spectrum of speech does not look like white noise filtered 
to 4 KHz. In fact the spectrum is decidedly low-pass in character, due to 
voiced speech having pitch harmonics that decrease in amplitude as the 
frequency increases (see Section 11.3). 

In Section 9.8 we studied the connection between correlation and predic- 
tion, here we wish to stress the connection between prediction and compres- 
sion. Deterministic signals are completely predictable and thus maximally 
compressible; knowing the signal’s description, (e.g., as a explicit formula 
or difference equation with given initial conditions) enables one to precisely 
predict any signal value without any further information required. White 
noise is completely unpredictable; even given the entire history from the 
beginning of time to now does not enable us to predict the next signal value 
with accuracy any better than random guessing. Hence pure white noise is 
incompressible; we can do no better than to treat each sample separately, 
and N samples quantized to b bits each will always require Nb bits. 

Most signals encountered in practice are somewhere in between; based 
on observation of the signal we can construct a model that captures the 
predictable (and thus compressible) component. Using this model we can 
predict the next value, and then we need only store or transmit the residual 
error. The more accurate our prediction is, the smaller the error signal will 
be, and the fewer bits will be needed to represent it. For signals with most 
of their energy at low frequencies this predictability is especially simple in 
naturethe next sample will tend to be close to the present sample. Hence 
the difference between successive sample values tends to be smaller than 
the sample values themselves. Thus encoding these differences, a technique 
known as Ddelta-PCM (DPCM), will usually require fewer bits. This same 
term has come to be used in a more general way to mean encoding the 
difference between the sample value and a predicted version of it. 

To see how this generalized DPCM works, let’s use the previous value 
s,-1 , or the previous N values &-N . . . ~~-1, to predict the signal value at 
time n. 

sn = P(%-1, h-2, l l l %x-N) (19.5) 

If the predictor function p is a filter 

N 

Sn = 
c Pi%+ 
i=l 

(19.6) 
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Figure 19.4: Unquantized DPCM. The encoder predicts the next value, finds the pre- 
diction error en = sn - - ,sn, and transmits this error through the communications channel 
to the receiver. The receiver, imitating the transmitter, predicts the next value based on 
all the values it has recovered so far. It then corrects this prediction based on the error E~ 
received. 

we call the predictor a linear predictor. If the predictor works well, the 
prediction error 

E, = sn - sn (19.7) 

is both of lower energy and much whiter than the original signal sn. The 
error is all we need to transmit for the receiver to be able to reconstruct the 
signal, since it too can predict the next signal value based on the past values. 
Of course this prediction Zn is not completely accurate, but the correction E~ 
is received, and the original value easily recovered by sn = s”,+en. The entire 
system is depicted in Figure 19.4. We see that the encoder (linear predictor) 
is present in the decoder, but that there it runs as feedback, rather than 
feedforward as in the encoder itself. 

The simplest DPCM system is Delta Modulation (DM). Delta modula- 
tion uses only a single bit to encode the error, this bit signifying whether the 
true value is above or below the predicted one. If the sampling frequency is 
so much higher than required that the previous value ~~-1 itself is a good 
predictor of sn, delta modulation becomes the sigma-delta converter of Sec- 
tion 2.11. In a more general setting a nontrivial predictor is used, but we 
still encode only the sign of the prediction error. Since delta modulation 
provides no option to encode zero prediction error the decoded signal tends 
to oscillate up and down where the original was relatively constant. This 
annoyance can be ameliorated by the use a post-jilter, which low-pass filters 
the reconstructed signal. 

There is a fundamental problem with the DPCM encoders we have just 
described. We assur;led that the true value of the prediction error E~ is 
transferred over the channel, while in fact we can only transfer a quantized 
version rnQ. The very reason we perform the prediction is to save bits after 
quantization. Unfortunately, this quantization may have a devastating effect 
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on the decoder. The problem is not just that the correction of the present 
prediction is not completely accurate; the real problem is that because of 
this inaccuracy the receiver never has reliable sn with which to continue 
predicting the next samples. To see this, define snQ as the decoder’s predicted 
value corrected by the quantized error. In general, sz does not quite equal 
sn, but we predict the next sample values based on these incorrect corrected 
predictions! Due to the feedback nature of the decoder’s predictor the errors 
start piling up and after a short time the encoder and decoder become ‘out 
of sync’. 

The prediction we have been using is known as open-loop prediction, 
by which we mean that we perform linear prediction of the input speech. 
In order to ensure that the encoder and decoder predictors stay in sync, we 
really should perform linear prediction on the speech as reconstructed by the 
decoder. Unfortunately, the decoder output is not available at the encoder, 
and so we need to calculate it. To perform closed-loop prediction we build an 
exact copy of the entire decoder into our encoder, and use its output, rather 
than the input speech, as input to the predictor. This process is diagrammed 
in Figure 19.5. By ‘closing the loop’ in this fashion, the decoded speech is 
precisely that expected, unless the channel introduces bit errors. 

The international standard for 32 Kb/s toll quality digital speech is based 
on Adaptive Delta-PCM (ADPCM). The ‘adaptive’ is best explained by 
returning to the simple case of delta modulation. We saw above that the 
DM encoder compares the speech signal value with the predicted (or simply 
previous) value and reports whether this prediction is too high or too low. 
How does a DM decoder work? For each input bit it takes its present esti- 
mate for the speech signal value and either adds or subtracts some step size 
A. Assuming A is properly chosen this strategy works well for some range 
of input signal frequencies; but as seen in Figure 19.6 using a single step 

in 

AL 1r 

-PF-t 

.out 

Figure 19.5: Closed-loop prediction. In this figure, Q stands for quantizer, IQ inverse 
quantizer, PF prediction filter. Note that the encoder contains an exact replica of the 
decoder and predicts the next value based on the reconstructed speech. 
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Figure 19.6: The two types of errors in nonadaptive delta modulation. We superpose 
the reconstructed signal on the original. I f  the step size is too small the reconstructed 
signal can’t keep up in areas of large slope and may even completely miss peaks (as in 
the higher-frequency area at the beginning of the figure). I f  the step size is too large the 
reconstructed signal will oscillate wildly in areas where the signal is relatively constant 
(as seen at the peaks of the lower-frequency area toward the end of the figure). 

size cannot satisfy all frequencies. If A is too small the reconstructed signal 
cannot keep up when the signal changes rapidly in one direction and may 
even completely miss peaks (as in the higher-frequency area at the begin- 
ning of the figure), a phenomenon called ‘slope overload’. If A is too large 
the reconstructed signal will oscillate wildly when the signal is relatively 
constant (as seen at the peaks of the lower-frequency area toward the end 
of the figure), which is known as ‘granular noise’. 

While we introduced the errors introduced by improper step size for 
DM, the same phenomena occur for general DPCM. In fact the problem 
is even worse. For DM the step size A is only used at the decoder, since 
the encoder only needs to check the sign of the difference between the signal 
value and its prediction. For general delta-PCM the step size is needed at the 
encoder as well, since the difference must be quantized using levels spaced 
A apart. Improper setting of the spacing between the quantization levels 
causes mismatch between the digitizer and the difference signal’s dynamic 
range, leading to improper quantization (see Section 2.9). 
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The solution is to adapt the step size to match the signal’s behavior. 
In order to minimize the error we increase A when the signal is rapidly 
increasing or decreasing, and we decrease it when the signal is more constant. 
A simplistic way to implement this idea for DM is to use the bit stream itself 
to determine whether the step size is too small or too large. A commonly 
used version uses memory of the previous delta bit; if the present bit is 
the same as the previous we multiply A by some constant K (K = 1.5 is 
a common choice), while if the bits differ we divide by K. In addition we 
constrain A to remain within some prespecified range, and so stop adapting 
when it reaches its minimum or maximum value, 

While efficient computationally, the above method for adapting A is 
completely heuristic. A more general tactic is to set the step size for adap- 
tive DPCM to be a given percentage of the signal’s standard deviation. In 
this way A would be small for signals that do vary much, minimizing gran- 
ular noise, but large for wildly varying signals, minimizing slope overload. 
Were speech stationary over long times adaptation would not be needed, 
but since the statistics of the speech signal vary widely as the phonemes 
change, we need to continuously update our estimate of its variance. This 
can be accomplished by collecting N samples of the input speech signal in 
a buffer, computing the standard deviation, setting A accordingly, and only 
then performing the quantization, N needs to be long enough for the vari- 
ance computation to be accurate, but not so long that the signal statistics 
vary appreciably over the buffer. Values of 128 (corresponding to 16 mil- 
liseconds of speech at 8000 Hz) through 512 (64 milliseconds) are commonly 
used. 

There are two drawbacks to this method of adaptively setting the scale of 
the quantizer. First, the collecting of N samples before quantization requires 
introducing buffer delay; in order to avoid excessive delay we can use an 
IIR filter to track the variance instead of computing it in a buffer. Second, 
the decoder needs to know A, and so it must be sent as side information, 
increasing the amount of data transferred. The overhead can be avoided by 
having the decoder derive A, but if A is derived from the input signal, this 
is not possible. The decoder could try to use the reconstructed speech to 
find A, but this would not exactly match the quantization step used by the 
encoder. After a while the encoder and decoder would no longer agree and 
the system would break down. As you may have guessed, the solution is to 
close the loop and have the encoder determine A using its internal decoder, 
a technique called backward adaptation. 
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EXERCISES 

19.8.1 Obtain a copy of the G.726 ADPCM standard and study the main block 
diagrams for the encoder and decoder. Explain the function and connections 
of the adaptive predictor, adaptive quantizer, and inverse adaptive quantizer. 
Why is the standard so detailed? 

19.8.2 Now study the expanded block diagram of the encoder. What is the purpose 
of the blocks marked ‘adaptation speed control’ and ‘tone and transition 
detector’ ? 

19.8.3 How does the MIPS complexity of the G.726 encoder compare with that of 
modern lower-rate encoders? 

19.8.4 Show that the open-loop prediction results in large error because the quanti- 
zation error is multiplied by the prediction gain. Show that with closed-loop 
prediction this does not occur. 

19.9 Vector Quantization 

For white noise we can do no better than to quantize each sample separately, 
but for other signals it may make sense to quantize groups of samples to- 
gether. This is called Vector Quantization (VQ). 

Before discussing vector quantization it is worthwhile to reflect on what 
we have accomplished so far in scalar quantization. The digitization of the 
A/D converters discussed in Section 2.7 was input independent and uniform. 
By this we mean that the positions of the quantization levels were preset 
and equidistant. In order to minimize the quantization noise we usually 
provide an amplifier that matches the analog signal to the predetermined 
dynamic range of the digitizer. A more sophisticated approach is to set the 
digitizer levels to match the signal, placing the levels close together for small 
amplitude signals, and further apart for stronger signals. When the range 
of the signal does not vary with time and is known ahead of time, it is 
enough to set this spacing once; but if the signal changes substantially with 
time we need to adapt the level spacing according to the signal. This leads 
to adaptive PCM, similar to but simpler than the ADPCM we studied in 
Section 19.8. 

With adaptive PCM the quantization levels are not preset, but they are 
still equidistant. A more sophisticated technique is nonuniform quantization, 
such as the logarithmic PCM of Section 19.7. The idea behind logarithmic 
PCM was that low levels are more prevalent and their precision perceptually 
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more important than higher ones; thus we can reduce the average (percep- 
tual) error by placing the quantization levels closer together for small signal 
values, and further apart for large values. 

We will return to the perceptual importance later; for now we assume all 
signal values to be equally important and just ask how to combine adaptivity 
with nonequidistant quantization thresholds. Our objective is to lower the 
average quantization error; and this can be accomplished by placing the 
levels closer together where the signal values are more probable. 

Rather than adapting quantization thresholds, we can adapt the mid- 
points between these thresholds. We call these midpoints ‘centers’, and the 
quantization thresholds are now midway between adjacent centers. It is then 
obvious that classifying an input as belonging to the nearest ‘center’ is equiv- 
alent to quantizing according to these thresholds. The set of all values that 
are classified as closest to a given center (i.e., that lie between the two 
thresholds) is called its ‘cluster’. 

The reason we prefer to set centers is that there is an easily defined 
criterion that differentiates between good sets of centers and poor ones, 
namely mean square error (MSE) . Accordingly, if we have observed N signal 
values {~~}~=r, we want to place M centers {c,}!$r in such a way that we 
minimize the mean square quantization error. 

1 N 
E = N c Izn - c,12 

n=l 

We have used here the short-hand notation cn to mean that center closest 
t0 Xn- 

Algorithms that perform this minimization given empirical data are 
called ‘clustering’ algorithms. In a moment we will present the simplest of 
these algorithms, but even it already contains many of the elements of the 
most complex of these algorithms. 

There is another nomenclature worth introducing. Rather than thinking 
of minimal error clustering we can think of quantization as a form of encod- 
ing, whereby a real signal value is encoded by the index of the interval to 
which it belongs. When decoding, the index is replaced by the center’s value, 
introducing a certain amount of error. Because of this perspective the center 
is usually called a codeword and the set of M centers {cj)jM,r the codebook. 

How do we find the codebook given empirical data? Our algorithm will 
be iterative. We first randomly place the M centers, and then move them in 
such a way that the average coding error is decreased. We continue to iterate 
until no further decrease in error is possible. The question that remains is 
how to move the centers in order to reduce the average error. 
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Figure 19.7: Quantization thresholds found by the scalar quantization algorithm for 
uniform and Gaussian distributed data. For both cases 1000 points were generated, and 
16 centers found by running the basic scalar quantization algorithm until convergence. 

Were we to know which inputs should belong to a certain cluster, then 
minimizing the sum of the squared errors would require positioning the 
center at the average of these input values. The idea behind the algorithm is 
to exploit this fact at each iteration. At each stage there is a particular set of 
M centers that has been found. The best guess for associating signal values 
to cluster centers is to classify each observed signal value as belonging to the 
closest center. For this set of classifications we can then position the centers 
optimally at the average. In general this correction of center positions will 
change the classifications, and thus we need to reclassify the signal values 
and recompute the averages. Our iterative algorithm for scalar quantization 
is therefore the following. 

Given: signal values {zi}Er, 
the desired codebook size M 

Initialize: randomly choose M cluster centers {cj}gl 
Loop : 

Classification step: 
for i + l... N 

for j + l...M 
compute dfj = Ixi - cji2 

classify xi as belonging to Cj with minimal dfj 
Expectation step: 

for j + l...M 
correct center Cj + & CicCj xi 

Here Nj stands for the number of xi that were classified as belonging to 
cluster Cj. If Nj = 0 then no values are assigned to center j and we discard 
it. 

Note that there are two steps in the loop, a classification step where we 
find the closest center k, and an expectation step where we compute the av- 
erage of all values belonging to each center cm and reposition it. We thus say 
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that this algorithm is in the class of expectation-classificution algorithms. In 
the pattern recognition literature this algorithm is called ‘k-means’, while in 
speech coding it is called the LBG algorithm (after Linde, BUZO, and Gray). 
An example of two runs of LBG on scalar data is presented in Figure 19.7. 

We now return to vector quantization. The problem is the same, only 
now we have N input vectors in D-dimensional space, and we are interested 
in placing M centers in such fashion that mean encoding error is minimized. 
The thresholds are more complex now, the clusters defining Voronoy regions, 
but precisely the same algorithm can be used. All that has to be done is to 
interpret the calculations as vector operations. 

Now that we know how to perform VQ what do we do with it? It turns out 
not to be efficient to directly VQ blocks of speech samples, but sets of LPC 
coefficients (or any of the other alternative features) and the LPC residual 
can be successfully compressed using VQ. Not only does VQ encoding of 
speech parameters provide a compact representation for speech compression, 
it is also widely used in speech recognition. 

EXERCISES 

19.9.1 Prove the point closest to all points in a cluster is their average. 

19.9.2 Generate bimodal random numbers, i.e., ones with a distribution with two 
separated peaks. Determine the error for the best standard quantization. Now 
run the LBG algorithm with the same number of levels and check the error 
again. How much improvement did you get? 

19.9.3 Generate random vectors that are distributed according to a ‘Gaussian mix- 
ture’ distribution. This is done as follows. Choose M cluster centers in N- 
dimensional space. For each number to be generated randomly select the 
cluster, and then add to it Gaussian noise (if the noise has the same variance 
for all elements then the clusters will be hyperspherical). Now run the LBG 
algorithm. Change the size of the codebook. How does the error decrease 
with codebook size? 

19.10 SBC 

The next factor-of-two can be achieved by noticing that the short time spec- 
trum tends to have a only a few areas with significant energy. The SubBand 
Coding (SBC) technique takes advantage of this feature by dividing the 
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spectrum into a number (typically 8 to 16) of subbands. Each subband sig- 
nal, created by QMF band-pass filtering, is encoded separately. This in itself 
would not conserve bits, but adaptively deciding on the number of bits (if 
any) that should be devoted to each subband, does. 

Typical SBC coders of this type divide the bandwidth from DC to 4 KHz 
into 16 bands of 250 Hz each, and often discard the lowest and highest of 
these, bands that carry little speech information. Each of the remaining sub- 
bands is decimated by a factor of 16, and divided into time segments, with 
32 milliseconds a typical choice. 32 milliseconds corresponds to 256 samples 
of the original signal, but only 16 samples for each of the decimated sub- 
bands. In order to encode at 16 Kb/s the output of all the subbands together 
cannot exceed 512 bits, or an average of 32 bits per subband (assuming 16 
subbands). Since we might be using only 14 subbands, and furthermore sub- 
bands with low energy may be discarded with little effect on the quality, the 
number of bits may be somewhat larger; but the bit allocation table and 
overall gain (usually separately encoded) also require bits. So the task is 
now to encode 16 decimated samples in about 32 bits. 

After discarding the low-energy subbands the remaining ones are sorted 
in order of dynamic range and available bits awarded accordingly. Subbands 
with relatively constant signals can be replaced by scalar-quantized aver- 
ages, while for more complex subbands vector quantization is commonly 
employed. 

An alternative to equal division of the bandwidth is hierarchical loga- 
rithmic division, as described in Section 13.9. This division is both more 
efficient to compute (using the pyramid algorithm) and perceptually well 
motivated. 

EXERCISES 

19.10.1 Can we always decimate subbands according to their bandwidth? (Hint: Re- 
call the ‘band-pass sampling theorem’.) 

19.10.2 When dividing into equal-bandwidth bands, in which are more bits typically 
needed, those with lower or higher frequencies? Is this consistent with what 
happens with logarithmic division? 

19.10.3 Will dividing the bandwidth into arbitrary bands adaptively matched to the 
signal produce better compression? 
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19.11 LPC Speech Compression 

We now return to the LPC speech analysis and synthesis methods of sections 
19.1 and 19.2 and discuss ‘U.S. Standard 1015’ more commonly known as 
LPC-1Oe. This standard compresses 8000 sample-per-second speech to 2.4 
Kb/s using 10 LPC coefficients (hence its name). 

LPC-10 starts by dividing the speech into 180-sample blocks, each of 
which will be converted into 53 bits to which one synchronization bit is 
added for a total of 54 bits. The 54 bits times 8000/180 results in precisely 
2400 b/s. The U/V decision and pitch determination is performed using an 
AMDF technique and encoded in 7 bits. The gain is measured and quantized 
to 5 bits and then the block is normalized. If you have been counting, 41 bits 
are left to specify the LPC filter. LPC analysis is performed using the co- 
variance method and ten reflection coefficients are derived. The first two are 
converted to log area ratios and all are quantized with between 3 and 6 bits 
per coefficient. Actually by augmenting LPC-10 with vector quantization we 
can coax down the data rate to less than 1 Kb/s. 

Unfortunately, although highly compressed, straight LPC-encoded speech 
is of rather poor quality. The speech sounds synthetic and much of the 
speaker information is lost. The obvious remedy in such cases is to com- 
pute and send the error signal as well. In order to do this we need to add 
the complete decoder to the encoder, and require it to subtract the recon- 
structed signal from the original speech and to send the error signal through 
the channel. At the decoder side the process would then be to reconstruct 
the LPC-encoded signal and then to add back the error signal to obtain the 
original speech signal. 

The problem with the above idea is that in general such error signals, 
sampled at the original sampling rate (8 KHz) may require the same number 
of bits to encode as the original speech. We can only gain if the error signal 
is itself significantly compressible. This was the idea we used in ADPCM 
where the difference (error) signal was of lower dynamic range than the 
original speech. The LPC error signal is definitely somewhat smaller than 
the original speech, but that is no longer enough. We have already used up 
quite a few bits per second on the LPC coefficients, and we need the error 
signal to be either an order-of-magnitude smaller or highly correlated in the 
time domain for sufficient compression to be possible. 

Observing typical error signals is enlightening. The error is indeed smaller 
in magnitude than the speech signal, but not by an order-of-magnitude. It 
also has a very noticeable periodic component. This periodicity is at the 
pitch frequency and is due to the LPC analysis only being carried out for 
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times longer than those of the pitch frequency. Our assumption that the 
pitch excitation could be modeled as a single pulse per pitch period and 
otherwise zero has apparently been pushed beyond its limits. If we remove 
the residual pitch period correlations the remaining error seems to be white 
noise. Hence, trying to efficiently compress the error signal would seem to 
be a useless exercise. 

EXERCISES 

19.11.1 You can find code for LPC-1Oe in the public domain. Encode and then decode 
some recorded speech. How do you rate the quality? Can you always under- 
stand what is being said? Can you identify the speaker? Are some speakers 
consistently hard to understand? 

19.11.2 In Residual Excited Linear Prediction (RELP) the residual is low-pass fil- 
tered to about 1 KHz and then decimated to lower its bit rate. Diagram 
the RELP encoder and decoder. For what bit rates do you expect RELP to 
function well? 

19.12 CELP Coders 

In the last section we saw that straight LPC using a single pulse per pitch 
period is an oversimplification. Rather than trying to encode the error signal, 
we can try to find an excitation signal that reduces the residual error. If this 
excitation can be efficiently encoded and transmitted, the decoder will be 
able to excite the remote predictor with it and reproduce the original speech 
to higher accuracy with tolerable increase in bit rate. 

There are several different ways to encode the excitation. The most naive 
technique uses random codebooks. Here we can create, using VQ, a lim- 
ited number 2m of random N-vectors that are as evenly distributed in N- 
dimensional space as possible. These vectors are known both to the encoder 
and to the decoder. After performing LPC analysis, we try each of these 
random excitations, and choose the one that produces the lowest prediction 
error. Since there are 2m possible excitations, sending the index of the best 
excitation requires only m bits. Surprisingly, this simple technique already 
provides a significant improvement in quality as compared to LPC, with 
only a modest increase in bit rate. The problem, of course, is the need to 
exhaustively search the entire set of 2m excitation vectors. For this reason 
CELP encoders are computationally demanding. 
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As an example of a simple CELP coder consider federal standard 1016. 
This coder operates at 4.8 Kb/s using a fixed random codebook and attains a 
MOS rating of about 3.2. The encoder computes a tenth-order LPC analysis 
on frames of 30 milliseconds (240 samples), and then bandwidth expansion 
of 15 Hz is performed. By bandwidth expansion we mean that the LPC poles 
are radially moved toward the origin by multiplication of LPC coefficient b, 
by a factor of ym where y = 0.994. This empirically improves speech quality, 
but is mainly used to increase stability. The LPC coefficients are converted 
to line spectral pairs and quantized using nonuniform scalar quantization. 
The 240-sample frame is then divided into four subframes, each of which 
is allowed a separate codeword from of a set of 256, so that eight bits are 
required to encode the excitation of each subframe, or 32 bits for the entire 
frame. 

This same strategy of frames and subframes is used in all modern CELP 
coders. The codebook search is the major computational task of the encoder, 
and it is not practical to use a codebook that covers an entire frame. It is 
typical to divide each frame into four subframes, but the excitation search 
needn’t be performed on the subframes that belong to the analysis frame. 
Forward prediction with lookahead uses an analysis window that stretches 
into the future, while backward analysis inputs excitation vectors into LPC 
coefficients calculated from past samples. For example, let’s number the sub- 
frames 1,2,3, and 4. Backward prediction may use the LPC coefficients com- 
puted from subframes 1,2,3, and 4 when trying the excitations for subframes 
5,6,7, and 8. Forward prediction with lookahead of 2 subframes would use 
coefficients computed from subframes 3,4,5, and 6 when searching for exci- 
tations on subframes 1,2,3, and 4. Note that lookahead introduces further 
delay, since the search cannot start until the LPC filter is defined. Not only 
do coders using backward prediction not add further delay, they needn’t 
send the coefficients at all, since by using closed-loop prediction the decoder 
can reproduce the coefficients before they are needed. 

If random codebooks work, maybe even simpler strategies will. It would 
be really nice if sparse codebooks (i.e., ones in which the vectors have most of 
their components zero) would work. Algebraic codebooks are sets of excitation 
vectors that can be produced when needed, and so needn’t be stored. The 
codewords in popular algebraic codebooks contain mostly zeros, but with a 
few nonzero elements that are either +l or -1. With algebraic codebooks 
we needn’t search a random codebook; instead we systematically generate 
all the legal codewords and input each in turn to the LPC filter. It turns 
out that such codebooks perform reasonably well; toll-quality G.729 and the 
lower bit rate of G.723.1 both use them. 
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Coders that search codebooks, choosing the excitation that minimizes 
the discrepancy between the speech to be coded and the output of the 
excitation-driven LPC synthesis filter, are called Analysis By Synthesis 
(ABS) coders. The rationale for this name is clear. Such coders analyze 
the best excitation by exhaustively synthesizing all possible outputs and 
empirically choosing the best. What do we mean by the best excitation? Up 
to now you may have assumed that the output of the LPC synthesis filter 
was rated by SNR or correlation. This is not optimal since these measures 
do not correlate well with subjective opinion as to minimal distortion. 

The main effect that can be exploited is ‘masking’ (recall exercise 11.4.2). 
Due to masking we needn’t worry too much about discrepancies that result 
from spectral differences close to formant frequencies, since these are masked 
by the acoustic energy there and not noticed. So rather than using an error 
that is equally weighted over the bandwidth, it is better perceptually to use 
the available degrees of freedom to match the spectrum well where error 
is most noticeable. In order to take this into account, ABS CELP encoders 
perform perceptual weighting of both the input speech and LPC filter output 
before subtracting to obtain the residual. However, since the perceptual 
weighting is performed by a filter, we can more easily subtract first and 
perform a single filtering operation on the difference. 

The perceptual weighting filter should de-emphasize spectral regions 
where the LPC has peaks. This can be achieved by using a filter with the 
system function 

H(z) c $%-bz-* 
= C y~PrnZ-* 

(19.9) 

where 0 < 72 < y1 5 1. Note that both the numerator and denominator 
are performing bandwidth expansion, with the denominator expanding more 
than the numerator. By properly choosing yr and 72 this weighting can be 
made similar to the psychophysical effect of masking. 

Something seems to have been lost in the ABS CELP coder as compared 
with the LPC model. If we excite the LPC filter with an entry from a random 
or algebraic codebook, where does the pitch come from? To a certain ex- 
tent it comes automatically from the minimization procedure. The algebraic 
codewords can have nonzero elements at pitch onset, and random codewords 
will automatically be chosen for their proper spectral content. However, were 
we to build the CELP coder as we have described it so far, we would find 
that its residual error displays marked pitch periodicity, showing that the 
problem is not quite solved. Two different ways have been developed to 
put the pitch back into the CELP model, namely long-term prediction and 
adaptive codebooks. 
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Figure 19.8: ABS CELP encoder using short- and long-term prediction. Only the essen- 
tial elements are shown; CB is the codebook, PP the pitch (short-term) predictor, LPC the 
long-term predictor, PW the perceptual weighting filter, and EC the error computation. 
The input is used directly to find LPC coefficients and estimate the pitch and gain. The 
error is then used in ABS fashion to fine tune the pitch and gain, and choose the optimal 
codebook entry. 

We mentioned long-term prediction in Section 19.2 as conceptually hav- 
ing two separate LPC filters. The short-term predictor, also called the LPC 
filter, the formant predictor, or the spectral envelope predictor, tracks and 
introduces the vocal tract information. It only uses correlations of less than 
2 milliseconds or so and thus leaves the pitch information intact. The long- 
term predictor, also called the pitch predictor or the fine structure predictor, 
tracks and introduces the pitch periodicity. It only has a few coefficients, but 
these are delayed by between 2 and 20 milliseconds, according to the pitch 
period. Were only a single coefficient used, the pitch predictor system func- 
tion would be 

1 

%G> = 1 ;+ (19.10) - 

where D is the pitch period. D may be found open loop, but for high quality 
it should be found using analysis by synthesis. For unvoiced segments the 
pitch predictor can be bypassed, sending the excitation directly to the LPC 
predictor, or it can be retained and its delay set randomly. A rough block 
diagram of a complete CELP encoder that uses this scheme is given in 
Figure 19.8. 

Adaptive codebooks reinforce the pitch period using a different method. 
Rather than actually filtering the excitation, we use an effective excitation 
composed of two contributions. One is simply the codebook, now called the 
fixed codebook. To this is added the contribution of the adaptive codebook, 
which is formed from the previous excitation by duplicating it at the pitch 
period. This contribution is thus periodic with the pitch period and supplies 
the needed pitch-rich input to the LPC synthesis filter. 

One last trick used by many CELP encoders is ‘post-filtering’. Just as 
for ADPCM, the post-filter is appended after the decoder to improve the 
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subjective quality of the reconstructed speech. Here this is accomplished 
by further strengthening the formant structure (i.e., by emphasizing the 
peaks and attenuating the valleys of the LPC spectrum), using a filter like 
the perceptual weighting filter (19.9). This somewhat reduces the formant 
bandwidth, but also reduces the residual coding noise. In many coders the 
post-filter is considered optional, and can be used or not according to taste. 

EXERCISES 

19.12.1 Explain why replacing LPC coefficient b, with yyb, with 0 < y < 1 is called 
bandwidth expansion. Show that 15 Hz expansion is equivalent to y = 0.994. 

19.12.2 The G.723.1 coder when operating at the 5.3 Kb/s rate uses an algebraic 
codebook that is specified by 17 bits. The codewords are of length 60 but 
have no more than four nonzero elements. These nonzero elements are either 
all in even positions or all in odd positions. If in even positions, their indexes 
modulo 8 are all either 0, 2, 4, or 6. Thus 1 bit is required to declare whether 
even or odd positions are used, the four pulse positions can be encoded using 
3 bits, and their signs using a single bit. Write a routine that successively 
generates all the legal codewords. 

19.12.3 Explain how to compute the delay of an ABS CELP coder. Take into account 
the buffer, lookahead, and processing delays. What are the total delays for 
G.728 (frame 20 samples, backward prediction), G.729 (frame 80 samples, 
forward prediction), and G.723.1 (frame 240 samples, forward prediction)? 

19.12.4 Obtain a copy of the G.729 standard and study the main block diagram. 
Explain the function of each block. 

19.12.5 Repeat the previous exercise with the G.723.1 standard. What is the differ- 
ence between the two rates? How does G.723.1 differ from G.729? 

19.13 Telephone-Grade Speech Coding 

This section can be considered to be the converse of Section 18.20; the 
purpose of a telephone-grade modem is to enable the transfer of data over 
voice lines (data over voice), while the focus of speech compression is on 
the transfer of voice over digital media (voice over data). Data over voice 
is an important technology since the Public Switched Telephone Network 
(PSTN) is the most widespread communications medium in the world; yet 
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the PSTN is growing at a rate of about 5% per year, while digital com- 
munications use is growing at several hundred percent a year. The amount 
of data traffic exceeded that of voice sometime during the year 2000, and 
hence voice over data is rapidly becoming the more important of the two 
technologies . 

The history of telephone-grade speech coding is a story of rate halving. 
Our theoretical rate of 128 Kb/s was never used, having been reduced to 
64 Kb/s by the use of logarithmic PCM, as defined in ITU standard G.711. 
So the first true rate halving resulted in 32 Kb/s and was accomplished 
by ADPCM, originally designated G.721. In 1990, ADPCM at rates 40, 32, 
24, and 16 Kb/ s were merged into a single standard known as G.726. At 
the same time G.727 was standardized; this ‘embedded’ ADPCM covers 
these same rates, but is designed for use in packetized networks. It has the 
advantage that the bits transmitted for the lower rates are subsets of those of 
the higher rates; congestion that arises at intermediate nodes can be relieved 
by discarding least significant bits without the need for negotiation between 
the encoder and decoder. 

Under 32 Kb/s the going gets harder. The G.726 standard defines 24 and 
16 Kb/s rates as well, but at less than toll-quality. Various SBC coders were 
developed for 16 Kb/s, either dividing the frequency range equally and us- 
ing adaptive numbers of bits per channel, or using hierarchical wavelet-type 
techniques to divide the range logarithmically. Although these techniques 
were extremely robust and of relatively high perceived quality for the com- 
putational complexity, no SBC system was standardized for telephone-grade 
speech. In 1988, a coder, dubbed G.722, was standardized that encoded 
wideband audio (7 KHz sampled at 16,000 samples per second, 14 bits per 
sample) at 64 Kb/s. This coder divides the bandwidth from DC to 8 KHz 
into two halves using QMFs and encodes each with ADPCM. 

In the early 199Os, the ITU defined performance criteria for a 16 Kb/s 
coder that could replace standard 32 Kb/s ADPCM. Such a coder was re- 
quired to be of comparable quality to ADPCM, and with delay of less than 
5 milliseconds (preferably less than 2 milliseconds). The coder, selected in 
1992 and dubbed G.728, is a CELP with backward prediction, with LPC 
order of 50. Such a high LPC order is permissible since with closed-loop 
prediction the coefficients need not be transmitted. Its delay is 5 samples 
(0.625 ms), but its computational complexity is considerably higher than 
ADPCM, on the order of 30 MIPS. 

The next breakthrough was the G.729 8 Kb/s CELP coder. This was ac- 
cepted simultaneously with another somewhat different CELP-based coder 
for 6.4 and 5.4 Kb/s. The latter was named G.723.1 (the notation G.723 
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having been freed up by the original merging into G.726). Why were two 
different coders needed? The G.729 specification was originally intended for 
toll-quality wireless applications. G.728 was rejected for this application be- 
cause of its rate and high complexity. The frame size for G.729 was set at 
10 ms. and its lookahead at 5 ms. Due to the wireless channel, robustness 
to various types of bit errors was required. The process of carefully evaluat- 
ing the various competing technologies took several years. During that time 
the urgent need arose for a low-bit-rate coder for videophone applications. 
Here toll-quality was not an absolute must, and it was felt by many that 
G.729 would not be ready in the alloted time. Thus an alternative selection 
process, with more lax testing, was instigated. For this application it was de- 
cided that a long 30 millisecond frame was acceptable, that a lower bit rate 
was desirable, but that slightly lower quality could be accommodated. In 
the end both G.729 and G.723.1 were accepted as standards simultaneously, 
and turned out to be of similar complexity. 

The G.729 coder was extremely high quality, but also required over 20 
MIPS of processing power to run. For some applications, including ‘voice 
over modem’, this was considered excessive. A modified coder, called G.729 
Annex A, was developed that required about half the complexity, with al- 
most negligible MOS reduction. This annex was adopted using the quick 
standardization strategy of G.723.1. G.723.1 defined as an annex a standard 
VAD and CNG mechanism, and G.729 soon followed suit with a similar 
mechanism as its Annex B. More recently, G.729 has defined annexes for 
additional bit rates, including a 6.4 Kb/s one. 

At this point in time there is considerable overlap (and rivalry) between 
the two standards families. G.723.1 is the default coder for the voice over 
IP standard H.323, but G.729 is allowed as an option. G.729 is the default 
for the ‘frame relay’ standard FRF.11, but G.723.1 is allowed there as an 
option. In retrospect it is difficult to see a real need for two different coders 
with similar performance. 

For even lower bit rates one must decide between MIPS and MOS. On the 
low MIPS low MOS front the U.S. Department of Defense initiated an effort 
in 1992 to replace LPC-1Oe with a 2.4 Kb/s encoder with quality similar to 
that of the 4.8 Kb/s CELP. After comparing many alternatives, in 1997 a 
draft was published based on MELP. The excitation used in this encoder 
consists of a pulse train and a uniform-distributed random noise generator 
filtered by time-varying FIR filters. MELP’s quality is higher than that of 
straight LPC-10 because it addresses the latter’s main weaknesses, namely 
voicing determination errors and not treating partially-voiced speech. 

For higher MOS but with significantly higher MIPS requirements there 
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are several alternatives, including the Sinusoidal Transform Coder (STC) 
and Waveform Interpolation (WI). Were we to plot the speech samples, or 
the LPC residual, of one pitch period of voiced speech we would obtain some 
characteristic waveform; plotting again for some subsequent pitch period 
would result in a somewhat different waveform. We can now think of this 
waveform as evolving over time, and of its shape at any instant between the 
two we have specified as being determinable by interpolation. To enforce 
this picture we can create two-dimensional graphs wherein at regular time 
intervals we plot characteristic waveforms perpendicular to the time axis. 

Waveform interpolation encoders operate on equally spaced frames. For 
each voiced frame the pitch pulses located and aligned by circular shifting, 
the characteristic waveform is found, and the slowly evolving waveform is ap- 
proximated as a Fourier series. Recently waveform interpolation techniques 
have been extended to unvoiced segments as well, although now the charac- 
teristic waveform evolves rapidly from frame to frame. The quantized pitch 
period and waveform description parameters typically require under 5 Kb/s. 
The decompression engine receives these parameters severely undersampled, 
but recreates the required output rate by interpolation as described above. 

The ITU has launched a new effort to find a 4 Kb/s toll-quality coder. 
With advances in DSP processor technology, acceptable coders at this, and 
even lower bit rates, may soon be a reality. 

EXERCISES 

19.13.1 Cellular telephony networks use a different set of coders, including RPE-LTP 
(GSM) and VSELP (IS-54). What are the principles behind these coders and 
what are their parameters? 
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Bibliographical Notes 

There is a plethora of books devoted to speech signal processing. The old standard 
references include [210, 2111, and of the newer generation we mention [66]. A rel- 
atively up-to-date book on speech recognition is [204] while [176] is an interesting 
text that emphasizes neural network techniques for speech recognition. 

The first artificial speech synthesis device was created by Wolfgang von Kem- 
pelen in 1791. The device had a bellows that supplied air to a reed, and a manually 
manipulated resonance chamber. Unfortunately, the machine was not taken seri- 
ously after von Kempelen’s earlier invention of a chess-playing machine had been 
exposed as concealing a midget chess expert. In modern times Homer Dudley from 
Bell Labs [55] was an early researcher in the field of speech production mechanisms. 
Expanding on the work of Alexander Graham Bell, he analyzed the human speech 
production in analogy to electronic communications systems, and built the VODER 
(Voice Operation DEmonstratoR), an analog synthesizer that was demonstrated 
at the San Francisco and New York World’s Fairs. An early digital vocoder is de- 
scribed in [80]. In the 198Os, Dennis Klatt presented a much improved formant 
synthesizer [130, 1311. 

The LPC model was introduced to speech processing by Atal [lo] in the U.S. 
and Itakura [ill] in Japan. Many people were initially exposed to it in the popular 
review [155] or in the chapter on LPC in [210]. The power cepstrum was introduced 
in [20]; the popular DSP text [186] devotes a chapter to homomorphic processing; 
and [37] is worth reading. We didn’t mention that there is a nonrecursive connection 
between the LPC and LPC cepstrum coefficients [239]. 

Distance measures, such as the Itakura-Saito distance, are the subject of (112, 
113, 110, 841. The inverse-E filtering problem and RASTA-PLP are reviewed in 
[102, 1011. The sinusoidal representation has an extensive literature; you should 
start with [163, 2011. 

For questions of speech as a dynamical system and its fractal dimension consult 
[259, 156, 172, 2261. Unfortunately, there is as yet no reference that specifies for the 
optimal minimal set of features. 

Pitch detectors and U/V decision mechanisms are the subject of [205, 206,121]. 
Similar techniques for formant tracking are to be found in [164, 2301. 

Once, the standard text on coding was [116], but the field has advanced tremen- 
dously since then. Vector quantization is covered in a review article [85] and a text 
[69], while the LBG algorithm was introduced in [149]. 

Postfiltering is best learnt from [35]. The old standard coders are reviewed in [23] 
while the recent ones are described in [47]. For specific techniques and standards, 
LPC and LPC-10: [9, 261, 1211; MELP: [170]; b asic CELP: [ll]; federal standard 
1016: [122]; G.729 and its annexes: [231, 228, 229, 151; G.728: [34]; G.723.1: no 
comprehensive articles; waveform interpolation: [132]. 





A 

Whirlwind Exposition of Mathematics 

In this appendix we will very quickly review all the mathematical back- 
ground needed for complete understanding of the text. Depending on who 
you are, this chapter may be entirely superfluous, or it may be one of the 
most useful chapters in the entire book. You should probably at least look 
it over before starting to read Chapter 1. If most of the material in this 
chapter is unfamiliar to you, then you are probably not ready to continue 
reading. You should definitely consult it whenever you feel uncomfortable 
with the mathematics being used in any of the chapters, and it is written to 
be useful in a more general setting. Under no conditions should you read it 
in its natural place, after the last chapter; if you have already finished the 
book, you don’t need it any more. 

A.1 Numbers 

Since DSP involves a lot of ‘number crunching’, we had better at least know 
what a number is! The simplest type of number is the ‘whole number’ or 
positive integer. These are 1,2,3, . . . . You probably learned about them in 
kindergarten. Kronecker (the same guy who invented the delta) once said 
that the whole numbers were created by God, while all the rest are human 
inventions. Indeed the whole numbers are taken as basic entities in most 
of mathematics, but in axiomatic set theory their existence can actually be 
derived based on even simpler axioms. 

So how did people create the rest of the numbers? The basic idea is to 
write equations using whatever numbers we already have, and try to solve 
them. Whenever we can’t solve an equation using the numbers we already 
know about, we invent new ones. For instance, 1 + 1 = x: leads us to x = 2, 
which is a whole number and thus no news, but when we try x + 1 = 1 
we discover we need the first extension-we have to invent ‘zero’. In case 
you think zero is no big deal, try writing large numbers in Hebrew numerals 
(where 10,20, . . . 90 have their own symbols) or dividing Roman numerals. 

781 
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Next we try to solve x + 1 = 0 and discover that we must invent - 1, an 
idea even more abstract than zero (you might recall how negative numbers 
perplexed you in grade school). Continuing in this fashion we discover all 
the ‘integers’ . . . , -3, -2, -l,O, 1,2,3.. . . 

Now we try solving equations which contain multiplications. 2x = 4 
causes no problems, but 4x = 2 does. We are thus led to the discovery of 
fractions, which together with the integers form all of the ‘rational numbers’. 

We next try solving equations involving powers: x2 = 4 is easy, but 
x2 = 2 leads us to difficulties. The idea of fi not being a rational number 
was once considered so important that the Pythagoreans killed to keep it 
secret. It turns out that not only aren’t these ‘irrational numbers’ rare, but 
there are more of them than there are rationals among the ‘real numbers’. 

We’re almost done. The final kind of equation to observe is x2 = -1, 
which leads to i = &i, to the imaginary numbers, and to the combination 
of everything we have seen so far -the ‘complex numbers’. It turns out that 
complex numbers are sufficient to solve all equations expressible in terms of 
complex numbers, so our search is over. 

EXERCISES 

A.l.l. Prove that fi is irrational. (Hint: Assume that fi = $ and find a contra- 
diction.) 

A.l.2 Prove that the set of real numbers is not denumerable, and that most real 
numbers are irrational. 

A.1.3 Hamilton invented ‘quarternions’, which are like complex numbers but with 
four real components. Why did he do this if complex numbers are sufficient? 

A.2 Integers 

Although most of us are used to decimal numbers, where we count from 1 to 
9 before incrementing the next decimal place to the left, digital computers 
prefer binary numbers. Counting from zero up in binary numbers is done as 
follows. 

0000,0001,0010,0011,0100,0101,0110,0111) 

1000,1001,1010,1011,1100,1101,1110,1111, . . . 
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Each 0 or 1 is called a bit, the rightmost bit in a number is called the Least 
Significant Bit (LSB), while the leftmost bit in a number (which can be 
zero since we assume that a constant number of bits are used) is the Most 
Significant Bit (MSB). There are several ways of extending binary numbers 
to negative numbers without using a separate minus sign, the most popu- 
lar of which is two’s complement. The two’s complement of a number with 
b + 1 bits (the MSB is interpreted as the sign) is obtained by subtracting 
the number from 2 ‘+l; hence addition of negative numbers is automatically 
correct assuming we just discard the overflow bit. We assume that the reader 
is reasonably proficient in using the integers, including the operations addi- 
tion, subtraction, multiplication, division with remainder, and raising to a 
power, (particularly in binary) and understands the connection between bi- 
nary arithmetic and logic, and how all this facilitates the building of digital 
computers. 

There is another operation over the integers that we will require. We say 
that two whole numbers i and j are ‘equal modulo’ m 

i = jmodm (A4 

if when they are divided by m they give the same remainder. This oper- 
ation principle can be extended to real numbers as well, and is related to 
periodicity. Given an integer i, the ‘reduction modulo’ m of i 

imodm= j (A4 

means finding the minimum whole number j to which i is equal modulo m. 
Thus 15 = 8 mod 7 since 15 mod 7 = 1 and 8 mod 7 = 1. 

If i divided by m leaves no remainder (i.e., i mod m = 0), we say that 
m is a ‘factor’ of i. A whole number is prime if it has no factors other than 
itself and 1. The ‘fundamental theorem of arithmetic’ states that every whole 
number has a unique factorization as the product of powers of primes. 

(A.31 

A set is said to be ‘finite’ if the number of its elements is some whole 
number. A set is said to be ‘denumerably infinite’ if its elements can be 
placed in a list labeled by whole numbers. The interpretation is that there 
are in some sense the same number of elements as there are whole numbers. 
In particular the set of all integers is denumerable, since it can be listed in 
the following way, 

al = 0, a2 = 1, a3 = -1, a4 = 2, a5 = -2, . . . a2k = k, a2k+l = -k, . . . 
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and the set of all rational numbers between 0 and 1 is denumerable, as can 
be seen by the following order. 

01112LPL224 ’ 9 2’3’3’4’4’ 5’ 5’5’5”” 

The set of all real numbers is nondenumerably infinite. 

EXERCISES 

A.2.1 Show that there are an infinite number of primes. (Hint: Assume that there 
is a largest prime and find a contradiction.) 

A.2.2 You are given two input electrical devices that perform AND, OR, and NOT 
on bits. Show how to build a binary adder that inputs two 2-bit numbers and 
outputs a 3-bit number. How can this be extended to b-bit numbers? 

A.2.3 In one’s complement notation the negative of a number is obtained by flipping 
all its bits. What are the advantages and disadvantage of this method? 

A.3 Real Numbers 

The reader should also know about real numbers, including the opera- 
tions addition, subtraction, multiplication,division, and raising to an integer 
power. Some reals are rational (i.e., can be written as the ratio of two inte- 
gers), but most are not. 

Rational numbers can be represented as binary numbers with a deci- 
mal point (or should it be called a binary point?); for example, the decimal 
number i is written 0.1, $ is 0.01, and $ is 0.11. This is called ‘fixed point’ 
notation. Some rational numbers and all irrational numbers require an infi- 
nite number of bits to the right of the point, and must be truncated in all 
practical situations when only a finite number of bits is available. Such trun- 
cation leads to numeric error. In order to increase the range of real numbers 
representable without adding too many bits, ‘floating point’ notation can be 
used. In floating point notation numbers are multiplied by positive or neg- 
ative powers of 2 until they are between 0 and 1, and the power (called the 
exponent) and fraction (called the mantissa) are used together. For example, 

&= 3 l 2-’ is represented by mantissa 3 and binary exponent -8. 
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Two specific irrational numbers tend to turn up everywhere. 

e = lim,,, l+$ n = 
( > = 2.718281828 

7r = 4 tan-l(l) = = 3.141592653 

These series expansions are important from a theoretical point of view, but 
there are more efficient computational algorithms for approximating these 
numbers. 

EXERCISES 

A.3.1 Compare several methods for computing e and T. See exercise A.8.5 below. 

A.3.2 How can you tell a rational number from an irrational one based on its binary 
representation? 

A.3.3 Another interesting irrational number is the golden ratio y = M x 1.618. 
Show that if a line segment of length I is divided in two segmenk of lengths 
a and b such that the ratio of I to a equals the ratio of a to b, then % = y. 
Show that if a nonsquare rectangle has sides of length a and b such that if 
a square is removed the remaining rectangle has the same proportions, then 
t = y. Show that cos(g) = 3. 

A.3.4 Given a decimal representation T and a tolerance E, how can the smallest a 
and b such that r x f to within E be found? 

A.4 Complex Numbers 

We assume that the reader has some knowledge of complex numbers, in- 
cluding how to convert a complex number x between the Cartesian form . 
x = x + iy and the polar form x = re? 

I I x = @T-g 
2 = xcose 

0 = tan-l ($) 

Y = x sin 0 

We will use the notations 

x = Rz y=Sz r=IzI o= Lx 

for the real part, imaginary part, absolute value (magnitude) and angle of 
the complex number x. 
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The arctangent function tan-l(p) is usually defined only for -5 < cp < 
;. For equation (A.4) we need the ‘four-quadrant arctangent’, computable 
via the following algorithm: 

a + tanV1(lJ/z) 
if x<O 

if y>O 
ata+r 

else 
a-a-r 

if a<0 
ata+2n 

The complex operations of addition and multiplication are simple when 
addition is performed on the Cartesian form 

x = Xl + 22 means 

and multiplication in polar form, 

2 = 21x2 means 

X = x1+x2 
Y = Yl +y2 

; 

= rlr2 

= 01+ 92 

although multiplication can be done on the Cartesian forms as well. 

2 = 2122 means 
X = x1x2 - y1y2 

Y = XlY2 + x2y1 

Raising to a power, like multiplication, is also simplest in polar form, and 
in this form is called DeMoivre’s theorem. 

( > reiO a = peiae 

There is a certain isomorphism between complex numbers and a two- 
dimensional vector space, but multiplication isn’t defined in the same way 
for the two and complex numbers can’t be extended to three dimensions. 
Nonetheless, it is often useful to picture the complex numbers as residing in 
a plane, called the ‘complex plane’, especially when dealing with functions 
defined over the complex plane. 

Euler discovered a most elegant relation between four important num- 
bers, -1, i, e, and 7r, namely 

,ir =- 1 (A4 
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which is a special case of the more general connection between imaginary 
exponentials and sinusoids, 

eit = cost + isint (A-7) 

a relation that can be reversed as well. 

,it _ e-it 
sin(t) = 2i 

eit + e-it 
cos(t) = 2 (A.8) 

A very important family of complex numbers are the Nth ‘roots of unity’. 
These are the N solutions to equation WN = 1. Thus for N = 2 we have the 
two square roots of unity W = J=l, while for N = 4 the four fourth roots of 

unity are W = 3~1, kti. It is obvious that the Nth roots must all reside on 
the unit circle, 1 WI = 1, and it is not hard to show that they are given by 
wzeiy = WE, where the principle root is: 

WN 
i2” =e N 

W) 

EXERCISES 

A.4.1 When a complex multiplication is performed using the Cartesian forms, it 
would seem that we need to perform four multiplications and two additions. 
Show that this same multiplication can be performed using three multiplica- 
tions and five additions. 

A.4.2 Express the power of a complex number in Cartesian form. 

A.4.3 Find the square roots of i in Cartesian form. 

A.4.4 Give geometric interpretations for the following: 
1. All complex numbers with the same magnitude 
2. All complex numbers with the same real part 
3. All complex numbers with the same imaginary part 
4. All complex numbers with the same angle 
5. All complex numbers equidistant from a given complex number 
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A.5 Abstract Algebra 

Numbers have so many different characteristics that it is hard to study them 
all at one time. For example, they have many inherent features (e.g., absolute 
value, positiveness), there are several operations that can be performed be- 
tween two numbers (e.g., addition and multiplication), and these operations 
have many attributes (e.g., commutativity, associativity). As is customary 
in such complex situations mathematicians start their investigations with 
simpler objects that have only a small number of the many characteristics, 
and then advance to more and more complex systems. 

The simplest such system is a ‘group’, which is a set of elements between 
which a single binary operation l is defined. This operation must have the 
following properties: 

closure: for all a and b in the group, c = a l b is in the group 

associativity: a . (b - c) = (a l b) s c 

identity: there is a unique element i in the group such that a. i = i. a = a 
for all a 

inverse: for every a in the group there is a unique element b in the group 
such that a . b = b + a = i where i is the identity element. 

If in addition the operation obeys: 

commutativity: a - b = b l a 

then we call the group ‘commutative’ or ‘Abelian’. 
The integers, the rationals, the real numbers, and the complex numbers 

are all groups with respect to the operation of addition; zero is the identity 
and --a is the inverse. Likewise the set of polynomials of degree 72 (see 
Appendix A.6) and 772 *n matrices (Appendix A.15) are groups with respect 
to addition. The nonzero reals and complex numbers are also groups with 
respect to multiplication, with unity being the identity and i the inverse. 
Not all groups have an infinite number of elements; for any prime number 
p, the set consisting of the integers 0, 1, . . . (p - 1) is a finite group with p 
elements if we use the operation a . b E (a + b) mod p. 

A field is more complex than a group in that it has two operations, 
usually called addition and multiplication. The field is a group under both 
operations, and in addition a new relation involving both addition and mul- 
tiplication must hold. 

distributivity: a l (b + c) = a 4 b + a l c 
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The real numbers are a field, as are the rationals and the complex numbers. 
There are also finite fields (e.g., the binary numbers and more generally the 
integers 0. . . p - 1 under modulo arithmetic). 

Given a field we can define a ‘vector space’ over that field. A vector space 
is a set of elements called ‘vectors’; our convention is to symbolize vectors 
by an underline, such as v. The elements of the field are called ‘scalars’ in 
this context. Between the-vectors in a vector space there is an operation of 
addition; and the vectors are a commutative group under this operation. In 
addition, there is a multiplication operation between a scalar and a vector 
that yields a vector. 

Multiplication by unity must yield the same vector 

.lv=v - - 

and several types of distributivity must be obeyed. 

0 a(u+v)=au+a~ - - - 

l (a + b)v = uv + bv - 
l (ab)v = a(bv) - 

There is another kind of multiplication operation that may be defined 
for vector spaces that goes under several names including scalar product, 
inner product, and dot product. This operation is between two vectors and 
yields a scalar. If the underlying field is that of the reals, the dot product 
must have the following properties: 

nonnegativity: u . v 2 0 - - 
self-orthogonality: v . v = 0 if and only if v = 0 - - - - 
commutativity: u l v = v l u -- -- 
distributivity: (u + v) l w = u l w + z. w - - - 
scalar removal: (au) l v = a(u . v) - - - - 

Two vectors for which u. v = 0 are called ‘orthogonal’. If the underlying field -- 
is of the complex numbers, the commutativity relation requires modification. 

conjugate commutativity: us v = (v l u)* - - - - 

The prototypical example of a vector space is the set of ordered n-tuples 
of numbers, and this used as the definition of ‘vector’ in computer science. 
The number n is called the dimension and the operations are then defined 
by the following recipes: 
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. (up2... u,)+(v1,v2.JJ,) = (261 +v1,212+?J2,...zL,+217J 

0 ~(~1,212.. . vn) = (~2211, av2,. . . av,) 

l (Ul, U2.. . Un) * (VI, 212. -a V,) = U1Vl + U2V2 + l l + UnVn 

The usual two-dimensional and three-dimensional vectors are easily seen to 
be vector spaces of this sort. We can similarly define vector spaces of any 
finite dimension over the reals or complex numbers, and by letting n go 
to infinity we can define vector spaces of denumerably infinite dimension. 
These ‘vectors’ are in reality infinite sequences of real or complex numbers. 
It is also possible to define vector spaces with nondenumerable dimension, 
but then the interpretation must be that of a function defined on the real 
axis, rather than an n-tuple of numbers or an infinite sequence. 

A ‘metric space’ is a set of elements, between every two of which is defined 
a metric (distance). The metric is a nonnegative number d(z, y) that has the 
following three properties: 

symmetry: d(y, 2) = d(z, y), 

identity: d(z, y) = 0 if and only if x = y, 

triangle inequality: d(z, z) 5 d(x, y) + d(y, 2). 

Metric spaces and linear vector spaces capture different aspects of Eu- 
clidean vectors, and it is not surprising that we can define ‘normed spaces’ 
that are both metric and vector spaces. The norm of a vector is defined to 
be 1~1 = ,/-, h h v a v w  ic is easily seen to be a nonnegative number and to 

fulfill all the-requirements of a metric. 

EXERCISES 

A.5.1 Find groups with small numbers of elements. 

A.5.2 Show that true and false with or as addition and and as multiplication 
form a vector space. 

A.5.3 Prove formally that three-dimensional space is a vector space and a metric 
space. 
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A.6 Functions and Polynomials 

Functions uniquely map one or more numbers (called arguments) onto other 
numbers (called returned values). For example, the function f(z) = x2 re- 
turns a unique real number for every real argument z, although all positive 
x2 are returned by two different real arguments (x and -x) and negative 
numbers are not returned for any real argument. Hence f(z) = fi is not 
a function unless we define it as returning only the positive square root 
(since a function can’t return two values at the same time) and even then 
it is undefined for negative arguments unless we allow it to return complex 
values. 

A ‘symmetry’ of a function is a transformation of the argument that 
does not change the returned value. For example, x + --Iz: is a symmetry of 
the function f(s) = x2 and z + x + 2ma for any n are symmetries of the 
function f(x) = sin(z). 

‘Polynomials’ are functions built by weighted summing of powers of the 
argument 

44 = a0 + ala: + a2x2 + a3x3 + . . . a,xn (A.10) 

the weights ai are called ‘coefficients’ and the highest power n is called the 
‘degree’ of the polynomial. 

The straightforward algorithm for evaluating polynomials, 

a + a0 
for i + 1 to n 

p + xp 

a + a + sip 

is usually not the best way of computing the value to be returned, since 
raising to a power is computationally expensive and may introduce numerical 
error. It is thus usually better to use the following algorithm, which requires 
an additional memory location. 

a + ao+alx 

P+X 
for i t 1 to n 

PC-P-J 
a + a+aip 

Even this code is not optimal, but Horner’s rule 
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a + a, 
for i + n- 1 to 0 

a + ax+ ai 

requiring only n multiplications and additions, is optimal. 
Polynomials can be added, multiplied, and factored into simpler polyno- 

mials. The ‘fundamental theorem of algebra’ states that all polynomials with 
real coefficients can be uniquely factored into products of first- and second- 
degree polynomials with real coefficients, and into products of first-degree 
polynomials with complex coefficients. For example, 

x3+x2+x+1 = (x2 + 1)(x + 1) 

for real coefficients, while allowing complex coefficients we can factor further. 

x3+x2+x+1 = (z + i)(z - i)(z + 1) 

A first-degree factor of a(z) can always be written x - C, in which case [ is 
called a ‘zero’ (or ‘root’) of the polynomial. It is obvious that the polynomial 
as a whole returns zero at its zeros a(C) = 0 and that the number of zeros 
is equal to the polynomial degree for complex polynomials (although some 
zeros may be identical), but may be less for real polynomials. 

‘Rational functions’ are functions formed by dividing two polynomials. 

44 
+4 = b(z) = 

a0 + alx + a2x2 + a3x3 + . . . a,xn 

b. + blx + b2x2 + b3x3 + . . . bmxm 
(A.ll) 

A ‘zero’ of a rational function is an argument for which the function returns 
zero, and is necessarily a zero of the numerator polynomial. A ‘pole’ of a 
rational function is a zero of the denominator polynomial and hence an 
argument for which the function as a whole is infinite. 

EXERCISES 

A.6.1 The derivative of a polynomial a(s) of degree n is a polynomial of degree 
n - 1 given by a’(a) G al + 2azx + 3u3x2 + . . . + nunxnel. What is the most 
efficient method of simultaneously computing u(x) and u’(z)? 

A.6.2 Horner’s rule is not efficient for sparse polynomials which have many zero 
coefficients. For example, the best way to compute p(z) = x5 is to compute 
a2 + x2,u4 + 3, p(x) = qx. What is the best way of computing p(z) = IP 
for general integer n? 
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A.6.3 Show that rational functions are uniquely determined by their zeros and 
poles (including multiplicities) and a single additional number. 

A.6.4 We define binary polynomials as polynomials for which each power of x is 
either present (i.e., its coefficient is 1) or absent (its coefficient is 0). How 
many different binary polynomials are there with degree up to m? What 
is the connection between these polynomials and the nonnegative integers? 
The addition of two binary polynomials is defined by addition modulo 2 of 
the corresponding coefficients (note that each polynomial is its own additive 
inverse). To what operation of the integers does this correspond? How do you 
think polynomial multiplication should be defined? 

A.7 Elementary Functions 

In addition to polynomials there are several other functions with which 
the reader should feel comfortable. The natural logarithm In(z) is one such 
function. It is defined for positive real numbers, and is uniquely determined 
by the properties 

In(l) = 0 

ln(a b) = In(a) + In(b) 

= lna-lnb 

In(J)) = bin(a) 

although it can also be defined by an integral representation. 

lnx = J xl 
- dt 

1 t 

One can generalize the logarithm to complex numbers as well, 

ln(r@) = lnr + i0 

(A.12) 

(A.13) 

(A.14) 

and one finds that ln( -1) = ir, and ln(zti) = &i$. Actually, this is only one 
possible value for the complex logarithm; any multiple of 2ni is just as good. 

Logarithms transform multiplication into addition since they are the 
converse operation to raising to a power. The natural logarithms are loga- 
rithms to base e, that is, y = lnx means that x = ev, or put in another way 
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elnta) = a and ln(ea) = a. The function ez will be discussed in a moment. It 
is often useful to know how to expand the natural logarithm around x = 1 

x2 x3 
ln(1 + 2) = 2 - 2 + 3 - . . . (A.15) 

although this series converges very slowly. 
Logarithms to other bases are related as follows. 

loga x 
l”gb IL: lnx z-z- 
l”gb a lna 

The most important alternative bases are base 10 and base 2, and it is 
enough to remember In 10 x 2.3 and log2 M 0.3 to be able to mentally 
convert between them. Another logarithmic relation is the decibel (dB), 
being one-tenth of a Bel, which is simply the base 10 logarithm of a ratio. 

Pl r(dB) = lOlog,, pz (A.16) 

Using one of the useful numbers we see that every factor of two contributes 
about 3 dB to the ratio (e.g., a ratio of two to one is about 3 dB, four to 
one is about 6 dB, eight to one about 9 dB, etc.). Of course a ratio of ten 
to one is precisely 10 dB. 

The ‘exponential function’ ez is simply the irrational number e raised to 
the x power. If x is not an integer, the idea of a power has to be generalized, 
and this can be done by requiring the following properties: 

e” = 1 
ea+b = ea + eb 

e ab = 
( > e ab 

The solution turns out to be given by an infinite series 

ex = 00 xk 
c J&ICI . (A.17) 

and this same series can be used for complex numbers. To define noninteger 
powers of other numbers we can use 

where In was defined above. 



A.8. TRIGONOMETRIC (AND SIMILAR) FUNCTIONS 795 

The Gaussian 
G(x) = +-$9 

7T,cT 
(A.19) 

is another function based on the exponential. This function has a maximum 
at p and a ‘width’ of 0, and is symmetric around ,x. The peculiar constant 
is chosen so that its integral over all the argument axis is normalized to one. 

J O” G(x)dx=l -0a 

EXERCISES 

A.7.1 Generate three-dimensional plots of the complex exponential and the com- 
plex logarithm as surfaces over the complex plane. 

A.7.2 Derive the expansion (A.17) by requiring the derivative of the exponential 
function to equal itself. 

A.7.3 Prove the normalization of the Gaussian. 

A.8 Trigonometric (and Similar) Functions 

We assume that the reader is familiar with the basic trigonometric functions 
sin(x), cos(x), tan(x) = s and tan-l(x), and their graphs, as well as the 
connection 

sin2(x) + cos2(x) = 1 (A.20) 

between these functions and the unit circle. 
Perhaps their most fundamental property is periodicity 

sin(x + 274 = sin(x) 
cos(x + 274 = cos(x) 
tan(x+xn) = tan(x) 

(A.21) 

for all whole n, but there are various other symmetries as well. 
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sin(-x) = - sin(x) 

cos(-x) = cos(x) 

sin( $ + 2) = sin($ - 2) 

cos(E + 2) = -cos(5 - x) 

cos(% - 2) = sin(x) 

(A.22) 

In DSP we often need the ‘sum formulas’. The fundamental ones that 
we need quote are 

sin@ & b) = sinacosbzt cosasinb 

cos(a & b) = cosacosb~sinusinb (A.23) 

from which we can derive ‘double angle formulas’ 

sin(2u) = 2sinucosu 

cos( 2u) = cos2 a -sin2u=2cos2u-l=l-2sin2a (A.24) 

and the ‘square formulas’ 

sin2(u) = 

cos2(u) = 

a pair of identities that often come 
purposes, for completeness we give 

-- 
i + cos(2u) 

+ + f cos(2u) (A.25) 

in handy. While not important for our 

tan(u * b) = 
tana&tanb 

1 F tanutanb 
(A.26) 

We will also need another kind of sum formula. 

sin(u) + sin(b) = 2sin($(u+b))cos(i(u-b)) 

sin(u) - sin(b) = 2cos(a(a+b))sin($(u-b)) 

cos(u) + cos(b) = 2cos(a(a+~))cos(f(a-b)) (A.27) 

cos(u) - cos(b) = -2sin($(u+b))sin($(u-b)) 

Another relation derivable from the sum formulas that appears less fre- 
quently in trigonometry books but is very important in DSP is 

a sin(x) + bcos(x) = A sin(x + 6) (A.28) 
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which means that summing sin and cos of the same argument with any coef- 
ficients still leaves a simple sin of the same argument. The desired relations 
are as follows. 

a = Aces(8) b = Asin(8) 

A =dm 6 
b = tan-l - 
a 

(A.29) 

On odd occasions it is useful to know other ‘multiple angle formulas’ 
such as 

sin( 3a) = 2 sin(a) cos(a) 

cos(3a) = cos2(a) - sin2(a) = 2cos2(a) - 1 = 1 - sin2(a) 

sin(4a) = 2 sin(a) cos(a) (A.30) 

cos(4a) = cos2(a) - sin2(a) = 2cos2(a) - 1 = 1 - sin2(a) 

but. these complex iterative forms can be replaced by simple two step recur- 
sions 

sin ((k + 1)a) = 2cos(a) sin(lca) - sin (Ic ( - 1,a) 

cos ((k + 1)a) = 2 cos(a) cos(ka) - cos ((k - 1)a) (A.31) 

the second of which is useful in deriving the Chebyshev polynomials Tk(z), 
(see Appendix A. 10). 

From the sum and multiple angle formulas one can derive ‘product for- 
mulas’. 

sin(a) sin(b) = $ (cos(a - b) - cos(a + b)) 

sin(a) cos(b) = $ sin(a - b) + sin(a + b)) 
( 

(A.32) 

cos(a) cos(b) = i cos(a - b) + cos(a + 15)) 
( 

Similarly, you may infrequently need to know further ‘power formulas’ 

sin3(a) = 9 sin(a) - t sin(3a) 

cos3(a) = $ cos(a) + $ cos(3a) 

sin4(a) = 8 - 3 cos(2a) + i cos(4a) 

cos4(a) = Q + ?j cos(2a) + i cos(4a) 

(A.33) 

(and more general formulas can be derived), but don’t bother trying to 
memorize these. 
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An important characteristic of the sines and cosines as functions is their 
mutual orthogonality 

J 7F sin(&) cos(mt)dt = 0 
-IT 

J 
7r 

sin(&) sin(mt)dt = n&, 
-lr 

J 
k cos(nt) cos(mt)dt = 7&, -7r 

(A.34) 

as can be easily derived using the product formulas and direct integration 
(see Appendix A.9). 

Sometimes it is useful to expand trigonometric functions in series. The 
two expansions 

sin(x) 
x3 x5 x7 

= x - 3 + gr - 7r + . . . 

x;J x4 xfi 
cos(x) = l-~+~-gr+... 

. . . 
(A.35) 

are important and easy to remember. For really small x you can usually get 
away with the first x dependent term. 

Using the trigonometric identities to simplify complex expressions is usu- 
ally hard work. It’s usually easier to replace real sinusoids with complex 
exponentials; use the simpler math of eiZ and take the real part at the end. 

Just as the trigonometric functions are ‘circular functions’ in the sense 
that x = cos(8), y = sin(e) trace out a circle when t9 goes from zero to 27r, 
so we can define the hyperbolic functions sinh and cash that trace out a 
hyperbola with its vertex at (0,l). Similarly to equation (A.8), we define 

g - ,-e 
sinh(8) = 2 cash(8) = ee ‘,” 

-8 sinh 9 
tanh(0) = a (A.36) 

and easily find the analog of equation (A.20)) 

cosh2(0) - sinh2(0) = 1 (A.37) 

which proves that x = cash(0), y = sinh(6) trace out a hyperbola. Unlike 
the circular functions, the hyperbolic functions are not periodic, but their 
expansions are similar to those of the circular functions. 

sinh(x) 
x3 x5 x7 

= x+g+g+~+.*. 

cash(x) 
x2 x4 x6 

= 1+ 2r + qr + gr + l ‘9 
. . . 

(A.38) 
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In addition to circular and hyperbolic functions, there are elliptical func- 
tions sn(cp) and cn(cp), which are defined in three steps. First we define the 
‘Jacobian elliptical function’ 

(A.39) 

for real k in the range 0 2 k 5 1 and nonnegative real cp. This integral 
arises in the determination of the length of an arc of an ellipse. There is a 
special case of the Jacobian elliptical function, called the ‘complete elliptical 
integral’ 

(A.40) 

that starts at KO = 3 and increases monotonically, diverging as k -+ 1. 
Second, we define the inverse Jacobian elliptical function $L+) as the in- 
verse formula to equation (A.39). Finally, we can define ‘elliptical sine’ and 
‘elliptical cosine’ functions. 

snk (a> = sin (Ipk(u)) 

cnk(u) - cos (iok( (A.41) 

It is obvious from the definitions that 

sir:(u) + cni(u) = 1 

and that for k = 0 they are identical to the trigonometric sine and cosine. 
Much less obvious is that for all k < 1 they remain periodic, but with period 
4Kk, four times the complete elliptical integral. As k + 1 the elliptical sine 
gets wider until at k = 1 where its period diverges, becoming equal to the 
hyperbolic tangent function. As k increases from zero the elliptical cosine 
at first becomes more like a triangle wave, but after k = $ it develops an 

inflection, and at k = 1 it becomes ,&. We will return to the elliptical 
functions in Appendix A.lO. 

EXERCISES 

A.8.1 Plot the circular, hyperbolic, and elliptical sines and cosines. Describe the 
similarities and differences. 
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A.8.2 Prove: 

l sinh(-x) = - sinh(x) 

. cosh(-x) = cash(x) 

l ( cash(x) + sinh(x)) n = cash nx + sinh nx 

l sinh(z) = -isin 

l cash(z) = cos(iz) 

l sinh(x + 27&i) = sinh(x) 

l cosh(x + 2rlci) = cash(x) 

A.8.3 Prove that the derivative of sinh(x) is cash(x) and that of cash(x) is sinh(x). 

A.8.4 Derive half-angle formulas for sine and cosine. 

As.5 Use the half-angle formulas and the fact that sine(0) = 1, that is * -+ 1 
when x + 0, to numerically calculate T. (Hint: sinc( I) + 1 when n + 00 so 
n sin( E) -+ T in this same limit; start with known values for sine and cosine 
when n = 4,5, or 6 and iteratively halve the argument.) 

A.8.6 Prove equation (A.34). 

A.8.7 Find sum and double angle formulas for the hyperbolic functions. 

A.8.8 Derive expansions (A.35) and (A.38) from equation (A.17). 

A.9 Analysis 

We assume that the reader is familiar with the sigma notation for sums 

N 

c ai = ao + al + a2 + . . . + aN (A.42) 
i=o 

and knows its basic properties: 

C(ai + bi) = Cai+Cbi i i i 
c cai = CCai 

i 

cc aij = kc aij 
i j j i 

( ) 

2 

c ai = 
cc 

ail&j = 2ClZiaj + Cl.Zf 
i i j i<j i 
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When dealing with sums a particularly useful notation is that of the Kro- 
necker delta 

6.. = 
{ 

1 i=j 
X.3 0 i#j 

which selects a particular term from a sum. 

c a& = ak (A.44) 

Certain sums can be carried out analytically. The sum of an n-term 
‘arithmetic series’ al = a, al = 2a, . . . ak = /x&, . . . a, = na is 12 times average 
value. 

n 

a + 2a + 3a + . . . + na = c 
al +a, ka=n2= !jn(n + 1)a (A.45) 

k=l 

The sum of a geometric series a0 = 1, al = r, . . . ak = rk . . . an- 1 = rnB1 is 

n-l 

1 + r + r2 + . . . + m-l = C rk = 
k=O 

rn> r (A.46) 

and for -1 < r < 1 this sum converges when we go to infinity. 

An important particular case of this sum is 

n-l 

c 
&c = (1 - can) 

k=O 
1 - ea 

(A.47) 

(A.48) 

and the infinite sum converges for negative a. 
A key idea in mathematical analysis is that of continuity of a function. 

A real-valued function of a single variable is said to be ‘continuous’ if it 
has no jumps, (i.e., if when approaching an input to the function to from 
below and above we arrive at the same output). For continuous functions 
we can ‘interpolate’ to find values between those already seen, and if these 
previously seen values are close enough, the interpolated value will not be 
far off. 

We can define the ‘derivative’ of a function by considering how fast it 

changes when we change its inputs. The ratio of the output change to the 
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input change approaches the derivative when the input changes become 
very small. It is assumed that the reader knows how to differentiate basic 
functions. In particular we will need the following derivatives: 

d 
2” = rip--l 

d 
zest = aeat 

d 
z sin@) = wcos(wt) 

d 
z cos(wt) = -w sin(&) 

(A.49) 

The ‘integral’ of a function is related to the area under its plot. As such 
integrals can be approximated by Riemann sums 

I f(t) dt x C fCtnlS (A.50) 
n 

where the summation is over rectangles of width 6 approximating the curve. 
The ‘fundamental theorem of calculus’ states that integration is the inverse 
operation to differentiation. It is assumed that the reader can do basic inte- 
grals, and, for example, knows the following: 

I tn dt = 
1 

- 
n+l 

tn+l 

J 1 
eat & = -eat 

a 

I 
sin(wt) dt = 

1 
-; cos(wt) 

I 
cos(wt) dt = 

1 
CJ sin(wt) 

(A.51) 

In certain contexts we call the derivative is called the ‘density’; let’s 
understand this terminology. When we say that the density of water is p 
we mean that the weight of a volume v of water is pv. In order to discuss 
functions of a single variable consider a liquid in a long pipe with constant 
cross-section; we can now define a ‘linear density’ X, and the weight of the 
water in a length L of water is XL. For an inhomogeneous liquid whose linear 
density varies from place to place, (e.g., the unlikely mixture of mercury, 
ketchup, water and oil in a long pipe) we must use a position dependent 
density X(X). The total weight is no longer simply the density times the 
total length, but if the density varies slowly then the weight of a small 
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length Ax in the vicinity of position x is approximately X(x)Ax. If the 
density varies rapidly along the pipe’s length, all we can say is that the 
weight of an infinitesimal length dx in the vicinity of position x is X(x) dx 
so that the total weight of the first L units of length is the integral. 

W(L) = IL X(x)dx 
0 

From the fundamental theorem of calculus it is clear that the density func- 
tion X(x) is the derivative of the cumulative weight function W(L). 

EXERCISES 

A.9.1 Show that 1 + 2 + 3 + . . . n = in(n + 1) and that 1 + 3 + 5 + . . . = n2 (i.e., 
that every triangular number is a perfect square). 

A.9.2 Show that 1 + $ + i + i + . . . diverges, but that 1 + 4 + a + g + . . . = 2. 

A.9.3 What is the meaning of a continuous function of a complex variable? Of a 
differentiable function? 

A.9.4 The shortest way to get from point (0,O) to point (1,l) in the two-dimensional 
plane is the straight line of length a. Another way is to go first along 
the straight lines connecting the points (0,O) - (1,0) - (1, l), traversing a 
path of length 2. Similarly, the paths (0,O) - (i,O) - (i,$) - (fr, 1) - (1, l), 
(0,O) - (i,O) - (a,i) - ($,i) - ($,l) - (l,l), and indeed any path with 
segments parallel to the axes have total path length 2. In the limit of an 
infinite number of segments our path is indistinguishable from the straight 
line and so we have proven that fi = 2. What’s wrong with this ‘proof’? 

A.10 Differential Equations 

Differential equations are equations in which functions and their derivatives 
appear. The solution of an algebraic equation is a number, but the solution 
of a differential equation is a function. For example, given 

W) s(t) = -Xx (A.52) 

we can immediately guess that s(t) = e -? So exponentials are solutions of 
differential equations of the first order. Similarly, 

d2s 
s(t) = -w2-@ (A.53) 
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has the solution s(t) = A sin(wt + 4)) so sinusoids are the solutions of dif- 
ferential equations of the second order. 

There are many other equations that give birth to other ‘named’ func- 
tions. For example, Legendre’s differential equation 

(1 - p)y - 2&g + n(n + l)s(t) = 0 (A.54) 

for nonnegative integer n has as solutions the Legendre polynomials Pn (t) , 
the first few of which are given here. 

PO(t) = 1 

PI(t) = t 

Pz(t) = g3t2 - 1) 

Pa(t) = g5t3 - 3t) 
(A.55) 

The general form is 

Pn(t) = g-&(t2 - 1)” 
. 

showing that they are indeed polynomials of degree n. We can efficiently 
compute the returned value for argument t using a recursion. 

(n + l)G+l(t) = (2n + l)tPn(t) - nPnwl(t) 

The Legendre polynomials are akin to the sinusoids in that the n polynomials 
are odd, the even n ones are even, and they obey orthogonality. 

J 
1 

-1 
Pn (t>P, (t)dt = & b,m 

Hence any function on [ - 1 . . . + l] can be expanded s(t) = C an Pn (t) where 

2n+l l 
an =- 

2 J s(t)Pn(t)dt 
-1 

is the coefficient of P,(t) in the expansion. 
Another named equation is Chebyshev’s differential equation 

(I-t’)$-t$+n2s=0 

the solutions for which are called the ‘Chebyshev polynomials’. 

G(t) = 
cos(n coswl t) ItI 5 1 

cosh(n cash-1 t) else 

(A.56) 

(A.57) 
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The notation Tn derives from an alternative Latinization of their discoverer’s 
name (Pafnuty Lvovich Tshebyshev). 

We presented above somewhat complex formulas for the cosine of mul- 
tiple angles cos(lca) in terms of cos(a) (A.31). Let’s define a sequence of 
operators Tk that perform just that transformation 

Tk (mm) = COS(kU) (A.58) 

which you can think of as a sneaky way of defining functions in it: = cos a. 

Tk (x> = cos 
( 

kcos-lx 
> 

(A.59) 

These functions are only defined for x in the domain -1 5 x 5 1, and their 
range is -1 _< Tk(x) 5 1, but they are exactly the functions defined above. 

It can easily be seen from either definition that 

To = 1 

Tl(t) = t 

but it is painful to derive (e.g., by using (A.31)) even the next few: 

T2(t) = 2t2 - 1 

T3(t) = 4t3 - 3t 

T*(t) = 8t4 - 8t2 + 1 

but the job is made manageable by a recursion that we shall derive below. 
The functions TN(X) have a further interesting property. To(t), being 

unity, attains its maximum absolute value for all t; Tl(t) starts at ITI (- 1) ] = 
1 and ends at ]Tr(+l)] = 1; ITz(t)l = 1 at the three values t = -l,O, +l. In 
general, all TN have N equally spaced zeros at positions 

t = cos 
7r(k - $) 

( 1 N 
k = 1,2,. . . N 

and N + 1 equally spaced extrema where ITN (t) I = &l at 

k = 0, 1,2,. . . N 

in the interval [- 1. . . + 11. This is not totally unexpected for a function 
that was defined in terms of cos a, and is called the equiripple property. 
Equiripple means that the functions oscillate in roughly sinusoidal fashion 
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between extrema of the same absolute magnitude. This characteristic makes 
these functions useful in minimax function approximation. 

The reader will note with surprise that in all of the examples given 
above TN was actually a polynomial in t. We will now show something truly 
astounding, that for all N TN(t) is a polynomial in x of degree N. This is 
certainly unexpected for functions defined via trigonometric functions as in 
(A.59), and were just shown to be roughly sinusoidal. Nothing could be less 
polynomial than that! The trick is equation (A.31) which tells us that 

TN+@) = 2tT~(t) - TN--I(~) 

which coupled with the explicit forms for To(t) and Tl (t) is a simple recursive 
scheme that only generates polynomials. We can see from the form of the 
recursion that the highest term is exactly N, and that its coefficient will be 
precisely 2N-1 (at least for N > 0). 

The eminent German astronomer Friedrich Wilhelm Bessel was the first 
to measure distances to the stars. He was the first to notice that the brightest 
star in sky, Sirius, executes tiny oscillations disclosing the existence of an 
invisible partner (Sirius B was observed after his death). He also observed 
irregularities in the orbit of Uranus that later led to the discovery of Neptune. 
During his 1817 investigation of the gravitational three-body problem, he 
derived the differential equation 

t2d2s ds 
-g + tz + (t2 - n2)s = 0 (A.62) 

which doesn’t have polynomial solutions. One set of solutions are the Bessel 
functions of the first type Jn(t), which look like damped sinusoids. The first 
few of these are plotted in Figure A.l. 

Although we won’t show this, these Bessel functions can be calculated 
using the following recursions. 

JO(t) x2 x4 x6 = l - + ---+... 
22 2242 224262 

Jl@) 

x3 x5 x7 

= :--+-- + l ‘* 2 224 22426 2242628 

Jn+l(t> = F&(t) - Jn-1(t) 

In addition to equation (A.53) the trigonometric functions obey an ad- 
ditional differential equation, namely 

= 1 - 2(t) (A.63) 
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Figure A.l: Bessel functions of the first type Jo(t),Jl(t), Jz(t), 53(t), and Jd(t) 

an equation that emphasizes the oscillatory behavior. Imposing the condi- 
tions that s(0) = 0 and 310 = 1 selects the sine while reversing the con- 
ditions selects the cosine. From this equation it is easy to deduce that sine 
and cosine are periodic with period 

J 
1 

T=2 
ds 

-l&=7 
= 

4 1 ds J 0 j/-m 
= 27r (A.64) 

and that they are constrained to output values -1 2 s(t) 5 +l. 
We can generalize equation (A.63) to 

y$q2 = (1- s2(t)) (1 -w(t)) OlIcll (A-65) 

where k = 0 reduces to the previous equation. The solutions to this equation 
are the elliptical functions sn&) and cn&) defined in Appendix A.8, and 
using logic similar to that preceding equation (A.64) we can prove that their 
period is 4&. 

EXERCISES 

A.lO.l What differential equation do the hyperbolic functions obey? 

A.10.2 Give an explicit formula for the k zeros and the k - 1 extrema of Tk. 

A.10.3 Write a program to expand functions in Chebyshev polynomials. Test it by 
approximating various polynomials. Expand cos(s) and tan(z) in Chebyshev 
polynomials. How many terms do you need for 1% accuracy? 
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A.10.4 Show that all the zeros of the Chebyshev polynomials are in the interval 
-15 t 5 +1. 

A.10.5 How can differential equations be solved numerically? 

A.11 The Dirac Delta 

The delta function is not a function, but a useful generalization of the con- 
cept of a function. It is defined by two requirements 

6(t) = 0 for all t # 0 (A.66) 

J 
O” ii(t) dt = 1 

--00 

which obviously can’t be fulfilled by any normal function. 
From this definition it is obvious that the integral of Dirac’s delta is 

Heaviside’s step function 

o(t) = Jt 6(T)d7- (A.67) 
-cm 

and conversely that the derivative of the unit step (which we would normally 
say doesn’t have a derivative at zero) is the impulse. 

(A.68) 

There are many useful integral relationships involving the delta. It can 
be used to select the value of a signal at a particular time, 

J 
00 s(t)b(t - 7) dt = S(T) (A.69) 

-co 

its ‘derivative’ selects the derivative of a signal, 

J O” 
d 

s(t)-gf(t - T)dt = 
d 

-03 
US 

and you don’t get anything if you don’t catch the singularity. 

J 
b s(t - 7) = 1 a<r<b 

a 
o 

else 

(A.70) 

(A.71) 
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As long as you only use them under integrals the following are true. 

6(-t) = 6(t) 

b(at) = +@I a 
(A.72) 

The delta function has various ‘representations’ (i.e., disguises that it 
uses and that you need to recognize). The most important is the Fourier 
integral representation. 

6(t) = $ Jrn eiwt dw (A.73) 
-00 

EXERCISES 

A.ll.l Prove 

A.11.2 Prove that x6(z) = 0. 

A.11.3 Prove 

where the sum is over all times when h(tn) = 0 but the derivative h(t,) # 0. 

A.ll.4 Can you think of a use for the nth derivative of the delta? 

A.11.5 Give an integral representation of Heaviside’s step function. 

A. 12 Approximation by Polynomials 

We are often interested in approximating an arbitrary but smooth continu- 
ous function f(z) by some other function a(z) in some interval a 5 x 2 b. 
The error of this approximation at each point in the interval 

44 = f(x) - a(x) 

defines the faithfulness of the approximation at a particular x. The variable 
x will usually be either the time t or the frequency ~3. 
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The approximating function a(z) is always chosen from some family of 
functions. In this section we will concentrate on the polynomials 

M 

a(x) = C a,xm 
m=O 

(A.74) 

but weighted sums of sinusoids and many other sets of functions can be 
treated similarly. The important point is that the particular function in the 
family is specified by some parameter or parameters, and that these param- 
eters are themselves continuous. For polynomials of degree up to M there 
are M + 1 parameters, namely the coefficients am for r-n = 0. . . M. These 
parameters are continuous, and even a small change of a single coefficient 
results in a different polynomial. Our job is to find the polynomial in the 
family that best approximates the given function f(x). 

Comparison of the overall quality of two different approximations neces- 
sitates quantifying the accuracy of an approximation in the entire interval by 
a single value. Two reasonable candidates come to mind. The mean square 
error 

c2 
1 b 

s 

1 =- 
b-a a 

c2(x)dx = b - 

and the maximum error. 

Emax = aFxyb I+>1 = ayxyb lfw - dx)I 
-- -- 

(A.75) 

Although approximations with either low mean squared error or low maxi- 
mum error are in some sense ‘good’ approximations, these criteria are fun- 
damentally different. Requiring small maximum error c2 guarantees that the 
approximation error will be uniformly small; while with small mean squared 
error, the pointwise approximation error may be small over most of the 
interval but large at specific w. 

We can thus define two different types of approximation problems. The 
first is to find that function a(x) in a family according to the Least Mean 
Squared (LMS) error criterion. The second is to find the function that has 
minimal maximum error, called the minimux criterion. Since the function 
a(x) is specified by its parameters in the family, both the LMS and minimax 
problems reduce to finding the parameters that obey the respective criterion. 
In this section we will limit ourselves to the family of polynomials of degree 
M, as in equation (A.74); hence the question is simply how to find the best 
M + 1 coefficients am (i.e., those coefficients that minimize either the LMS 
or maximal error). 
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These two approximation types are not the only ones, but they are the 
important ones when the problem is to minimize the error in an intemral. 
Were we to want the best polynomial approximation in the vicinity of a single 
point ~0, the best polynomial approximation would be the truncated Taylor 
expansion. However, as we distance ourselves from ~0 the error increases, and 
so the Taylor expansion is not an appropriate approximation over an entire 
interval. Were we to want the best approximation at some finite number 
of points xk for k = 1.. . K, the best approximation would be Lagrange’s 
collocating polynomial of degree K - 1. 

u(x) = ( x - x2)(x - x3) - ’ * (x - XK) 

(Xl - x2)(x1 - x3) * * * (Xl - XK) 
f (Xl) 

( x 
+ 

- x1)(x - x3) * * * (x - XK) 

(x2 - x1)(22 - x3) - ’ * (x2 - XK) 
f b4 

+ . . . (A.77) 

+ 
( x - x1)(x - x2) * ’ l (x - X&l) 

(XK - Xl>(XK - x2) * ’ ’ (w - w-1) 
fCxd 

Although the collocating polynomial has zero error at the K points, we have 
no control over what happens in between these points, and in general it will 
oscillate wildly. 

We will first consider the LMS approximation, where we are looking 
for the coefficients of (A.74) that minimize the mean squared error (A.75). 
Substituting, we can explicitly write the squared error (the normalization is 
irrelevant to the minimization) in terms of the coefficients a, to be found. 

f(x) - 5 a,xm 

2 

dx 
m=O 

Differentiating and setting equal to zero we obtain the ‘normal equations’ 
that can be solved for the coefficients. 

c Im,lxl = Fm 

I 
b 

I m,l EE xz+mdx 
a 

Fm E J ab f(x)xmdx 

(A.78) 

These equations can be solved by any of the usual methods for solving 
equations with symmetric matrices, but unfortunately often turn out to 
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be very sensitive numerically; hence the SVD approach is recommended 
for large M. An alternative approach based on orthogonal polynomials is 
more stable numerically, and is based on giving a more sophisticated linear 
algebra interpretation to the normal equations. Think of the powers 1, x, 
x2, x3, . . . xM as a basis for a space of functions. Each element of the vector 
on the right Fm is the projection of f(x) onto one of the basis functions, 
while the matrix Im,l contains the projections of the various nonorthogonal 
basis functions on each other. This is precisely the technique we use when 
finding Fourier components; we project the function onto the sinusoids, but 
don’t need to solve equations because the Im,l matrix is diagonal due to the 
orthogonality of the sinusoids. 

So what we need here is an orthogonal basis to replace the basis of 
powers. The Legendre polynomials of equation (A.55) are such a basis, and 
hence one can find their coefficients without solving equations, and then 
convert these to the coefficients of the powers by a linear transformation. 

In DSP the squared error of equation (A.75) is replaced by a sum over 
a discrete time or frequency 

E2 = ; 5 c2(xn) 
n=l 

= f -g (f(%, - 4xn,)2 
n=l 

and the normal equations are the same, but Fm and Im,l contain sums rather 
than integrals. The Legendre polynomials are not orthogonal when the in- 
ner product is a sum, but there are other polynomials, called the Szego 
polynomials, that are. 

The finding of the minimax polynomial is in general a more difficult prob- 
lem, since there is no simple error expression to be differentiated. Chebyshev 
proved a useful theorem, called the ‘alternation theorem’, that makes min- 
imax polynomial approximation tractable. To understand the alternation 
theorem, consider first the following simpler result. If a polynomial a(x) is 
the minimax approximation to a function f(x) in the interval [a. . . b], and 
the minimax error is emaz, then there are two points x1 and x2 in the in- 
terval such that E(x~) = -cmaz and 4x2) = +emaz. Why is this true? By 
the definition of emaz, the pointwise error is constrained to lie between two 
parallel lines -emax 5 E(x) < +emax, and it must touch at least one of these 
lines. In addition, were it not to touch the other we would be able to shift 
the supposed minimax polynomial by a constant, thereby decreasing ~~~~~ 

What Chebyshev proved is that the pointwise error of the true minimax 
polynomial touches the bounding lines many more times, alternating be- 
tween the lower bound and the upper one. Once again, were it not to do so 
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there would be a way of reducing the maximum error without increasing the 
degree. Therefore the minimax error is ‘equiripple’, i.e., oscillates between 
lower and upper bounds touching first one and then the other. 

Theorem: The Alternation Theorem 
A necessary and sufficient condition for the polynomial a(z) of degree M 
to be the minimax approximation in an interval is for the error function to 
have at least M + 2 extrema in the interval, and for the error to alternate 
between -emaz and +emas at these extrema. H 

The equiripple property led Chebyshev to seek a family of polynomials 
that oscillate between fl in the interval -1 5 2 5 +l (it is easy to mod- 
ify these to arbitrary bounds and intervals). He discovered, of course, the 
Chebyshev polynomials of equation (A.57). These polynomials are optimal 
for the purpose since they oscillate precisely as required and furthermore 
‘use up’ all their oscillatory behavior in the interval of interest (once out- 
side they diverge to infinity as fast as a polynomial can). In particular, the 

error of the Mth degree minimax approximation to x”+l in the interval 
[-1 . . . + l] is precisely 2-“T~+1 ( ) x . The search for minimax polynomials 
(combinations of powers of x) is thus more conveniently replaced by the 
search for combinations of Chebyshev polynomials 

u(x) = 5 b&&(x) = 5 b, cos (,cos-~ x) 
m=O m=O 

or using a change of variables, 

(A.79) 

where we have implicitly used the general multiple angle formula of equa- 
tion (A.31). In particular, the alternation theorem still holds in terms of this 
new representation in terms of trigonometric polynomials. 

The Russian mathematician Evgeny Yakovlevich Remez enhanced the 
practice of approximation by trigonometric polynomials, and rational func- 
tions of cosines. His ‘exchange algorithm’ is a practical method for finding 
the coefficients in equation (A.79), based on the alternation theorem. The 
idea is simple. We know that the error has M + 2 extrema and that the error 
is maximal there. Were we to know the precise positions of the extrema &, 
the following M + 2 equations would hold 

it4 

‘t(i) = f(ti) - C bm COS(?X$i) = (-l)iQ 
m=O 

for i = 1.. . M+2 
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and could be solved for the A4 + 1 coefficients b, and the maximal error eo. 
Don’t be confused; since the & are assumed to be known, Fi = f(&) and 
Ci,m = cos(m&) are constants, and the equations to be solved are linear. 

M 

c Ci,mbm - (-l)ieo = Fi 
m=O 

Unfortunately we do not really know where the extrema are, so we make 
some initial guess and solve. This results in a polynomial approximation to 
f(z), but usually not a minimax one. The problem is that we forced the error 
to be Z&O at the specified points, but these points were arbitrarily chosen 
and the error may be larger than ~0 at other points in the interval. To fix this 
we pick the A4 + 2 extrema with the highest error and exchange our original 
extrema with these new & and solve for bm and ~0 once again. We continue 
to iterate until the actual maximal error is smaller than the desired error. 
McClellan, Parks, and Rabiner found a faster way to perform the iterations 
by using the Lagrange’s collocating polynomial (equation (A.77)) instead of 
directly solving the linear equations. 

EXERCISES 

A.12.1 Approximate the function f(z) = e” on the interval [ - 1 5 z 5 +l] by 
a polynomial of degree 4 using a Taylor expansion at x = 0, collocating 
polynomials that touch the function at f z, LMS, and minimax polynomials. 
Determine the maximum error for all the above methods. 

A. 12.2 Give explicit formulas for the slope and zero crossing of the line that LMS 
approximates N empirical data points. What are the expected errors for these 
parameters? 

A.12.3 How can we match y = Ae”” to empirical data using techniques of this 
section? Does this technique truly find the minimum error? 

A.12.4 Show that the normal equations for polynomial approximation become ill- 
conditioned for high polynomial degree and large number of data points. 

A.12.5 Find a set of digital orthogonal polynomials, p[“](t), such that for ml # rn2: 
CnN_op[mll(t,>p[“‘l(tn) = 0. How can these polynomials be used for LMS 
poly&omial approximation? 
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A.13 Probability Theory 

We will not need much probability theory in this book, although we assume 
that the reader has had some exposure to the subject. The probability of 
some nondeterministic event occuring is defined by considering the event to 
be a particular realization of an ensemble of similar events. The fraction of 
times the event occurs in the ensemble is the probability. For example, if 
we throw a cubical die, the ensemble consists of six types of events, namely 
throwing a 1, or a 2, or a 3, or a 4, or a 5, or a 6. For a fair die these events 
are equally probable and the probability of throwing a 1 is thus P( 1) = i. 
If we were informed that the die came up odd, but not the exact number, 
the ensemble shrinks to three possibilities, and the probability of a 1 given 
that it is odd is P( 1 Iodd) = 3. 

A ‘random variable’ is a mapping from the set of all possible outcomes 
of some experiment into the real numbers. The idea is to change events into 
numbers in order to be able to treat them numerically. For example, the 
experiment might be observing the output of a black box and the random 
variable the value of the signal observed. The random variable will have some 
‘distribution’, representing the probability it will take on a given value. The 
‘law of large numbers’ states (roughly) that the distribution of the sum of a 
large number of independent random variables will always be approximately 
Gaussian. For this reason random variables with Gaussian distribution are 
called ‘normal’. 

When the possible outcomes are from a continuous set the probability 
of the random number being any particular real number is usually zero; so 
we are more interested in the probability that the outcome is approximately 
x. We thus define the ‘probability density’ p(z) such that the probability of 
the random variable being between 2 - 9 and x + 9 is p(x) dx. Since the 
probability of any x is unity, probability densities are always normalized. 

I p(x) dx = 1 

For example, if the event is the marking of a test, the mark’s probability 
density will be approximately Gaussian, with its peak at the average mark. 

The most important single piece of information about any random vari- 
able is its ‘expected value’ 

(4 = Pl = c xn P(zn> 
n I 

(4 = CL1 = /XP(s)dX (A.80) 
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the left form being used for discrete variables and the right form for continu- 
ous ones. The terms ‘expectation’, ‘average’, and ‘mean’ are also commonly 
applied to this same quantity. For the simple case of N discrete equally- 
probable values the expectation is precisely the arithmetic mean; for N 
nonequally-probable values it is the weighted average. Even for the most 
general case, if you have to make a single guess as to the value a ran- 
dom variable you should probably pick its expectation. Such a guess will be 
unbiased-half the time it will be too low and half the time too high. 

Although the average is definitely important information, it doesn’t tell 
the full story; in particular we would like to know how ‘wide’ the distribution 
is. You may propose to compute the average deviation from the average 
value, 

(x- (x)) =o 

but as we have just mentioned this is always zero. A better proposal is the 
‘variance’ 

Var= ((x- (z))‘) (AM) 

which is always positive. If the expectation is zero then the variance is simply 
(s2) , but even in general it is related to this quantity. 

Var = ((x- (2))‘) = (x2) -2 (2) (2) + (33) 2 = (x”) - (2) 2 

Since the units of variance are not those of length it is often more convenient 
to define the ‘standard deviation’. 

0 = 1/Var 

The distribution of a normal (Gaussian) random variable is completely 
determined given its expectation and variance; for random variables with 
other distributions we need further information. From the distribution of a 
random variable x we can determine its ‘moments’, 

Pk - J xk p(x) dx 
I 

pk = xx: P(G) 
n 

(A.82) 

and conversely the distribution is uniquely determined from the set of all 
moments. The zeroth moment is unity by definition (normalization) and the 
first moment is the expectation. From the second moment and higher we 
will assume that the mean is zero; if it isn’t for your distribution simply 
define a new variable x - (x) . The second moment is precisely the variance. 
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Figure A.2: Moments of probability distributions. In (A) is a distribution with negative 
first moment (expectation, mean, average) while in (B) is a distribution with positive first 
moment. In (C) is a distribution with zero mean but smaller second moment (variance) 
while in (D) is a distribution with larger variance. In (E) is a distribution with zero mean 
and negative third moment (skew) while in (F) is a distribution with positive skew. In 
(G) is a distribution with negative kurtosis while in (H) is a distribution with positive 
kurtosis. 

The third moment divided by the standard deviation raised to the third 
power is called the ‘skew’; 

P3 skew E - 
03 

it measures deviation from symmetry around zero. Normal random variables 
have zero skew. 

For the Gaussian distribution the fourth moment divided by the standard 
deviation raised to the third power equals three; so to measure deviation 
from normality we define the ‘kurtosis’ as follows. 

kurtosis E E - 3 
04 

Distributions with positive kurtosis have narrower main lobes but higher 
tails than the Gaussian. The meaning of the first few moments is depicted 
graphically in Figure A.2. 

Frequently real-world objects have more than one characteristic; for ex- 
ample, people have both height h and weight w. The obvious extension of 
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the above concepts is to define the ‘joint probability’ p(h, w) dh dw meaning 
the probability of the person having height in the vicinity of h and simul- 
taneously weight about w. For such joint probability distributions we have 
the so-called ‘marginals’, 

P(h) = /p(h, 4 dw P(w) = 1 P(h, w> dh 

where the integrations are over the entire range of possible heights and 
weights, p(h)dh is the percentage of people with height between h and h+dh 
regardless of weight, and p(w)dw is the percentage of people with weight 
between w and w + dw regardless of height. The integration over both height 
and weight must give one. 

Two random variables are said to be ‘statistically independent’ if knowl- 
edge of the value of one does not affect the knowledge of the other. For 
example, we can usually assume that consecutive throws of a fair coin are 
independent, and knowing what happened on the first 100 throws does not 
help us to predict what will happen on the next. Two random variables 
are said to be uncorrelated if their crosscorrelation (defined as the expec- 
tation of their product) is zero. Statistically independent random variables 
are necessarily uncorrelated, but the converse need not be true. 

EXERCISES 

A.13.1 Define p(BIA) to be the probability of event B occurring given that event 
A occurred. Prove that the probability of both events A and B occurring 
is P(A A B) = P(A)PUW; and if A and B are independent events that 
PM A B) = P(A)PW 

A.13.2 Prove that the probability of either of two events occurring is p(A V B) = 
P(A) + P(B) - P(A A B), and that if A and B are mutually exclusive events 
that p(A V B) = p(A) + p(B). 

A.13.3 Prove Bayes’ theorem p(BIA) = p(AIB)p(B)/p(A) and explain how this en- 
ables defining probabilities that can not be defined by our original definition. 

A.13.4 Let the probability of an experiment succeeding be p. Show that the prob- 
ability of exactly m successes out of n identical independent experiments is 
given by the binomial distribution. 

Pb-4 = 
0 

; pm (1 -p)“-” 

Show that the binomial distribution approaches the normal distribution for 
large n. (Hint: Use Stirling’s approximation for the factorials in the binary 
coefficient). 
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A. 14 Linear Algebra 

Linear algebra is the study of vectors. ‘Vector’ actually means several radi- 
cally different things that turn out,, almost by accident,, to be connected. If 
your background is science, the word ‘vector’ probably triggers the geometric 
meaning, while computer scientists always think of n-tuples of numbers. The 
technical mathematical meaning is more general than either of these, and 
allows such entities as the set of all analog signals, or of all digital signals, 
or of all periodic signals, to be vector spaces as well. 

The abstract mathematical definition of ‘vector’ is an element of a vector 
space, a concept that we introduced in Appendix A.5. Compiling all the 
requirements set forth there, a vector space must obey all of the following 
rules. 

Addition: For every two vectors z and y , there is a unique vector x such - 
that x = x + y; this addition& commutative and associative, - - - - 

Zero: There is a ‘zero vector’ 0, such that x + 0 = x for every vector x, - - - - 
Inverse: Every vector x has an inverse vector -x such that x + -x = -07 - - - - - 
Multiplication: For every vector x and number a there is a vector ax. - - 

In addition some vector spaces have further properties. 

Inner Product: For every two vectors x and y , there is a unique number - - 
a such that a = x. y, - - 

Norm: For every vector x there is a unique nonnegative real number r such 
that r = 1x1; r = Oifandonlyifx=O, - - - 

Metric: For every two vectors x and y, there is a unique nonnegative real 
number d such that d = D~x, y);d = 0 if and only if x = 2. -- - 

From these basic definitions many interesting concepts and theorems can 
be derived. We can make general ‘linear combinations’ of vectors 

N 

c sivi = SlVl + S2V2 + . . . + SNVN (A.83) - - - 
i=l 

which must return a vector in the space. The set of all vectors that can be so 
formed are called the ‘span’ of VI, l-4, . . . VN. The span is itself a subspace of -- 
the original space. It is not, difficult to prove this directly from the axioms. 
For example, we must be able to create the zero vector, which can be done by 
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choosing ~1 = s2 = . . . = SN = 0. If this is the only way of creating the zero 
vector, then we say that the vectors VI, V2, . . . VN are ‘linearly independent’. 

If the vectors V-1, V2, . . . VN are linearly independent and span the entire -e 
vector space, we say that theyare a ‘basis’ for the space. Given a basis, any 
vector in the space may be created in a unique way; were there to be two 
represent at ions 

N 

x= r& c =rlVl +~2V2 +...+TNVN - - - - 
i=l 

N 

x= Si& c =slVl +s~V~+...+SNVN - - - - 
i=l 

then by subtracting the equations we would find 

0 = fJ~i - Si)IJ = (7'1 - 31)s + (r2 - 82)s + l l l + (TN -  SN)& 

i=l 

which by linear independence of the basis requires all the respective scalar 
coefficients to be equal. 

There are many different bases (for example, in two dimensions we can 
take any two noncolinear vectors) but all have the same number N of vectors, 
which is called the ‘dimension’ of the space. The dimension may be finite 
(such as for two- or three-dimensional vectors), denumerably infinite (digital 
signals), or nondenumerably infinite (analog signals). 

We defined two vectors to be orthogonal if their dot product is zero. A 
set of three or more vectors can also be orthogonal, the requirement being 
that every pair is orthogonal. If a set of unit-length vectors are orthogonal, 
we call them ‘orthonormal’. 

Vi l 3 = &,j (A.84) - 
It is not hard to show that any finite number of orthonormal vectors are 
linearly independent, and that if given a basis we can create from it an 
orthonormal basis. 

Given a vector and a basis how do we find the expansion coefficients? 
By dotting the vector with every basis vector we obtain a set of equations, 
called ‘normal equations’, that can be solved for the coefficients. 

XT1 = X~V~.V~+X~V~*V~+...+XNVN*~ 

k*v, = xl~*~+x2~.~+...+xN~‘~ -m -m -- -m 

. . 

x*vN = X~V~*VN+X~V~*VN+...+XNVN~VN -- -- -- -- 
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Now we see a useful characteristic of orthonormal bases; only for these can 
we find the z th coefficient by dotting with Vi alone. - 

-- 
j=l - - j=l 

(A.85) 

A.15 Matrices 

A ‘matrix’ is a rectangularly shaped array of numbers, and thus specification 
of a particular ‘matrix element’ Aij requires two indices, i specifying the 
‘row’ and j specifying the ‘column’. In this book we symbolize matrices by 
A, the double underline alluding to the twodimensionality of the array, just 
= 
as the single underline indicated that vectors are one-dimensional arrays. 
When actually specifying a matrix we write it like this 

11 12 13 14 
21 22 23 24 
31 32 33 34 
41 42 43 44 

this being a 4by-4 matrix with the numbers 11,12,13,14 residing on the 
first row, 11,21,31,41 being in the first column, and 11,22,33,44 comprising 
the ‘diagonal’. 

The ‘transpose’ At of a matrix is obtained by interchanging the rows 
and columns At ==Aji. If A is N-by-M then At will be M by N. For 
matrices with complex elemezs the corresponding?oncept is the ‘Hermitian 
transpose’ AH, where A: = A& 

Actuallrvectors can be considered to be special cases of matrices with 
either a single row or a single column. A ‘row vector’ is thus a horizontal 
array 

( 11 12 13 14 ) 

and a ‘column vector’ a vertical array. 

11 
21 

i i 

31 
41 
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‘Square matrices’ have the same number of rows as they have columns. 
If a square matrix is equal to its transpose (i.e., aij = aji), then we say that 
the matrix is ‘symmetric’. 

a11 al2 aI3 . . . alN 

al2 a22 a23 . . . a2N 

a13 a23 a33 . . . a3N 
. . . . . . . . . . . . . . . 

alN a2N a3N . . . aNN 

(A.86) 

If a complex-valued matrix obeys aij = a;i then we say that it is ‘Hermitian’. 
The elements of a square matrix with constant difference between their 
indices are said to reside on the same diagonal, and the elements aii of 
a square matrix are called its ‘main diagonal’. A matrix with no nonzero 
elements off the main diagonal is said to be ‘diagonal’; a matrix with nonzero 
elements on or below (above) the main diagonal is called ‘lower (upper) 
triangular’. If all the diagonals have all their elements equal, 

( a b c . . . \ 

x a b c . . . 

y x a b c . . . 

x y x a b . . . 

. . . . . . . . . . . . . . . . . . 

. . . . , . . . . . . . a b 
\ .*. . . . . . . .*. IZ: a, 

(A.87) 

the matrix is called ‘Toeplitz’. A matrix can be both symmetric and Toeplitz. 
Matrices can be multiplied by scalars (real or complex numbers) by mul- 

tiplying every element in the array. Matrices of the same shape can be added 
by adding their corresponding elements Cij = Aij + Bij, but the multiplica- 
tion is somewhat less obvious. 

Matrix multiplication is not generally commutative, and doesn’t even have 
to be between similarly shaped matrices. The requirement is that the matrix 
on the right have the same number of rows as the matrix on the left has 
columns. If the left matrix is L-by-M and the right is M-by-N then the 
product matrix will be L-by-N. In particular the product of two N-by-N 
square matrices is itself N-by-N square. Also, the inner (dot) product of 
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two vectors is automatically obtained if we represent one of the vectors as a 
row vector and the other as a column vector. 

I.41 2.4 . . . UN 

= ulvl + u2212 + . . . UNV, (A.89) 

If we place the vectors in the opposite order we obtain the ‘outer product’, 
which is a N-by-N matrix. 

u2 

. 

\ uN 

(A.90) 

The N-by-M ‘zero matrix’ 0 is the matrix with all elements equal to 
zero. It is obvious from the definkions that 0 + A = A + 0 = A. The set of 
all N-by-M matrices with real elements is a?ield?verTheTeals\ith respect 
to matrix addition and multiplication using this zero element. 

The N-by-N square ‘identity matrix’ I is given by Iij = 6i,j = 

i 0 0 0 1 .  .  0 0 0 1 .  .  . . . ..: . . . .  . . . 
* l .  

0 0 0 1 .  .  

l 1 
and as its name implies I A = A and A I = A whenever the multiplication =, = == = 
is legal. 

A square matrix is called orthogonal if A At = I, i.e., if the rows (or -- 
columns) when viewed as vectors are orthonGGa1. F& complex matrices, a 
matrix for which AAH = I is called ‘unitary’. == 

One of the reasons tha7 matrices are so important is that they perform 
transformations on vectors. For example, vectors in the two-dimensional 
plane are rotated by 0 by multiplying them by a rotation matrix Re. = 

Re = 
( 

cos e sin 0 
= -sin8 cos0 > 

(A.91) 
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It is easy to see that rotation matrices are orthogonal, and hence Rex has 

the same length as x. It is also not difficult to prove that R,+p = =&R/j 
(i.e., that rotations &n be performed in steps). 

= == 

If we perform an orthogonal transformation R on a vector space, the 

particular representation of a vector x changes z x’ = Rx, but we can - - -- 
think of the abstract vector itself as being unchanged. For instance, rotation 
of the axes change the vector representation, but the vectors themselves have 
a deeper meaning. Similarly, a matrix M that performed some operation 
on vectors is changed by such changes of axes. The matrix in the new axes 
that performs the same function is 

M’ =RMR-‘=RMRt (A.92) 
= = = = 

as can be easily seen. If the original effect of the matrix was y = M x then - -- 
in the new representation we have 

,‘=!+’ = = =--=Y =RMR-lRx-R 

as expected. Two matrices that are related by B = R A Rt where R is 
= = = 

orthogonal, are said to be ‘similar’. 
There are four common tasks relating to matrices: inversion, diagonal- 

ization, Cholesky decomposition, and singular value decomposition (SVD). 
‘Inversion’ of A is the finding of a matrix A-’ such that AA-l = I. This is -- -- 
closely relaterto the task of equation solzng that is discussed in=the next 
section. ‘Diagonalization’ of A means finding a diagonal matrix D that is 

= = 
similar to the original matrix. 

A = RDR’ (A.93) --- = --- 

Expressed another way, given a matrix A if we have Ax = Xx we say that 
=- - 

X is an ‘eigenvalue’ of A and x an ‘eigeEector’. Placing all the eigenvalues 

on the main diagonal Tf a diagonal matrix results in the diagonal matrix 
to which A is similar. The orthogonal matrix can be constructed from the 
eigenvectors. The Cholesky (also called LDU) decomposition of a square 
matrix A is a representation 

= 

A=LDU (A-94) --- = --- 

where L (U) is lower (upper) diagonal with ones on the main diagonal, and 

D is dizgoral. The singular value decomposition (SVD) of a (not necessarily 
= 
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square) A is a representation 
= 

A=UDV --- = --- (A.%) 

where U and V are orthogonal (by column and by row respectively), and 

D is diFgona1 %h nonnegative elements. 

= There are many relationships between the above tasks. For example, 
given either the diagonal, Cholesky, or SVD representations, it is simple to 
invert the matrix by finding the reciprocals of the diagonal elements. Indeed 
the Cholesky decomposition is the fastest, and the SVD is the numerically 
safest, method for inverting a general square matrix. Numeric linear algebra 
has a rich literature to which the reader is referred for further detail. 

EXERCISES 

A.15.1 

A.15.2 

A.15.3 

A.15.4 

Show that (AB)-1 = B-lA-‘. 

The 2-by-2 Pauli spin matrices are defined as follows. 

Show that these matrices are Hermitian and unitary. Find a: and aiaj. 

The commutator, defined as [A, B] = A B - A B , can be nonzero since matrix 
= - -- -- -- -- 

multiplication needn’t be commzative. Find the commutators for the Pauli 
matrices. Define the anticommutator as the above but with a plus sign. Show 
that the Pauli matrices anticommute. 

Find the Crout (LU) and Cholesky (LDU) decompositions of 

by setting it equal to 

and to 

multiplying out and solving the equations. How many operations are needed? 
Why is the Cholesky method better? Now solve the equations with right-hand 
side (2,8,20). 
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A.16 Solution of Linear Algebraic Equations 

A common problem in algebra is the solution of sets of linear equations 

Ax = b (A.96) 
- 

where A is a known N * N matrix, b is a known N-dimensional vector, and 

x is thFN-dimensional vector we want, to find. Writing this out in full, 

which means 

Allxl + ~412x2 + A13~3 . . . A~NXN = bl 
A21x1 + A2252 + A23x3 . . . &NXN = b2 
A3151 + A3222 + A3353 . . . &NXN = b3 

ANIXI i- A~222 i- AN$Q . . . ANNXJJ = bN 

and we see that this is actually N equations in N variables. 
If we know how to invert the matrix A the solution to the equations is 

immediate: x = A-lb. This method of eqction solving is especially effective - 
if we have to solvzmany sets of equations with the same matrix but different 
right-hand sides. However, if we need to solve only a single instance it will 
usually be more efficient to directly solve the equations without inverting 
the matrix. 

If A happens to be lower (or upper) triangular then equation A.97 has 

the spzial form 

and the solution to these equations is simple to find. 
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The first equation is 

which is immediately solvable. 

h 
Xl =- 

41 

With x1 known we can solve the second equation as well. 

A21331 + A2252 = b2 x2 = 
b2 - h$& 

a22 

We can continue with this process, known as ‘back-substitution’, until all 
the unknowns have been found. 

Back-substitution is only directly applicable to equations containing up- 
per or lower triangular matrices, but we will now show how to transform 
more general sets of linear equations into just that form. First note that 
adding the multiple of one equation to another equation (i.e., adding the 
multiple of one row of A to another row and the corresponding elements of - 
b) does not change thesolution vector x. Even more obviously, interchang- 
mg the order of two equations (i.e., interchanging two rows of A and the - 
corresponding elements of b) does not change the solution. Usingjust these 
two tricks we can magically-transform arbitrary sets of equations (A.97) into 
the triangular form of equation (A.98). 

The basic strategy was invented by Gauss and therefore called ‘Gaussian 
elimination’ and it can be extended to a method for finding the inverse of a 
matrix. However, if we really need to invert a matrix, there may be better 
methods. A matrix that has some special form may have an efficient inver- 
sion algorithm. For example, Toeplitz matrices can be inverted in O(N2) 
time by the Levinson-Durbin recursion discussed in Section 9.10. In addi- 
tion, if numerical accuracy problems arise when using one of the standard 
algorithms, there are iterative algorithms to improve solutions. 

Sometimes we know the inverse of matrix A, and need the inverse of 

another related matrix. If we are interested in=the inverse of the matrix 
A + B , the following lemma is of use 
= = 

(A + B)-l = A-l - 
= = = 

4-l (A-’ + B-l -’ 
= = > 2-l (A.99) 

and a somewhat more general form is often called the ‘matrix inversion 
lemma’. 

(A + BCD)-1 = A-l - A-ll3 DA-l (A. 100) --- = --- = = ( -- = -- 
B + C-l)-’ DA-’ 
= = -- -- 



828 WHIRLWIND EXPOSITION OF MATHEMATICS 

Let’s prove this last lemma by multiplying the supposed inverse by the 
matrix, 

(A + BCD)-‘(A + BCD) = 
= --- --- --- --- 

( 
A-1 - A-1B ;DA-lB + c-‘)-‘DA-‘) (A + BCD) = -- I; A&;- -- -- -- --- --- 

--- 
@B=(D;-‘B + C-l)-’ ; (I + &CD) = 

= I+;-l,(C-i-),= --- -- -- = = == = --- --- 

= = == == 

where 

x = = 

= 

which completes the proof. 

EXERCISES 

A.16.1 Assume that B is an approximation to A-‘, with error R = I - BA. Show 

that A-’ = (I=+ R + R2 + R3 + . . .) B an; that this can bTuse=d tozzatively 

imprge the iivege. 
= = = 

A.16.2 You know that x and y obey the equation x + 3y = 8 and determine numeri- 
cally that they also obey 2x+6.OOOOly = 8.00001. What are x and y? Suppose 
that the numerically determined equation is 2x + 5.99999y = 8.00002. What 
are x and y now? Explain the discrepancy. 
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metric, 819 
metric space, 790 
Michelson, AA, 86 
minimax approximation, 812-814 
minimum mean square error, see 

MMSE 
minimum phase, 302 
mixed-radix FFT, 551 
mixer, 114, 137, 332-339, 560 
MLP, 330, 451 
MMSE, 409-410 
modem, 4, 7, 124, 207, 208, 222, 

269,325,334-335,371,400- 
402,404-406,425,488,561, 
619,w,698-737,753,775 

modulation, 49, 157, 652 
modulo, 783 
Moler-Morrison algorithm, 612 
moment functions, 194 
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moments, 816-817 
Monte-Carlo integration, 203 
Morse code, 649-653, 710 
Morse, S, 649 
MOS, see mean opinion score 
moving average, 219 
MSB, 539, 545-546, 783 
MSE, 370, 373-375, 376, 378, 381, 

382,409-410,414,417,421, 
766 

p-law, 213, 434, 732, 757-759 
multilayer perceptron, see MLP 
multiplex, 673, 711 
multiply-and-accumulate, see MAC 
music, 4, 26, 32, 39, 128, 204, 209, 

215, 221,222, 376,433,610, 
673, 680, 742, 753 

Napoleon, 78, 649 
negative feedback, 290 
negative frequency, 46 
netlist, 485 
neural network, 329-332,446-452, 

750 
Newton, I, 72-73 
Newton-Raphson algorithm, 611 
NEXT, 735 
NLP, 325, 402-403 
node, 463 
noise, 31, 161-202, 700-702 
noise bandwidth, 508 
noise cancellation, 5,393-399,407, 

408, 425 
nondenumerably infinite, 784 
nondeterministic algorithm, 203- 

204 
nonlinear processor, see NLP 
nonlinear systems, 210-212, 223, 

226,322-324,335,390,403 
NOP, 629, 630, 638, 639 

norm, 819 
normal equations, 84,280, 811, 814, 

820 
notch filter, 25O,m,301, 302, 339 
NRT, 701, 743 
NRZ, 667, 698-700, 708 
number, 781 

complex, 782, 785-787 
integer, 782-784 
rational, 782 
real, 782, 784-785 
whole, 781 

Nyquist, H, 53 

OFDM, 736 
OOK, 651, 652, 700-702 
orthogonal, 36, 7& 820 
orthogonal frequency division mul- 

tiplexing, see OFDM 
oscillator, 290 
OS1 model, 665 
outliers, 326 
overflow, 555-558 
overlap add, 575 
overlap save, 575 

Paley-Wiener theorem, 275 
PAM, 49, 654, 698, 703 
PAR, 61, 737 
parallel form, 599-601 
parallel port, 632 
parity check matrix, 686 
Parseval’s relation, 95, 115, 138, 

358, 556 
partition, 388 
patch panel, 481 
pattern recognition, 208, 497 
PCM, 48,@ 
PCM modem, 7, 733-734 
perceptron, 330, 451 
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perceptual weighting, 773, 775 
periodogram, 502-506 
phase modulation, see PM 
phase shift keying, see PSK 
phase-locked loop, see PLL 
phased array, 317 
phoneme, 436 
pipeline, 627-630 
Pisarenko harmonic decomposition, 

512-519 
pitch, 125, 436, 750-753 
PLL, 338-343, 712 
PM, 654, 659-664 
pole-zero plot, 295, 298-302 
polynomial, 231,279-285,791-793 
polynomial approximation, 809-814 
polyphase filter, 584-590 
polyspectrum, 389 
post-filter, 761, 774 
POTS, 124 
power, 18 
power cepstrum, 746 
power law distortion, 211 
power spectral density, see PSD 
power spectrum, 91, 94,95, 96,116, 

122-126 
PPM, 49, 654 
pre-emphasis, 273, 661 
prediction, 49, 180-181, 252-253, 

369-376, 760-765 
PRF, PRI, 98 
prime factor FFT algorithm, 551 
probabilistic algorithm, 203-204 
probability, 815-819 
processing delay, 274 
processing gain, 360 
Prony’s method, 518-519, 602 
Prony, Baron de, 518 
PSD, 123, 357-359, 495, 708-710 

pseudorandom signals, 162, 174- 
179 

PSK, 364, 654, 702, 704-708 
PSTN, 775 
pulse amplitude modulation, see PAM 
pulse coded modulation, see PCM 
pulse position modulation, see PPM 
pulse width modulation, see PWM 
PWM, 49, 654 
pyramid algorithm, 528, 769 
Pythagorean addition, 611-612 

QAM, 716-723 
QMF, 528, 769 
quadrature component, 27 
quadrature form, 91 
Quadrature Mirror Filter, see QMF 
quefrency, 744, 745 

radar, 5-6, 98-100, 129, 161, 171- 
174,207, 208,271,316, 319, 
350-352, 353,362-365,367 

radio frequency interference, see RF1 
radix-4 FFT, 548-550 
radix-R FFT, 542, 550 
raised cosine, 233 
random number generators, 174- 

179 
RASTA, 748 
RAX, 481-493 
real-time, 533, 570 
rectifier, 9, 86, 211 
recursive least squares, see RLS 
Reed-Solomon codes, 688-689 
Remez exchange algorithm, 314,813- 

814 
resampling, 370 
return map, 185 
RFI, 324 
RLS, 421-425 
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RMS, l7, 19 
ROC, 150-155 
root mean squared, see RMS 
roots of unity, 532, 787 
rotation matrix, 613-615, 823-824 

sample and hold, 66 
sampling, see A/D 
sampling theorem, 48, 53-56, 139 
Sarkovskii’s theorem, 190 
saturation arithmetic, 5j2, 634 
sawtooth, 24, 29, 67, 75 
SBC, 768-769 
Schuster, Sir A, 502, 530 
Schwartz inequality, 122 
scrambler, 700, 712 
seismology, 6 
sequency, 524 
serial port, 632 
set partitioning, 724 
Shakespeare, W, 17, 674 
Shannon C, 683 
Shannon, C, 53, 671-680 
shell mapper, 731 
shift register, 176, 632, 682, 690 
shifted unit impulse, see SUI 
short-term predictor, 743 
side information, 764 
sidebands, 658, 662-663 
sigma-delta digitizer, 68-69 
signal, lJ 

chaotic, 162 
characteristics, 30-33 
complex, 18, 26, 30 
constant, 20 
deterministic, 30 
exponential, 26 
finite bandwidth, 33 
finite time duration, 33, 571 
finiteness, 16 

impulse, 21 
incompletely known, 162 
logistics, 37 
periodic, 32 
pseudorandom, 162 
sawtooth, 29 
simplest, 20-28 
sinusoid, 25 
square wave, 23 
stochastic, 30, 162 
triangle, 29 
unit step, 21 

signal processing system, 208 
signal separation, 4U7 
signal to noise ratio, see SNR 
simple difference, 470 
Sine, 88-89 
sine function, 45, 53, 126 
single sideband AM, 659 
sinusoid, 25-26, 29, 32, 33 
sinusoidal representation, 749, 778 
skew, 817 
slicer, 325, 707, 715, 718, 720-723 
slint graph, 28 
slope converter, 67 
smoothing, 231, 279-282 
SNR, 3l, 48, 57, 60, 61, 162, 173, 

360, 365-367 
soma, 443 
sonogram, 128, 505 
sort, 536, 538 
speaker identification, 4, 71, 128, 

739, 744, 747, 755, 770 
spectral analysis, 5 
spectrum, 45-46, 71-73, 74 
speech compression, 4, 369, 371, 

373, 633, 739, 753-778 
speech recognition, 4,343, 350,441, 

739, 744, 747-749, 768 
speech signals, 4,435-442, 739-778 
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speech synthesis, 739 
split-radix FFT, 550 
square root, 611-613 
square wave, 23, 76 
stable system, 223, 244 
state-space description, 214, 24 7, 

481, 692-695 
static buffer, 570 
stationary signal, 193 
statistically independent, 818 
statistics, 161 
step signal, see unit step 
STFT, 126-132 
stochastic signal, 3J, 161-163, 192- 

198 
streamability, 224 
structures, 579-584, 595-601 
subband coding, see SBC 
sufficient statistics, 164 
SUI, 22, 41-43 
sum formulas, 796 
super-resolution, 512, 514 
SVD, 812, 824 
symbol, 405, 703 
symmetries, 478-481 
synapse, 444 
synchronization, 339 
syndrome, 686 
system identification, 252-270 
Szego polynomials, 812 

Taylor expansion, 45-47, 145, 155, 
279,308,323, 391,606,609, 
811 

TCM, 723-728 
tee connector, 468 
Tesla, N, 28 
time advance operator, 36-37 
time delay operator, 36-38 
time domain, 106 

time of arrival, see TOA 
time reversal, 34-35, 95, 116, 137, 

154, 361 
time shift, 94-95, 114, 137, 153- 

154, 255, 297, 352-353 
time warping, 343-348, 739 
time-frequency distribution, 129- 

131, 529 
time-invariant system, 223-224 
timing recovery, 710-714 
TLA, 642 
TOA, 171, 319, 364 
Toeplitz matrix, 240,260,261, 263, 

375, 516, 519, 822, 827 
Toeplitz, 0, 270 
toll quality, 756 
Tomlinson equalization, 4 07, 715 
Toom-Cook algorithm, 538 
topology, 463 
transceiver, 647 
transfer function, 2JU, 293-298 
transform, 105 
transient, 511 
transposed structure, 579-580, 595, 

599 
transposition theorem, 476, 599 
trellis, 467, $9J 
triangle wave, 24 
trigonometric functions, 795-798 
Tukey, JW, 200, 568 
twiddle factor, 541 
two’s complement, 633, 783 

uncertainty theorem, 73, 89, 98, 
118,l20,121-122,129,156, 
313, 503, 507, 514, 527, 560, 
703, 704 

unit delay, 470 
unit impulse, 21-23 
unit step, 21 
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unitary matrix, 143, 823 

V.34, 47, 718, 730-732 
VAD, 4,743 
variance, 161, 816 
vco, 339 
vector quantization, see VQ 
vector space, 40-44, 786, 789-790, 

819-821 
Viterbi algorithm, 344, 693-698 
vocoder, 755 
voice activity detection, see VAD 
voice over data, 775 
voicing, 752-753 
voltage controlled oscillator, see VCO 
von Hann, J, 508 
von Kempelen, W, 779 
von Neumann, J, 177, 625 
Voronoy region, 721, 768 
VOX, see VAD 
VQ, 765-771 

Walsh functions, 523-526 
Watson-Watt, R, 171 
wave, 315 
waveform coders, 754 
waveform interpolation, 777-778 
wavelength, 315 
wavelets, 526-529 
Weber, E, 428-430 
white noise, 169, 189, 195 
whitening filter, 362, 367, 372 
Widrow-Hoff equation, 413, 415 
Wiener filter, 365-369 
Wiener, N, 270, 392, 530 
Wiener-Hopf equations, 263, 410- 

413 
Wiener-Khintchine theorem, 125, 

201,357-359,386,389,521, 
708 

Wigner-Ville distribution, 130 
window, 117, I,%, 129, 274, 505- 

512, 526 
Winograd FFT, 551 
Wold’s decomposition theorem, 196 

Yule, GU, 270, 530 
Yule-Walker equations, 263-264, 374, 

375, 378-380, 521 

z transform, 143-155,265-270,520 
zero crossings, 324-325, 496-497, 

710-712, 743, 752 
zero-overhead, 621, 623, 631, 638 
zero-padding, 550, 559, 574 
zoom FFT, 559-560 
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